博碩士論文 111324604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:129 、訪客IP:18.216.45.231
姓名 羅思德(Rosyid Shidiq Hidayatulloh)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱
(The Effect of Upstream Performance of Biocatalytic Reaction on Downstream Purification Feasibility in Glycine Production Using Immobilized Aminoacylase)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度
★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選
★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究★ 生命的起源與天門冬氨酸在水中的結晶
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究探討使用活性碳上的固定化氨基化醯化?持續生產與純化甘氨酸,並將重點放在上游與下游製程。在上游階段,酵素反應顯示出有效的甘氨酸產量,固定化酵素展現出顯著的操作穩定性與可重複使用性。雖然酵素活性在第二週期下降至 18.2%,在第三週期下降至 9.5%,足以支持重複反應,驗證了酵素固定化長期使用的實用性。利用甘氨酸的三元相圖來優化下游的純化過程,從而了解甘氨酸結晶的最佳條件。在前兩個循環中,反應轉換率均在相圖的有利區域內,因此成功地純化了高純度的甘氨酸,純度範圍從 95.96% 到 102.6%,證實了純化方法的有效性。甘氨酸的產率介於 1.34% 到 5.67% 之間,與理論預測相當接近。然而,在第三個循環中,由於反應條件的轉變,純化不可行,落在了平衡區之外。這些發現突顯了優化上游生產和下游純化以提高產量和純度的重要性。本研究有助於發展甘氨酸生產的永續與綠色化學方法。
摘要(英) This study investigates the sustainable production and purification of glycine using immobilized aminoacylase on activated carbon, focusing on both upstream and downstream processes. In the upstream phase, the enzymatic reaction demonstrated effective glycine production, with immobilized enzymes exhibiting significant operational stability and reusability. Although enzyme activity decreased into 18.2% in the second cycle and 9.5% in the third cycle, it remained sufficient to support repeated reactions, validating the practicality of enzyme immobilization for long-term use. The downstream purification process was optimized using a quasi-ternary phase diagram of glycine, which provided insights into the optimal conditions for glycine crystallization. Successful purification was achieved in the first two cycles, where reaction conversions fell within the favorable regions of the phase diagram, resulting in high-purity glycine with purity levels ranging from 95.96% to 102.6%, confirming the efficacy of the purification method. The yield of glycine varied between 1.34% and 5.67%, which is close enough with theoretical predictions. However, purification was not feasible in the third cycle due to a shift in reaction conditions, falling outside the equilibrium zone. These findings highlight the importance of optimizing both upstream production and downstream purification for improving yield and purity. This study contributes to the development of sustainable and green chemistry methodologies for glycine production.
關鍵字(中) ★ One keyword per line 關鍵字(英) ★ Enzymatic reaction
★ Crystallization
★ Purification
★ Phase diagram
★ Enzyme immobilization
論文目次 摘要... i
Abstract... ii
Acknowledgment... iii
Table of Contents... v
Table of Figures... viii
List of Tables... xi
Appendix... xii
Chapter 1. Introduction... 1
1.1 Background of the Study... 1
1.2 Upstream Process Overview... 6
1.3 Phase Diagram for Downstream Process... 8
1.4 Literature Survey on Enzyme Immobilization... 10
1.5 Conceptual Framework... 15
Chapter 2. Experimental Materials and Methods... 17
2.1 Materials and Chemicals... 17
2.2 Experimental Methods... 18
2.2.1 Solubility Measurements of Glycine, N-Acetylglycine and Sodium Acetate Trihydrate... 18
2.2.2 Enzymatic Reaction by Free Aminoacylase... 18
