博碩士論文 111324084 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:130 、訪客IP:18.116.51.133
姓名 蕭丞閔(Chen-Min Hsiao)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 含次亞磷酸鈉深共熔溶劑搭配脈衝電沉積製備鐵鈷鎳銅鋅高熵合金/氧化物電觸媒應用於產氫及氨氮廢水處理
(Pulsed Electrodeposition of FeCoNiCuZn High-Entropy Alloys/Oxides Electrocatalyst in Deep Eutectic Solvents with Sodium Phosphinate for Hydrogen Production and Ammonia-Nitrogen Wastewater Treatment)
相關論文
★ 氫氧化鎳/奈米碳管/碳纖維複合電極之製備及其於尿素溶液中電極動力學之研究★ 無黏合劑鉻摻雜鋰鎳錳氧/碳纖維高電壓複合正極與奈米碳管/碳纖維複合負極應用於鋰離子電池之研究
★ 鈣鈦礦釔鐵氧化物/碳纖維複合電極應用於有機汙水處理之研究★ 碳黑改質對高電壓鋰離子電池正極電化學表現影響之研究
★ 電化學輔助紫外光/氯程序應用於水楊酸降解之研究★ 以廢棄太陽能電池製作Si/SiOx/Al2O3碳纖維複合式負極應用於鋰離子電池之研究
★ 部分碳化聚乙烯吡咯烷酮黏著劑應用於高電壓鋰離子電池正極之研究★ 釔鐵氧化物/氧化鈰光陽極應用於有機汙水處理
★ 水熱法合成之Li1+xAlxTi2-x(PO4)3與聚偏二氟乙烯/醋酸纖維素複合型固態電解質 應用於鋰離子電池之研究★ 含水深共熔溶劑系統電化學製備之奈米氫氧化鎳/鎳/碳纖維氈複合電極應用於水分解製氫
★ 以回收太陽能板之矽基材料結合石墨製備Si/SiOx/C複合負極應用於鋰離子電池之研究★ 原位聚合生成雙鋰鹽系統類凝膠聚(1,3-二氧戊環)電解質應用於鋰離子電池之研究
★ 以含水深共熔溶劑電化學系統製備奈米鎳銅合金/碳纖維氈複合電極應用於水分解製氫★ 以有機金屬框架結合乙醇輔助水熱法製備鐵摻雜鋰鎳錳氧高電壓正極 應用於鋰離子電池之研究
★ 氧化鎂/聚丙烯酸/聚偏二氟乙烯修飾聚丙烯隔離膜應用於鋰離子電池★ 以有機金屬框架製備鐵摻雜富鋰鎳錳鈷氧正極材料 應用於鋰離子電池之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-1-31以後開放)
摘要(中) 氫能因其具備零碳排放、高效能及可再生等優點,被視為未來清潔能源的重要支柱。然而,目前主流的水電解制氫技術仍高度依賴貴金屬催化劑,其昂貴成本限制了大規模商業化的推廣。因此,開發高效且低成本的非貴金屬催化材料成為當前研究的關鍵方向。本研究利用脈衝電沉積技術,將鐵、鈷、鎳、銅、鋅五元高熵合金及高熵氧化物沉積於碳氈上,並採用以氯化膽鹼和乙二醇構成的深共熔溶劑作為電沉積介質,輔以次亞磷酸鈉作為添加劑以進一步提升材料性能。
實驗設計分為四個主要部分。首先,對碳纖維氈基底進行高溫熱處理與酸處理,以增強其表面活性及金屬附著能力。其次,製備深共熔溶劑,並通過脈衝電沉積法進行金屬沉積,針對不同頻率與占空比的脈衝參數進行優化比較。隨後,利用多種表徵分析確定材料的組成與表面形貌。最後,將製備的複合材料應用於電解水產氫及氨氮廢水降解,評估其電化學性能。
P-wP 2展現出卓越的電化學性能,在所有樣品中具有最低的析氫過電位,於50和100 mA/cm2 的電流密度下分別達到179 mV和232 mV。此外其Tafel斜率為178 mV/dec,顯示出良好的催化活性。阻抗分析進一步證實了其優異特性,鍍層阻抗僅為0.529 Ω,電荷轉移阻抗亦相對較低,僅7.559 Ω,促進了電子轉移動力學。最後P-wP 2具備出色的耐腐蝕性,並在氨氮廢水產氫方面展現出卓越的性能,突顯其作為高效且耐用電觸煤的潛力。
摘要(英) Hydrogen energy is known as a critical green energy source due to its no carbon emissions, high efficiency, and renewability. However, the large-scale commercialization of water electrolysis remains constrained by the high cost of noble metal catalysts. To handle this issue, this study developed a novel pulsed electrodeposition technique to fabricate FeCoNiCuZn high-entropy alloys and high-entropy oxides on a carbon felt substrate. The electrodeposition process utilized a deep eutectic solvent composed of choline chloride and ethylene glycol, supplemented with sodium phosphinate as an additive to enhance material performance.
