參考文獻 |
(1) Bouchard, A.; Hofland, G. W.; Witkamp, G.-J. Solubility of Glycine Polymorphs and Recrystallization of β-Glycine. J. Chem. Eng. Data 2007, 52 (5), 1626–1629. https://doi.org/10.1021/je700014k.
(2) Anbu Chudar Azhagan, S.; Kathiravan, V. S. Selective Crystallization of Gamma Glycine for NLO Applications Using Magnesium Sulfate (MgSO4) as an Additive. Mater. Sci.-Pol. 2019, 37 (2), 265–279. https://doi.org/10.2478/msp-2019-0028.
(3) Hsueh, J.-C.; Yeh, K. L.; Lee, H. L.; Lee, T. Strategy for Polymorphic Control by Enzymatic Reaction and Antisolvent Crystallization: Effect of Aminoacylase on Metastable β-Glycine Formation. React. Chem. Eng. 2021, 6 (12), 2292–2305. https://doi.org/10.1039/D1RE00335F.
(4) Wang, W.; Wu, Z.; Dai, Z.; Yang, Y.; Wang, J.; Wu, G. Glycine Metabolism in Animals and Humans: Implications for Nutrition and Health. Amino Acids 2013, 45 (3), 463–477. https://doi.org/10.1007/s00726-013-1493-1.
(5) Hevia, E. M. Glycine as a Diet Supplement for the Treatment of a Wide Range of Health Problems That Result from Underlying Metabolic Disorders. US 2006/0052454A1, 2006.
(6) Max, J.-J.; Trudel, M.; Chapados, C. Infrared Titration of Aqueous Glycine. Appl. Spectrosc. 1998, 52 (2), 226–233. https://doi.org/10.1366/0003702981943284.
(7) William Montgomery Hearon; Portland, Oreg; Lo Cheng Fan; Vancouver, Wash. Producing Glycine by the Reductive Amination of Glyoxylic Acid. US4073804A, 1978.
(8) Chunmei, L. Method for Producing Glycine by Using Organic Solvent. CN106699582A, 2017.
(9) Fujiwara, K.; Yoshinaga, S.; Matsuu, Y.; Kato, H.; Hiai, A. Method for Purifying Glycine. US5254729A, 1993.
(10) Aliyeva, M.; Brandao, P.; Gomes, J. R. B.; Coutinho, J. A. P.; Ferreira, O.; Pinho, S. P. Solubilities of Amino Acids in Aqueous Solutions of Chloride or Nitrate Salts of Divalent (Mg2+ or Ca2+) Cations. J. Chem. Eng. Data 2022, 67 (6), 1565–1572. https://doi.org/10.1021/acs.jced.2c00148.
(11) Takamatsu, Y.; Yamamoto, M.; Sato, Y. Method for Purification of Amino Acid. US20080045746A1, 2008.
(12) Gaodi, Z.; Zhaoxian, X.; Shanxue, Z.; Rongqing, Q. A Kind of Method of Carrying out Environment-Friendly Cycle Method Production Glycine at Reactor. CN103086904B, 2013.
(13) Daoud, F. B.-O.; Kaddour, S.; Sadoun, T. Adsorption of Cellulase Aspergillus Niger on a Commercial Activated Carbon: Kinetics and Equilibrium Studies. Colloids Surf. B Biointerfaces 2010, 75 (1), 93–99. https://doi.org/10.1016/j.colsurfb.2009.08.019.
(14) Ko?odziejczak?Radzimska, A.; Zdarta, J.; Jesionowski, T. Physicochemical and Catalytic Properties of Acylase I from Aspergillus Melleus Immobilized on Amino? and Carbonyl?grafted Stober Silica. Biotechnol. Prog. 2018, 34 (3), 767–777. https://doi.org/10.1002/btpr.2610.
(15) Chenault, H. K.; Dahmer, J.; Whitesides, G. M. Kinetic Resolution of Unnatural and Rarely Occurring Amino Acids: Enantioselective Hydrolysis of N-Acyl Amino Acids Catalyzed by Acylase I. J. Am. Chem. Soc. 1989, 111 (16), 6354–6364. https://doi.org/10.1021/ja00198a055.
(16) Di Menno Di Bucchianico, D.; Wang, Y.; Buvat, J.-C.; Pan, Y.; Casson Moreno, V.; Leveneur, S. Production of Levulinic Acid and Alkyl Levulinates: A Process Insight. Green Chem. 2022, 24 (2), 614–646. https://doi.org/10.1039/D1GC02457D.
(17) Mateo, C.; Palomo, J. M.; Fernandez-Lorente, G.; Guisan, J. M.; Fernandez-Lafuente, R. Improvement of Enzyme Activity, Stability and Selectivity via Immobilization Techniques. Enzyme Microb. Technol. 2007, 40 (6), 1451–1463. https://doi.org/10.1016/j.enzmictec.2007.01.018.