2.2.3 Immobilization of Aminoacylase... 19
2.2.4 Enzymatic Reaction by Immobilization Aminoacylase... 20
2.2.5 Conceptual Illustration of Quasi-Ternary Phase Diagram ... 21
2.2.6 Construction of Quasi-Ternary Phase Diagram... 25
2.2.7 Purification of Reacting Solution to Obtain Pure Glycine... 27
2.3 Analytical Measurements... 30
2.3.1 Fourier-Transform Infrared Spectroscopy (FTIR)... 30
2.3.2 Ultraviolet-Visible Spectroscopy (UV-Vis)... 30
2.3.3 Powder X-Ray Diffraction (PXRD)... 34
2.3.4 Scanning Electron Microscopy (SEM)... 35
2.3.5 Brunauer-Emmett-Teller Analysis (BET)... 35
Chapter 3. Results and Discussion... 36
3.1 Upstream Process for Glycine... 36
3.1.1 Immobilization of Aminoacylase on Activated Carbon... 36
3.1.2 Enzymatic Reaction with Free Enzyme and Immobilized Aminoacylase... 44
3.2 Downstream Process of Glycine... 55
3.2.1 Solubility Measurements of Glycine, N-acetylglycine, and Sodium Acetate Trihydrate... 55
3.2.2 Construction of Quasi-ternary Phase Diagram... 57
3.2.3 The Use of Quasi-Ternary Phase Diagram for Glycine Purification... 61
Chapter 4. Conclusions and Future Work... 68
4.1 Conclusions... 68
4.2 Future Work... 71
References... 72
Appendix... 79
參考文獻 (1) Bouchard, A.; Hofland, G. W.; Witkamp, G.-J. Solubility of Glycine Polymorphs and Recrystallization of β-Glycine. J. Chem. Eng. Data 2007, 52 (5), 1626–1629. https://doi.org/10.1021/je700014k.
(2) Anbu Chudar Azhagan, S.; Kathiravan, V. S. Selective Crystallization of Gamma Glycine for NLO Applications Using Magnesium Sulfate (MgSO4) as an Additive. Mater. Sci.-Pol. 2019, 37 (2), 265–279. https://doi.org/10.2478/msp-2019-0028.
(3) Hsueh, J.-C.; Yeh, K. L.; Lee, H. L.; Lee, T. Strategy for Polymorphic Control by Enzymatic Reaction and Antisolvent Crystallization: Effect of Aminoacylase on Metastable β-Glycine Formation. React. Chem. Eng. 2021, 6 (12), 2292–2305. https://doi.org/10.1039/D1RE00335F.
(4) Wang, W.; Wu, Z.; Dai, Z.; Yang, Y.; Wang, J.; Wu, G. Glycine Metabolism in Animals and Humans: Implications for Nutrition and Health. Amino Acids 2013, 45 (3), 463–477. https://doi.org/10.1007/s00726-013-1493-1.
(5) Hevia, E. M. Glycine as a Diet Supplement for the Treatment of a Wide Range of Health Problems That Result from Underlying Metabolic Disorders. US 2006/0052454A1, 2006.
(6) Max, J.-J.; Trudel, M.; Chapados, C. Infrared Titration of Aqueous Glycine. Appl. Spectrosc. 1998, 52 (2), 226–233. https://doi.org/10.1366/0003702981943284.
(7) William Montgomery Hearon; Portland, Oreg; Lo Cheng Fan; Vancouver, Wash. Producing Glycine by the Reductive Amination of Glyoxylic Acid. US4073804A, 1978.
(8) Chunmei, L. Method for Producing Glycine by Using Organic Solvent. CN106699582A, 2017.
(9) Fujiwara, K.; Yoshinaga, S.; Matsuu, Y.; Kato, H.; Hiai, A. Method for Purifying Glycine. US5254729A, 1993.
(10) Aliyeva, M.; Brandao, P.; Gomes, J. R. B.; Coutinho, J. A. P.; Ferreira, O.; Pinho, S. P. Solubilities of Amino Acids in Aqueous Solutions of Chloride or Nitrate Salts of Divalent (Mg2+ or Ca2+) Cations. J. Chem. Eng. Data 2022, 67 (6), 1565–1572. https://doi.org/10.1021/acs.jced.2c00148.
(11) Takamatsu, Y.; Yamamoto, M.; Sato, Y. Method for Purification of Amino Acid. US20080045746A1, 2008.