The study involved substrate pretreatment, material synthesis using optimized pulsed parameters, comprehensive material characterization and electrochemical testing for hydrogen production and ammonia-nitrogen wastewater degradation. Results indicated that pulsed electrodeposition with sodium phosphinate significantly improved the uniformity and surface morphology of the materials. Among the synthesized composites, P-wP 2 exhibited the best overall performance.
P-wP 2 exhibited exceptional electrochemical performance, achieving the lowest overpotential (179 mV at 50 mA/cm2, 232 mV at 100 mA/cm2) and a favorable Tafel slope (178 mV/dec) for HER. It also demonstrated the smallest coating resistance (0.529 Ω) and low charge transfer resistance (7.559 Ω), enhancing electron transfer kinetics. Additionally, P-wP 2 showed excellent corrosion resistance and outstanding hydrogen production from ammonia-nitrogen wastewater, confirming its potential as an efficient and durable electrocatalyst.
關鍵字(中) ★ 高熵合金
★ 高熵氧化物
★ 脈衝電沉積
★ 深共熔
★ 產氫
★ 氨氮廢水處理
關鍵字(英) ★ High-Entropy Alloys
★ High-Entropy Oxides
★ Pulsed Electrodeposition
★ Deep Eutectic Solvents
★ Hydrogen Production
★ Ammonia-Nitrogen Wastewater Degradation
論文目次 摘要 I
Abstract II
致謝 III
Figure Contents IX
Table Contents XI
Chapter 1 Introduction 1
1.1 Energy Transformation 1
1.2 Introduction to Green Energy 2
1.3 Overview of Hydrogen Energy 3
1.4 Hydrogen Production Technologies 4
1.5 Overview of Water Electrolysis Catalysts and Fabrication Methods 5
1.6 Deep Eutectic Solvents 6
1.7 High-Entropy Alloys and Oxides 8
1.8 Pulsed Electrodeposition 9
1.9 Ammonia-Nitrogen Wastewater Treatment 10
1.10 Research Motivation 11
Chapter 2 Background 12
2.1 Water Electrolysis for Hydrogen Production 12
2.2 Conventional Hydrogen Evolution Catalysts 14
2.3 Applications of Deep Eutectic Solvents 16
2.4 Effects of Additives in Electrodeposition 17
2.5 Applications of High-Entropy Alloys and Oxides 18
2.6 Applications of Pulsed Electrodeposition 20
Chapter 3 Experiment 21
3.1 Experimental Framework 21
3.2 Experimental Procedures 25
3.2.1 Pretreatment of Carbon Felt Substrate 25
3.2.2 Preparation of Deep Eutectic Solvent 27
3.2.3 Fabrication of High-Entropy Alloy Composite Electrodes 27
3.2.4 Electrochemical Analysis of Electrode Materials 29
3.3 Material Characterization of Composite Electrodes 29
3.3.1 X-ray Diffraction, XRD 30
3.3.2 Field Emission Scanning Electron Microscope, FE-SEM 30
3.3.3 X-ray Photoelectron Spectroscopy, XPS 31
3.4 Electrochemical Analysis of Composite Electrodes 32
3.4.1 Linear Sweep Voltammetry, LSV 33
3.4.2 Tafel Kinetics 34
3.4.3 Electrochemical Impedance Spectroscopy, EIS 35
3.4.4 Double-Layer Capacitance, Cdl 35
3.4.5 Chronopotentiometry Test, CP 36
3.4.6 Corrosion Potential 37
3.4.7 Hydrogen Production Efficiency 38
3.4.8 Gas Chromatography-Mass Spectrometry 38
3.4.9 UV-Vis Spectrophotometer 39
Chapter 4 Results and Discussion 40
4.1 Pre-Treatment Analysis of Carbon Felt Substrate 40