(18) Boodhoo, K. V. K.; Flickinger, M. C.; Woodley, J. M.; Emanuelsson, E. A. C. Bioprocess Intensification: A Route to Efficient and Sustainable Biocatalytic Transformations for the Future. Chem. Eng. Process. 2022, 172, 108793. https://doi.org/10.1016/j.cep.2022.108793.
(19) Santos, M. P. F.; De Souza Junior, E. C.; Villadoniga, C.; Valles, D.; Castro-Sowinski, S.; Bonomo, R. C. F.; Veloso, C. M. Proteases: Importance, Immobilization Protocols, Potential of Activated Carbon as Support, and the Importance of Modifying Supports for Immobilization. BioTech 2024, 13 (2), 13. https://doi.org/10.3390/biotech13020013.
(20) Ko?odziejczak-Radzimska, A.; Ciesielczyk, F.; Jesionowski, T. A Novel Biocatalytic System Obtained via Immobilization of Aminoacylase onto Sol–Gel Derived ZrO2·SiO2 Binary Oxide Material: Physicochemical Characteristic and Catalytic Activity Study. Adsorption 2019, 25 (4), 855–864. https://doi.org/10.1007/s10450-019-00085-7.
(21) Hsueh, J.-C. The Influence of Enzymatic Reacion on Glycine Polymorphism. National Central University: Taiwan 2021.
(22) Watanabe, T.; Mori, T.; Tosa, T.; Chibata, I. Immobilization of Aminoacylase by Adsorption to Tannin Immobilized on Aminohexyl Cellulose. Biotechnol. Bioeng. 1979, 21 (3), 477–486. https://doi.org/10.1002/bit.260210309.
(23) Rodrigues, R. C.; Berenguer-Murcia, A.; Carballares, D.; Morellon-Sterling, R.; Fernandez-Lafuente, R. Stabilization of Enzymes via Immobilization: Multipoint Covalent Attachment and Other Stabilization Strategies. Biotechnol. Adv. 2021, 52, 107821. https://doi.org/10.1016/j.biotechadv.2021.107821.
(24) Arcus, V. L.; Prentice, E. J.; Hobbs, J. K.; Mulholland, A. J.; Van Der Kamp, M. W.; Pudney, C. R.; Parker, E. J.; Schipper, L. A. On the Temperature Dependence of Enzyme-Catalyzed Rates. Biochemistry 2016, 55 (12), 1681–1688. https://doi.org/10.1021/acs.biochem.5b01094.
(25) Yokote, Y.; Fujita, M.; Samejima, K. Kimura. H. Immobilized Aminoacylase on Porous Glass Beads. Agr. Biol. Chem. 1975, 39 (8), 1545–1552. https://doi.org/10.1080/00021369.1975.10861820.
(26) Tosa, T.; Shibatani, T. Industrial Application of Immobilized Biocatalysts in Japan. Ann. N. Y. Acad. Sci. 1995, 750 (1), 364–375. https://doi.org/10.1111/j.1749-6632.1995.tb19981.x.
(27) Meyer, L.-E.; Hobisch, M.; Kara, S. Process Intensification in Continuous Flow Biocatalysis by up and Downstream Processing Strategies. Curr. Opin. Biotechnol. 2022, 78, 102835. https://doi.org/10.1016/j.copbio.2022.102835.
(28) Ramesh Kumar; Rashmi Dhurandhar; Sankha Chakrabortty; Alak Kumar Ghosh. Chapter 12 - Downstream Process: Toward Cost/Energy Effectiveness. In Handbook of Biofuels; Academic Press, 2022; pp 249–260.
(29) Pratama, D. E.; Chen, Y.-H.; Lee, T. A Solid–Solid–Liquid Quasi-Ternary Phase Diagram Method for Multicomponent Solids Validated by Curcumin Purification Design. Ind. Eng. Chem. Res. 2024, 63 (44), 19135–19152. https://doi.org/10.1021/acs.iecr.4c02142.
(30) Nikolaos E. Labrou. Protein Downstream Processing; Humana Totowa, NJ, 2014; Vol. 1129.
(31) Behera, B. K. Chapter 2 - Downstream Process (Harvested Broth Concentration) Phase-I. In Techniques for Downstream Process for Biologic Drugs and Vaccines; Behera, B.K., Ed.; Academic Press, 2023; pp 39–68. https://doi.org/10.1016/B978-0-443-19157-2.00003-0.
(32) Poornachary, S.K.; Chow, P.S.; Tan, R.B.H. Influence of Solution Speciation of Impurities on Polymorphic Nucleation in Glycine. Cryst. Growth Des. 2008, 8 (1), 179-185. https://doi.org/10.1021/cg060570w.
(33) Yang, L. M.; Jiang, N. N.; Zhao, Z. Y. Synthesis of Glycine Using Two-Step Reaction Approach in Alcohol and Its Purification. Adv. Mater. Res. 2012, 396–398, 1711–1715. https://doi.org/10.4028/www.scientific.net/AMR.396-398.1711.