(12) Gaodi, Z.; Zhaoxian, X.; Shanxue, Z.; Rongqing, Q. A Kind of Method of Carrying out Environment-Friendly Cycle Method Production Glycine at Reactor. CN103086904B, 2013.
(13) Daoud, F. B.-O.; Kaddour, S.; Sadoun, T. Adsorption of Cellulase Aspergillus Niger on a Commercial Activated Carbon: Kinetics and Equilibrium Studies. Colloids Surf. B Biointerfaces 2010, 75 (1), 93–99. https://doi.org/10.1016/j.colsurfb.2009.08.019.
(14) Ko?odziejczak?Radzimska, A.; Zdarta, J.; Jesionowski, T. Physicochemical and Catalytic Properties of Acylase I from Aspergillus Melleus Immobilized on Amino? and Carbonyl?grafted Stober Silica. Biotechnol. Prog. 2018, 34 (3), 767–777. https://doi.org/10.1002/btpr.2610.
(15) Chenault, H. K.; Dahmer, J.; Whitesides, G. M. Kinetic Resolution of Unnatural and Rarely Occurring Amino Acids: Enantioselective Hydrolysis of N-Acyl Amino Acids Catalyzed by Acylase I. J. Am. Chem. Soc. 1989, 111 (16), 6354–6364. https://doi.org/10.1021/ja00198a055.
(16) Di Menno Di Bucchianico, D.; Wang, Y.; Buvat, J.-C.; Pan, Y.; Casson Moreno, V.; Leveneur, S. Production of Levulinic Acid and Alkyl Levulinates: A Process Insight. Green Chem. 2022, 24 (2), 614–646. https://doi.org/10.1039/D1GC02457D.
(17) Mateo, C.; Palomo, J. M.; Fernandez-Lorente, G.; Guisan, J. M.; Fernandez-Lafuente, R. Improvement of Enzyme Activity, Stability and Selectivity via Immobilization Techniques. Enzyme Microb. Technol. 2007, 40 (6), 1451–1463. https://doi.org/10.1016/j.enzmictec.2007.01.018.
(18) Boodhoo, K. V. K.; Flickinger, M. C.; Woodley, J. M.; Emanuelsson, E. A. C. Bioprocess Intensification: A Route to Efficient and Sustainable Biocatalytic Transformations for the Future. Chem. Eng. Process. 2022, 172, 108793. https://doi.org/10.1016/j.cep.2022.108793.
(19) Santos, M. P. F.; De Souza Junior, E. C.; Villadoniga, C.; Valles, D.; Castro-Sowinski, S.; Bonomo, R. C. F.; Veloso, C. M. Proteases: Importance, Immobilization Protocols, Potential of Activated Carbon as Support, and the Importance of Modifying Supports for Immobilization. BioTech 2024, 13 (2), 13. https://doi.org/10.3390/biotech13020013.
(20) Ko?odziejczak-Radzimska, A.; Ciesielczyk, F.; Jesionowski, T. A Novel Biocatalytic System Obtained via Immobilization of Aminoacylase onto Sol–Gel Derived ZrO2·SiO2 Binary Oxide Material: Physicochemical Characteristic and Catalytic Activity Study. Adsorption 2019, 25 (4), 855–864. https://doi.org/10.1007/s10450-019-00085-7.
(21) Hsueh, J.-C. The Influence of Enzymatic Reacion on Glycine Polymorphism. National Central University: Taiwan 2021.
(22) Watanabe, T.; Mori, T.; Tosa, T.; Chibata, I. Immobilization of Aminoacylase by Adsorption to Tannin Immobilized on Aminohexyl Cellulose. Biotechnol. Bioeng. 1979, 21 (3), 477–486. https://doi.org/10.1002/bit.260210309.
(23) Rodrigues, R. C.; Berenguer-Murcia, A.; Carballares, D.; Morellon-Sterling, R.; Fernandez-Lafuente, R. Stabilization of Enzymes via Immobilization: Multipoint Covalent Attachment and Other Stabilization Strategies. Biotechnol. Adv. 2021, 52, 107821. https://doi.org/10.1016/j.biotechadv.2021.107821.