4.2 Double-Layer Mechanism of Pulse Electrodeposition 41
4.3 Comparison Between Potentiostatic Electrodeposition with Sodium Hypophosphite Addition and Pulse Electrodeposition of High-Entropy Alloys in Deep Eutectic Solvent 43
4.3.1 SEM and EDS Analysis of Electrocatalyst Composites Materials 43
4.3.1 Linear Sweep Voltammetry: Analysis of Hydrogen and Oxygen Evolution Overpotential 47
4.3.2 Electrochemical Impedance: Kinetic Analysis of Composite Materials 52
4.3.3 Corrosion Potential: Corrosion Resistance Testing of Composite Materials 57
4.3.4 Interim Conclusion 58
4.4 Material Analysis of High-Entropy Alloy and High-Entropy Oxide Electrocatalyst Composites 59
4.4.1 XRD Analysis of Electrocatalyst Composites 59
4.4.2 SEM and EDS Analysis of Electrocatalyst Composites 62
4.4.3 XPS Analysis of Electrocatalyst Composites 65
4.5 Electrical Analysis of High-Entropy Alloy and High-Entropy Oxide Electrocatalyst Composites 70
4.5.1 Linear Sweep Voltammetry: Analysis of Hydrogen and Oxygen Evolution Overpotential 70
4.5.2 Tafel Kinetics: Kinetic Analysis of Composite Materials 75
4.5.3 Electrochemical Impedance: Kinetic Analysis of Composite Materials 77
4.5.4 Double-Layer Capacitance: Electrochemical Active Surface Area Analysis of Composite Materials 82
4.5.5 Corrosion Potential: Corrosion Resistance Testing of Composite Materials 84
4.5.6 Galvanostatic Testing: Long-Term Stability Analysis of Composite Materials 86
4.5.7 Faraday Efficiency: Analysis of Hydrogen and Oxygen Evolution Performance of Composite Materials 90
4.5.8 Gas Chromatography-Mass Spectrometry: Hydrogen Purity Analysis in Hydrogen Evolution Products 92
4.5.9 Ammonia-Nitrogen Wastewater Treatment Efficiency of Composite Materials 94
4.5.10 Hydrogen Production in Ammonia-Nitrogen Wastewater 97
Chapter 5 Conclusion and Prospect 100
5.1 Conclusion 100
5.1.1 Conclusion for Early Stage 100
5.1.2 Material Characterization of Pulse Electrodeposited High-Entropy Alloy Composites with Sodium Phosphinate Addition 100
5.1.3 Electrochemical Performance of Pulse Electrodeposited High-Entropy Alloy Composites with Sodium Phosphinate Addition 101
5.1.4 Performance in Hydrogen Production and Ammonia-Nitrogen Wastewater Degradation 103
5.2 Prospect 105
References 106
Appendix 1 113
Appendix 2 119
參考文獻 1. Dawood, Furat, Anda, Martin, Shafiullah, GM, Hydrogen production for energy: An overview. International Journal of Hydrogen Energy, 2020. 45(7): p. 3847-3869.
2. Younas, Muhammad, Shafique, Sumeer, Hafeez, AinyJaved, Fahad, Rehman, Fahad, An overview of hydrogen production: current status, potential, and challenges. Fuel, 2022. 316: p. 123317.
3. George, E.P., D. Raabe, and R.O. Ritchie, High-entropy alloys. Nature reviews materials, 2019. 4(8): p. 515-534.
4. Aamlid, Solveig S, Oudah, Mohamed, Rottler, Jo?rg, Hallas, Alannah M, Understanding the role of entropy in high entropy oxides. Journal of the American Chemical Society, 2023. 145(11): p. 5991-6006.