(34) Pratama, D. E.; Lee, T. Recycling of Resolving Agent and Solvent by Water-Based Reactions and Phase Diagrams: Chiral Resolution Study of Racemic Ibuprofen. Chem. Eng. Res. Des. 2023, 192, 12–27. https://doi.org/10.1016/j.cherd.2023.02.010.
(35) Sustainable Manufacturing in the Chemicals Industry. https://www.elsevier.com/industry/sustainable-manufacturing-in-chemicals-industry (accessed 2024-12-04).
(36) Tosa, T.; Mori, T.; Fuse, N.; Chibata, I. Studies on Continuous Enzyme Reactions: Part V. Kinetics and Industrial Application of Aminoacylase Column for Continuous Optical Resolution of Acyl-DL-Amino Acids, Part VI. Enzymatic Properties of the DEAE-Sephadex-Aminoacylase Complex. Agric. Biol. Chem. 1969, 33 (7), 1047–1059. https://doi.org/10.1080/00021369.1969.10859416.
(37) Dettori, L.; Vibert, F.; Guiavarc’h, Y.; Delaunay, S.; Humeau, C.; Blin, J. L.; Chevalot, I. N-α-Acylation of Lysine Catalyzed by Immobilized Aminoacylases from Streptomyces Ambofaciens in Aqueous Medium. Microporous Mesoporous Mater. 2018, 267, 24–34. https://doi.org/10.1016/j.micromeso.2018.03.018.
(38) Doi, E.; Shibata, D.; Matoba, T. Modified Colorimetric Ninhydrin Methods for Peptidase Assay. Anal. Biochem. 1981, 118 (1), 173–184. https://doi.org/10.1016/0003-2697(81)90175-5.
(39) Jacques, J.; Collet, A.; Wilen, S. H. Enantiomers Racemates and Resolutions; Wiley, 1981; p 427.
(40) Schott, H. A Mathematical Extrapolation for The Method of Wet Residues. J. Chem. Eng. Data 1961, 6 (3), 324–324. https://doi.org/10.1021/je00103a002.
(41) Pratama, D. E.; Huang, C.-Y.; Lee, T. A Mathematically Simplified Solid–Solid–Liquid Ternary Phase Diagram with Tie-Lines for Early Process Development Validated by Chiral Resolution of Racemic Ibuprofen. Ind. Eng. Chem. Res. 2024, 63 (23), 10397–10409. https://doi.org/10.1021/acs.iecr.4c00442.
(42) Derivation of Beer Lambert Law. https://byjus.com/physics/derivation-of-beer-lambert-law/#:~:text=The%20Beer%2DLambert%20law%20states,concentration%20of%20the%20absorbing%20species (accessed 2024-12-12).
(43) Staus, A. C.; Fuchs, C.; Jansen, P.; Repert, S.; Alcock, K.; Ludewig, S.; Rozhon, W. The Ninhydrin Reaction Revisited: Optimisation and Application for Quantification of Free Amino Acids. Molecules 2024, 29 (14), 3262. https://doi.org/10.3390/molecules29143262.
(44) Chung, H.-K.; Kim, W.-H.; Park, J.; Cho, J.; Jeong, T.-Y.; Park, P.-K. Application of Langmuir and Freundlich Isotherms to Predict Adsorbate Removal Efficiency or Required Amount of Adsorbent. J. Ind. Eng. Chem. 2015, 28, 241–246. https://doi.org/10.1016/j.jiec.2015.02.021.
(45) Belhachemi, M.; Addoun, F. Comparative Adsorption Isotherms and Modeling of Methylene Blue onto Activated Carbons. Appl. Water Sci. 2011, 1 (3–4), 111–117. https://doi.org/10.1007/s13201-011-0014-1.
(46) Vargas, A. M. M.; Cazetta, A. L.; Kunita, M. H.; Silva, T. L.; Almeida, V. C. Adsorption of Methylene Blue on Activated Carbon Produced from Flamboyant Pods (Delonix Regia): Study of Adsorption Isotherms and Kinetic Models. Chem. Eng. J. 2011, 168 (2), 722–730. https://doi.org/10.1016/j.cej.2011.01.067.
(47) Bolivar, J.; Woodley, J.; Fernandez-Lafuente, R. Is Enzyme Immobilization a Mature Discipline? Some Critical Considerations to Capitalize on the Benefits of Immobilization. Chem. Soc. Rev. 2022, 51, 6251-6290. https://doi.org/10.1039/D2CS00083K.
(48) Dana W. Mayo; Ronald M. Pike; Samuel S. Butcher. Microscale Organic Laboratory; Wiley, 1986.
(49) Yuan, L.; Ge, Q.; Fu, H.; Jiang, G.; Yu, Z.; Zheng, Q.; Lv, Y.; Zhao, J.; Yu, J. Sodium Acetate Trihydrate-Crystallization Inhibitor System for Seasonal Latent Heat Storage. J. Energy Eng. 2018, 144 (3), 04018022. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000539. |