(24) Arcus, V. L.; Prentice, E. J.; Hobbs, J. K.; Mulholland, A. J.; Van Der Kamp, M. W.; Pudney, C. R.; Parker, E. J.; Schipper, L. A. On the Temperature Dependence of Enzyme-Catalyzed Rates. Biochemistry 2016, 55 (12), 1681–1688. https://doi.org/10.1021/acs.biochem.5b01094.
(25) Yokote, Y.; Fujita, M.; Samejima, K. Kimura. H. Immobilized Aminoacylase on Porous Glass Beads. Agr. Biol. Chem. 1975, 39 (8), 1545–1552. https://doi.org/10.1080/00021369.1975.10861820.
(26) Tosa, T.; Shibatani, T. Industrial Application of Immobilized Biocatalysts in Japan. Ann. N. Y. Acad. Sci. 1995, 750 (1), 364–375. https://doi.org/10.1111/j.1749-6632.1995.tb19981.x.
(27) Meyer, L.-E.; Hobisch, M.; Kara, S. Process Intensification in Continuous Flow Biocatalysis by up and Downstream Processing Strategies. Curr. Opin. Biotechnol. 2022, 78, 102835. https://doi.org/10.1016/j.copbio.2022.102835.
(28) Ramesh Kumar; Rashmi Dhurandhar; Sankha Chakrabortty; Alak Kumar Ghosh. Chapter 12 - Downstream Process: Toward Cost/Energy Effectiveness. In Handbook of Biofuels; Academic Press, 2022; pp 249–260.
(29) Pratama, D. E.; Chen, Y.-H.; Lee, T. A Solid–Solid–Liquid Quasi-Ternary Phase Diagram Method for Multicomponent Solids Validated by Curcumin Purification Design. Ind. Eng. Chem. Res. 2024, 63 (44), 19135–19152. https://doi.org/10.1021/acs.iecr.4c02142.
(30) Nikolaos E. Labrou. Protein Downstream Processing; Humana Totowa, NJ, 2014; Vol. 1129.
(31) Behera, B. K. Chapter 2 - Downstream Process (Harvested Broth Concentration) Phase-I. In Techniques for Downstream Process for Biologic Drugs and Vaccines; Behera, B.K., Ed.; Academic Press, 2023; pp 39–68. https://doi.org/10.1016/B978-0-443-19157-2.00003-0.
(32) Poornachary, S.K.; Chow, P.S.; Tan, R.B.H. Influence of Solution Speciation of Impurities on Polymorphic Nucleation in Glycine. Cryst. Growth Des. 2008, 8 (1), 179-185. https://doi.org/10.1021/cg060570w.
(33) Yang, L. M.; Jiang, N. N.; Zhao, Z. Y. Synthesis of Glycine Using Two-Step Reaction Approach in Alcohol and Its Purification. Adv. Mater. Res. 2012, 396–398, 1711–1715. https://doi.org/10.4028/www.scientific.net/AMR.396-398.1711.
(34) Pratama, D. E.; Lee, T. Recycling of Resolving Agent and Solvent by Water-Based Reactions and Phase Diagrams: Chiral Resolution Study of Racemic Ibuprofen. Chem. Eng. Res. Des. 2023, 192, 12–27. https://doi.org/10.1016/j.cherd.2023.02.010.
(35) Sustainable Manufacturing in the Chemicals Industry. https://www.elsevier.com/industry/sustainable-manufacturing-in-chemicals-industry (accessed 2024-12-04).
(36) Tosa, T.; Mori, T.; Fuse, N.; Chibata, I. Studies on Continuous Enzyme Reactions: Part V. Kinetics and Industrial Application of Aminoacylase Column for Continuous Optical Resolution of Acyl-DL-Amino Acids, Part VI. Enzymatic Properties of the DEAE-Sephadex-Aminoacylase Complex. Agric. Biol. Chem. 1969, 33 (7), 1047–1059. https://doi.org/10.1080/00021369.1969.10859416.