5. Daryadel, Soheil, Behroozfar, Ali, Morsali, S Reza, Moreno, Salvador, Baniasadi, Mahmoud, Bykova, Julia, Bernal, Rodrigo A, Minary-Jolandan, Majid, Localized pulsed electrodeposition process for three-dimensional printing of nanotwinned metallic nanostructures. Nano letters, 2018. 18(1): p. 208-214.
6. Chi, J. and H. Yu, Water electrolysis based on renewable energy for hydrogen production. Chinese Journal of Catalysis, 2018. 39(3): p. 390-394.
7. Wang, T., X. Cao, and L. Jiao, PEM water electrolysis for hydrogen production: fundamentals, advances, and prospects. Carbon Neutrality, 2022. 1(1): p. 21.
8. Kumar, S.S. and H. Lim, An overview of water electrolysis technologies for green hydrogen production. Energy reports, 2022. 8: p. 13793-13813.
9. Ren, Jin-Tao, Chen, Lei, Wang, Hao-Yu, Tian, Wen-Wen, Yuan, Zhong-Yong, Water electrolysis for hydrogen production: from hybrid systems to self-powered/catalyzed devices. Energy & Environmental Science, 2024. 17(1): p. 49-113.
10. Dai, Jie, Zhu, Yinlong, Chen, Yu, Wen, Xue, Long, Mingce, Wu, Xinhao, Hu, Zhiwei, Guan, Daqin, Wang, Xixi, Zhou, Chuan, Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis. Nature Communications, 2022. 13(1): p. 1189.
11. Cao, Y., Roadmap and direction toward high-performance MoS2 hydrogen evolution catalysts. ACS nano, 2021. 15(7): p. 11014-11039.
12. Sarkar, S. and S.C. Peter, An overview on Pd-based electrocatalysts for the hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2018. 5(9): p. 2060-2080.
13. Zhu, B., R. Zou, and Q. Xu, Metal–organic framework based catalysts for hydrogen evolution. Advanced Energy Materials, 2018. 8(24): p. 1801193.
14. Luo, Geng-Geng, Zhang, Hai-Lin, Tao, Yun-Wen, Wu, Qiao-Yu, Tian, Dan, Zhang, Qichun, Recent progress in ligand-centered homogeneous electrocatalysts for hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2019. 6(2): p. 343-354.
15. Chen, Y. and T. Mu, Application of deep eutectic solvents in biomass pretreatment and conversion. Green Energy & Environment, 2019. 4(2): p. 95-115.
16. Cai, T. and H. Qiu, Application of deep eutectic solvents in chromatography: A review. TrAC Trends in Analytical Chemistry, 2019. 120: p. 115623.
17. Safavi, M.S. and F.C. Walsh, Electrodeposited Co-P alloy and composite coatings: A review of progress towards replacement of conventional hard chromium deposits. Surface and Coatings Technology, 2021. 422: p. 127564.
18. Lelevic, A. and F.C. Walsh, Electrodeposition of NiP alloy coatings: a review. Surface and Coatings Technology, 2019. 369: p. 198-220.
19. Praveen, S. and H.S. Kim, High?entropy alloys: potential candidates for high?temperature applications–an overview. Advanced Engineering Materials, 2018. 20(1): p. 1700645.
20. Pickering, Ed J, Carruthers, Alexander W, Barron, Paul J, Middleburgh, Simon C, Armstrong, David EJ, Gandy, Amy S, High-entropy alloys for advanced nuclear applications. Entropy, 2021. 23(1): p. 98.
21. Ren, Jin-Tao, Chen, Lei, Wang, Hao-Yu, Yuan, Zhong-Yong, High-entropy alloys in electrocatalysis: from fundamentals to applications. Chemical Society Reviews, 2023.
22. Sarkar, Abhishek, Wang, Qingsong, Schiele, Alexander, Chellali, Mohammed Reda, Bhattacharya, Subramshu S, Wang, Di, Brezesinski, Torsten, Hahn, Horst, Velasco, Leonardo, Breitung, Ben, High?entropy oxides: fundamental aspects and electrochemical properties. Advanced Materials, 2019. 31(26): p. 1806236.
23. Anandkumar, M. and E. Trofimov, Synthesis, properties, and applications of high-entropy oxide ceramics: Current progress and future perspectives. Journal of Alloys and Compounds, 2023. 960: p. 170690.
24. Musico, Brianna L, Gilbert, Dustin, Ward, Thomas Zac, Page, Katharine, George, Easo, Yan, Jiaqiang, Mandrus, David, Keppens, Veerle, The emergent field of high entropy oxides: Design, prospects, challenges, and opportunities for tailoring material properties. APL Materials, 2020. 8(4).
25. Barati Darband, Ghasem, Aliofkhazraei, Mahmood, Hyun, Suyeon, Shanmugam, Sangaraju, Pulse electrodeposition of a superhydrophilic and binder-free Ni–Fe–P nanostructure as highly active and durable electrocatalyst for both hydrogen and oxygen evolution reactions. ACS Applied Materials & Interfaces, 2020. 12(48): p. 53719-53730.
26. Wasekar, Nitin P, Bathini, Lavakumar, Ramakrishna, L, Rao, D Srinivasa, Padmanabham, G, Pulsed electrodeposition, mechanical properties and wear mechanism in Ni-W/SiC nanocomposite coatings used for automotive applications. Applied Surface Science, 2020. 527: p. 146896.
27. Boosagulla, Divya, Mandati, Sreekanth, Allikayala, Ramachandraiah, Sarada, Bulusu V, Room temperature pulse electrodeposition of CdS thin films for application in solar cells and photoelectrochemical cells. ECS Journal of Solid State Science and Technology, 2018. 7(8): p. P440.
28. Dmitriev, D.S. and M.I. Tenevich, Evaluation of the electrochemical active surface area for carbon felt and nanostructured Ni coatings as electrocatalysts for hydrogen evolution reaction. ???????????: ??????, ?????, ??????????, 2023. 14(5): p. 590-600.
29. Li, Weiwei, Liu, Lei, Zhong, Cheng, Shen, Bin, Hu, Wenbin, Effect of carbon fiber surface treatment on Cu electrodeposition: The electrochemical behavior and the morphology of Cu deposits. Journal of alloys and compounds, 2011. 509(8): p. 3532-3536.
30. Ghaith, Mohamed E, Abd El-Moghny, Muhammad G, El-Nagar, Gumaa A, Alalawy, Hafsa H, El-Shakre, Mohamed E, El-Deab, Mohamed S, Tailor-designed binary Ni–Cu nano dendrites decorated 3D-carbon felts for efficient glycerol electrooxidation. RSC advances, 2023. 13(2): p. 895-905.
31. Le, T.X.H., M. Bechelany, and M. Cretin, Carbon felt based-electrodes for energy and environmental applications: A review. Carbon, 2017. 122: p. 564-591.
32. Roy, S., Formation of dual diffusion layer by pulsing currents. Industrial & engineering chemistry research, 2012. 51(4): p. 1756-1760.
33. Nie, Nanzhu, Zhang, Yanyun, Gu, Yanli, Du, Haoyang, Yuan, Yueyue, Yang, Yu, Li, Hongdong, Yang, Bo, Lai, Jianping, Wang, Lei, Chelating Co-reduction Strategy for the Synthesis of High-Entropy Alloy Aerogels. Inorganic Chemistry, 2023. 62(31): p. 12337-12344.
34. Yoosefan, Fateme, Ashrafi, Ali, Monir vaghefi, Seyed Mahmoud, Constantin, Ionut, Synthesis of CoCrFeMnNi high entropy alloy thin films by pulse electrodeposition: Part 1: Effect of pulse electrodeposition parameters. Metals and Materials International, 2020. 26: p. 1262-1269.
35. Zhang, Yong, Zuo, Ting Ting, Tang, Zhi, Gao, Michael C, Dahmen, Karin A, Liaw, Peter K, Lu, Zhao Ping, Microstructures and properties of high-entropy alloys. Progress in materials science, 2014. 61: p. 1-93.