(37) Dettori, L.; Vibert, F.; Guiavarc’h, Y.; Delaunay, S.; Humeau, C.; Blin, J. L.; Chevalot, I. N-α-Acylation of Lysine Catalyzed by Immobilized Aminoacylases from Streptomyces Ambofaciens in Aqueous Medium. Microporous Mesoporous Mater. 2018, 267, 24–34. https://doi.org/10.1016/j.micromeso.2018.03.018.
(38) Doi, E.; Shibata, D.; Matoba, T. Modified Colorimetric Ninhydrin Methods for Peptidase Assay. Anal. Biochem. 1981, 118 (1), 173–184. https://doi.org/10.1016/0003-2697(81)90175-5.
(39) Jacques, J.; Collet, A.; Wilen, S. H. Enantiomers Racemates and Resolutions; Wiley, 1981; p 427.
(40) Schott, H. A Mathematical Extrapolation for The Method of Wet Residues. J. Chem. Eng. Data 1961, 6 (3), 324–324. https://doi.org/10.1021/je00103a002.
(41) Pratama, D. E.; Huang, C.-Y.; Lee, T. A Mathematically Simplified Solid–Solid–Liquid Ternary Phase Diagram with Tie-Lines for Early Process Development Validated by Chiral Resolution of Racemic Ibuprofen. Ind. Eng. Chem. Res. 2024, 63 (23), 10397–10409. https://doi.org/10.1021/acs.iecr.4c00442.
(42) Derivation of Beer Lambert Law. https://byjus.com/physics/derivation-of-beer-lambert-law/#:~:text=The%20Beer%2DLambert%20law%20states,concentration%20of%20the%20absorbing%20species (accessed 2024-12-12).
(43) Staus, A. C.; Fuchs, C.; Jansen, P.; Repert, S.; Alcock, K.; Ludewig, S.; Rozhon, W. The Ninhydrin Reaction Revisited: Optimisation and Application for Quantification of Free Amino Acids. Molecules 2024, 29 (14), 3262. https://doi.org/10.3390/molecules29143262.
(44) Chung, H.-K.; Kim, W.-H.; Park, J.; Cho, J.; Jeong, T.-Y.; Park, P.-K. Application of Langmuir and Freundlich Isotherms to Predict Adsorbate Removal Efficiency or Required Amount of Adsorbent. J. Ind. Eng. Chem. 2015, 28, 241–246. https://doi.org/10.1016/j.jiec.2015.02.021.
(45) Belhachemi, M.; Addoun, F. Comparative Adsorption Isotherms and Modeling of Methylene Blue onto Activated Carbons. Appl. Water Sci. 2011, 1 (3–4), 111–117. https://doi.org/10.1007/s13201-011-0014-1.
(46) Vargas, A. M. M.; Cazetta, A. L.; Kunita, M. H.; Silva, T. L.; Almeida, V. C. Adsorption of Methylene Blue on Activated Carbon Produced from Flamboyant Pods (Delonix Regia): Study of Adsorption Isotherms and Kinetic Models. Chem. Eng. J. 2011, 168 (2), 722–730. https://doi.org/10.1016/j.cej.2011.01.067.
(47) Bolivar, J.; Woodley, J.; Fernandez-Lafuente, R. Is Enzyme Immobilization a Mature Discipline? Some Critical Considerations to Capitalize on the Benefits of Immobilization. Chem. Soc. Rev. 2022, 51, 6251-6290. https://doi.org/10.1039/D2CS00083K.
(48) Dana W. Mayo; Ronald M. Pike; Samuel S. Butcher. Microscale Organic Laboratory; Wiley, 1986.
(49) Yuan, L.; Ge, Q.; Fu, H.; Jiang, G.; Yu, Z.; Zheng, Q.; Lv, Y.; Zhao, J.; Yu, J. Sodium Acetate Trihydrate-Crystallization Inhibitor System for Seasonal Latent Heat Storage. J. Energy Eng. 2018, 144 (3), 04018022. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000539.
指導教授 李度(Tu Lee) 審核日期 2025-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明