36. Cao, Li-Ming, Cao, Qing-Cai, Zhang, Jia, Zhu, Xuan-Yi, Sun, Rong-Zhi, Du, Zi-Yi, He, Chun-Ting, Electrochemically controlled synthesis of ultrathin nickel hydroxide nanosheets for electrocatalytic oxygen evolution. Inorganic Chemistry, 2021. 60(5): p. 3365-3374.
37. Chen, YY, Hong, UT, Shih, HC, Yeh, JW, Duval, TJCS, Electrochemical kinetics of the high entropy alloys in aqueous environments—a comparison with type 304 stainless steel. Corrosion Science, 2005. 47(11): p. 2679-2699.
38. Zhang, Taotao, Li, Junqi, Zhang, Beiyi, Wang, Gengqin, Jiang, Kun, Zheng, Zili, Shen, Jiahao, High-entropy alloy CuCrFeNiCoP film of Cu-based as high-efficiency electrocatalyst for water splitting. Journal of Alloys and Compounds, 2023. 969: p. 172439.
39. Zhang, Yan, Wu, Xuexian, Fu, Guodong, Fu, Xian-Zhu, Luo, Jing-Li, Generation of hydrogen accompanied with formate bifunctional NiCoxP@ NiCo-LDH nanosheet electrocatalyst. Journal of Alloys and Compounds, 2022. 906: p. 164305.
40. Jiang, Kun, Li, Junqi, Zheng, Zili, Zhang, Taotao, Wang, Gengqin, Shi, Cang, Hou, Xiaoying, Bimetallic Phosphide NiCoP Electrocatalyst Synthesized by One-Step Electrodeposition for Efficient Hydrogen Evolution in Acidic and Alkaline Solution. ACS Applied Energy Materials, 2024. 7(18): p. 7895-7905.
41. Xu, Shuaishuai, Li, Ming, Wang, Haiming, Sun, Yuntong, Liu, Wanying, Duan, Jingjing, Chen, Sheng, High-entropy metal–organic framework arrays boost oxygen evolution electrocatalysis. The Journal of Physical Chemistry C, 2022. 126(33): p. 14094-14102.
42. Popov, B.N., Electrodeposition of alloys and composites with superior corrosion and electrocatalytic properties. Plating and surface finishing, 2004. 91(10): p. 40-49.
43. Aliyu, A., M. Rekha, and C. Srivastava, Microstructure-electrochemical property correlation in electrodeposited CuFeNiCoCr high-entropy alloy-graphene oxide composite coatings. Philosophical Magazine, 2019. 99(6): p. 718-735.
44. Brito-Garcia, Santiago Jose, Mirza-Rosca, Julia Claudia, Jimenez-Marcos, Cristina, Voiculescu, Ionelia, EIS study of doped high-entropy alloy. Metals, 2023. 13(5): p. 883.
45. Kim, B.K., M.J. Kim, and J.J. Kim, Modulating the active sites of nickel phosphorous by pulse-reverse electrodeposition for improving electrochemical water splitting. Applied Catalysis B: Environmental, 2022. 308: p. 121226.
46. Asghari Alamdari, Armin, Jahangiri, Hadi, Yagci, M Baris, Igarashi, Keisuke, Matsumoto, Hiroaki, Motallebzadeh, Amir,Unal, Ugur, Exploring the role of Mo and Mn in improving the OER and HER performance of CoCuFeNi-based high-entropy alloys. ACS Applied Energy Materials, 2024. 7(6): p. 2423-2435.
47. Bai, Shuozhan, Dai, Weiji, Yang, Xuanyu, Wu, Bing, Guo, Jing, Zhao, Cuijiao, Zhang, Yudong, Cui, Can, Zou, Guodong, Huang, Saifang, Phosphate-decorated hierarchical porous CoNiFe medium-entropy alloy: An efficient and low-cost electrocatalyst for seawater oxidation. International Journal of Hydrogen Energy, 2024. 84: p. 615-622.
48. Wang, Yong, Gong, Na, Niu, Gang, Ge, Junyu, Tan, Xianyi, Zhang, Mingsheng, Liu, Hongfei, Wu, Huibin, Meng, Tzee Luai, Xie, Huiqing, Phase engineering and surface reconstruction of CrxMnFeNi high entropy alloys for electrocatalytic water splitting. Journal of Alloys and Compounds, 2023. 960: p. 171039.
49. Bian, Haowei, Wang, Chunyang, Zhao, Shen, Han, Guoqiang, Xie, Guangwen, Qi, Peng,Liu, Xin, Zeng, Yan, Zhang, Dun, Wang, Peng, Preparation of highly efficient high-entropy alloy catalysts with electrodeposition and corrosion engineering for OER electrocatalysis. International Journal of Hydrogen Energy, 2024. 57: p. 651-659.
50. Tang, J, Xu, JL, Ye, ZG, Li, XB, Luo, JM, Microwave sintered porous CoCrFeNiMo high entropy alloy as an efficient electrocatalyst for alkaline oxygen evolution reaction. Journal of Materials Science & Technology, 2021. 79: p. 171-177.
51. Sharland, S., A review of the theoretical modelling of crevice and pitting corrosion. Corrosion science, 1987. 27(3): p. 289-323.
52. Yingzhe, Zhang, Yudao, Chen, Qingdong, Qin, Wei, Li, Synthesis of FeCoNiCuZn single-phase high-entropy alloy by high-frequency electromagnetic-field assisted ball milling. Journal of Magnetism and Magnetic Materials, 2020. 498: p. 166151.
53. Mohanty, G.C., S. Das, and A. Verma, Fabrication of aqueous asymmetric supercapacitor device by using spinel type (FeCoNiCuZn) 3O4 high entropy oxide and green carbon derived from plastic wastes. Ceramics International, 2024. 50(23): p. 48938-48947.
54. Zhang, Runlin, Xu, Zijin, Du, Zhengyan, Wan, Yichen, Yuan, Shaojie, Zeng, Fanda, Xu, Jian, Meng, Zeshuo, Hu, Xiaoying, Tian, Hongwei, Electrodeposition of Self-Supported High-Entropy Spinel Oxides for Stable Oxygen Evolution. Inorganic Chemistry, 2023. 62(46): p. 19052-19059.
55. Nevers, Aymeric, Hallez, Loic, Touyeras, Francis, Hihn, Jean-Yves, Effect of ultrasound on silver electrodeposition: Crystalline structure modification. Ultrasonics Sonochemistry, 2018. 40: p. 60-71.
56. Usharani, N.J., H. Sanghavi, and S. Bhattacharya, Factors influencing phase formation and band gap studies of a novel multicomponent high entropy (Co, Cu, Mg, Ni, Zn) 2TiO4 orthotitanate spinel. Journal of Alloys and Compounds, 2021. 888: p. 161390.
57. Sharma, Lalita, Katiyar, Nirmal Kumar, Parui, Arko, Das, Rakesh, Kumar, Ritesh, Tiwary, Chandra Sekhar, Singh, Abhisek K, Halder, Aditi, Biswas, Krishanu, Low-cost high entropy alloy (HEA) for high-efficiency oxygen evolution reaction (OER). Nano Research, 2022: p. 1-8.
58. Xu, Xiang, Guo, Yang, Bloom, Brian P, Wei, Jianjun, Li, Haoyang, Li, Hailong, Du, Yankun, Zeng, Zheng, Li, Liqing, Waldeck, David H, Elemental core level shift in high entropy alloy nanoparticles via X-ray photoelectron spectroscopy analysis and first-principles calculation. ACS nano, 2020. 14(12): p. 17704-17712.
59. Liao, Weibing, Lan, Si, Gao, Libo, Zhang, Hongti, Xu, Shang, Song, Jian, Wang, Xunli, Lu, Yang, Nanocrystalline high-entropy alloy (CoCrFeNiAl0. 3) thin-film coating by magnetron sputtering. Thin Solid Films, 2017. 638: p. 383-388.
60. Voogt, EH, Mens, AJM, Gijzeman, OLJ, Geus, JW, XPS analysis of palladium oxide layers and particles. Surface science, 1996. 350(1-3): p. 21-31.
61. Zhang, Yue, Dai, Weiji, Zhang, Pengfei, Lu, Tao, Pan, Ye, In-situ electrochemical tuning of (CoNiMnZnFe) 3O3. 2 high-entropy oxide for efficient oxygen evolution reactions. Journal of Alloys and Compounds, 2021. 868: p. 159064.
62. Fereja, Shemsu Ligani, Zhang, Ziwei, Fang, Zhongying, Guo, Jinhan, Zhang, Xiaohui, Liu, Kaifan, Li, Zongjun, Chen, Wei, High-entropy oxide derived from metal–organic framework as a bifunctional electrocatalyst for efficient urea oxidation and oxygen evolution reactions. ACS Applied Materials & Interfaces, 2022. 14(34): p. 38727-38738.
63. Qiao, Haiyu, Wang, Xizheng, Dong, Qi, Zheng, Hongkui, Chen, Gang, Hong, Min, Yang, Chun-Peng, Wu, Meiling, He, Kai, Hu, Liangbing, A high-entropy phosphate catalyst for oxygen evolution reaction. Nano Energy, 2021. 86: p. 106029.
64. Zhang, Qiuping, Wang, Xu, Jian, Tianzhen, Ma, Wenqing, Xu, Caixia, Zhou, Qiuxia, Liu, Hong, Free?Standing Multiscale Porous High Entropy NiFeCoZn Alloy as the Highly Active Bifunctional Electrocatalyst for Alkaline Water Splitting. Chinese Journal of Chemistry, 2024. 42(13): p. 1465-1473.
65. Singh, S. and C. Srivastava, On the evolution of protective oxide chemistry and corrosion resistance of electrodeposited FeCrMnNiCo-carbon nanotube composite coatings. Philosophical Magazine, 2023. 103(6): p. 507-530.
66. Li, Tangyuan, Yao, Yonggang, Ko, Byung Hee, Huang, Zhennan, Dong, Qi,Gao, Jinlong, Chen, Wilson, Li, Jianguo, Li, Shuke, Wang, Xizheng, Carbon?supported high?entropy oxide nanoparticles as stable electrocatalysts for oxygen reduction reactions. Advanced Functional Materials, 2021. 31(21): p. 2010561.
67. Hnida, Katarzyna E, Marzec, Mateusz, Wla?lak, Ewelina, Chlebda, Damian, Szaci?owski, Konrad, Gilek, Dominika, Sulka, Grzegorz D, Przybylski, Marek, Influence of pulse frequency on physicochemical properties of InSb films obtained via electrodeposition. Electrochimica Acta, 2019. 304: p. 396-404.
68. Zhang, Yongqi, Ouyang, Bo, Xu, Jing, Chen, Shi, Rawat, Rajdeep Singh, Fan, Hong Jin, 3D Porous Hierarchical Nickel-Molybdenum Nitrides Synthesized by RF Plasma as Highly Active and Stable Hydrogen-Evolution-Reaction Electrocatalysts. Advanced Energy Materials, 2016. 6(11).
69. Arshad, Muhammad, Bano, Saira, Amer, Mohamed, Janik, Vit, Hayat, Qamar, Bai, Mingwen, High-Temperature Oxidation and Phase Stability of AlCrCoFeNi High Entropy Alloy: Insights from In Situ HT-XRD and Thermodynamic Calculations. Materials, 2024. 17(14): p. 3579.
70. He, Jinfeng, Tong, Yun, Wang, Zhe, Zhou, Guorong, Ren, Xuhui, Zhu, Jiaye, Zhang, Nan, Chen, Lu, Chen, Pengzuo, Oxygenate-induced structural evolution of high-entropy electrocatalysts for multifunctional alcohol electrooxidation integrated with hydrogen production. Proceedings of the National Academy of Sciences, 2024. 121(30): p. e2405846121.
71. He, Caiqing, Chen, Yunnen, Guo, Lin, Yin, Ruoyu, Qiu, Tingsheng, Catalytic ozonation of NH4+-N in wastewater over composite metal oxide catalyst. Journal of Rare Earths, 2022. 40(1): p. 73-84.
指導教授 劉奕宏(Yi-Hung Liu) 審核日期 2025-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明