參考文獻 |
[1] https://enlitechnology.com/blog/pv/ss-x-solar-simulatior/solar-simulator-01/. (2024/04/12)
[2] https://solarpost.in/basics/i-v-curve-solar-pv/. (2024/04/12)
[3] M. Piliougine, P. Sanchez-Friera and G. Spagnuolo, Comparative of IEC 60891 and other procedures for temperature and irradiance corrections to measured I–V characteristics of photovoltaic devices, Energies 2024, 17, 566.
[4] J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan and G. Luo, Electrolytes in dye-sensitized solar cells, Chem. Rev. 2015, 115, 2136?2173.
[5] M. A. Green, E. D. Dunlop, M.Yoshita, N. Kopidakis, K. Bothe, G. Siefer, X. Hao and J. Y. Jiang, Solar cell efficiency tables (version 65), Prog. Photovolt: Res. Appl. 2025, 33, 3?15.
[6] https://www.nrel.gov/pv/cell-efficiency.html. (2024/04/12)
[7] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, Dye sensitised zinc oxide: Aqueous electrolyte: Platinum photocell, Nature 1976, 261, 402?403.
[8] B. Regan and M. Gratzel, A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 1991, 353, 737?740.
[9] Q. Huaulme, V. M. Mwalukuku, D. Joly, J. Liotier, Y. Kervella, P. Maldivi, S. Narbey, F. Oswald, A. J. Riquelme, J. A. Anta and R. Demadrille, Photochromic dye-sensitized solar cells with light-driven adjustable optical transmission and power conversion efficiency, Nat. Energy 2020, 5, 468?477.?
[10] J. Liotier, V. M. Mwalukuku, S. Fauvel, A. J. Riquelme, J. A. Anta, P. Maldivi and R. Demadrille, Photochromic naphthopyran dyes incorporating a benzene, thiophene, or furan spacer: Effect on photochromic, optoelectronic, and photovoltaic properties in dye-sensitized solar cells, Sol. RRL 2022, 6, 2100929.
[11] V. M. Mwalukuku, J. Liotier, A. J. Riquelme, Y. Kervella, Q. Huaulme, A. Haurez, S. Narbey, J. A. Anta and R. Demadrille, Strategies to improve the photochromic properties and photovoltaic performances of naphthopyran dyes in dye-sensitized solar cells, Adv. Energy Mater. 2023, 13, 2203651.
[12] S. Fauvel, A. J. Riquelme, J. M. A. Castan, V. M. Mwalukuku, Y. Kervella, V. K. Challuri, F. Sauvage, S. Narbey, P. Maldivi, C. Aumaitre and R. Demadrille, Push-pull photochromic dyes for semi-transparent solar cells with light-adjustable optical properties and high color-rendering index, Chem. Sci. 2023, 14, 8497?8506.
[13] H. Wu, A. Huang, Q. Liao, P. Lin, W. Yao, Q. Li and Z. Li, Photothermally promoted photoisomerization of naphthopyran-based dyes to achieve sensitive photodeformation under sunlight, ACS Materials Lett. 2023, 5, 753?761.
[14] M. E. McFadden, R. W. Barber, A. C. Overholts and M. J. Robb, Naphthopyran molecular switches and their emergent mechanochemical reactivity, Chem. Sci. 2023, 14, 10041–10067.
[15] C. M. Sousa, J. R. Fernandes and P. J. Coelho, Naphthopyrans as efficient dual color photoinitiators for volumetric 3D printing, Eur. Polym. J. 2023, 196, 112312.
[16] S. Seipel, J. Yu and V. A. Nierstrasz, Effect of physical parameters and temperature on the piezo?electric jetting behaviour of UV?curable photochromic inks, Sci. Rep. 2020, 10, 18841.
[17] S. Seipel, J. Yu, M. Vikova, M. Vik, M. Koldinska, A. Havelka and V. A. Nierstrasz, Color performance, durability and handle of inkjet-printed and UV-cured photochromic textiles for multi-colored applications, Fibers Polym. 2019, 20, 1424?1435.
[18] M. T. Abate, S. Seipel, J. Yu, M. Vikova, M. Vik, A. Ferri, J. Guan, G. Chen and V. Nierstrasz, Supercritical CO2 dyeing of polyester fabric with photochromic dyes to fabricate UV sensing smart textiles, Dyes Pigm. 2020, 183, 108671.
[19] A. Nasir, M. A. Sikandar, M. Hussain, A. Qazi, S. Saher and Q. Jamal, Preparation and application of waterresistant SiO2 coated naphthopyran derivatives based photochromic pigment in fabricating reversible photochromic cement pastes, Silicon 2022, 14, 3707?3721.
[20] S. Peng, J. Wen, M. Hai, Z. Yang, X. Yuan, D. Wang, H. Cao and W. He, Synthesis and application of reversible fluorescent photochromic molecules based on tetraphenylethylene and photochromic groups, New J. Chem. 2019, 43, 617?621.
[21] J. Hu, S. Yang, Z. Chen, Y. Chen and J. Wei, Inverse opal photonic crystals for real-time identifiable labels via ultraviolet and near-infrared light, ACS Appl. Polym. Mater. 2023, 5, 1002?1013.
[22] F. J. Shareef, S. Sun, M. Kotecha, I. Kassem, D. Azar and M. Cho, Engineering a light-attenuating artificial iris, Investig. Ophthalmol. Vis. Sci. 2016, 57, 2195?2202.
[23] K. H. Cheng, T. L. Hsieh, S. J. Liu, C. J. Chiang and J. C. Chen, Synthesis and characterization of indeno-fused naphthopyrans containing methacryloyl and urethane groups for photochromic contact lenses applications, Eur. Polym. J. 2024, 211, 113044.
[24] L. Liu, A. Wang, G. Wang, J. Li and Y. Zhou, A naphthopyran-rhodamine based fluorescent and colorimetric chemosensor for recognition of common trivalent metal ions and Cu2+ ions, Sens. Actuators B Chem. 2015, 215, 388?395.
[25] A. Kumar, A. Datta and S. Kumar, A photo-reversible, sensitive, and selective sensor for copper ions in an aqueous medium, J. Mol. Struct. 2022, 1260, 132807.
[26] Z. M. Dong, H. Ren, J. N. Wang and Y. Wang, A new naphthopyran-based chemodosimeter with aggregation-induced emission: Selective dual-channel detection of cyanide ion in aqueous medium and test strips, Microchem. J. 2020, 155, 104676.
[27] M. Lv, Y. Zhang, J. Fan, Y. Yang, S. Chen, G. Liang and S. Zhang, A near-infrared fluorescent probe for ratiometric sensing of SO2 in cells and zebrafish, Analyst 2020, 145, 7985?7992.
[28] L. Chen, C. Niu, Z. Xie and N. Tan, Fluorescence sensor for nitrofurazone using 4-methyl-7-allyloxynaphtho[1,2-b]pyran-2-ketone as sensing carrier, J. Anal. Chem. 2010, 65, 260?266.
[29] P. R. Sahoo, K. Sairam, R. Kumar, K. P. Rana and S. Kumar, Synthesis and experimental investigations of a photoactive naphthopyran for sensing nanomolar concentration of ammonia, J. Photochem. Photobiol. A 2024, 454, 115749.
[30] A. Roy, A. Ghosh, S. Bhandari, P. Selvaraj, S. Sundaram and T. K. Mallick, Color comfort evaluation of dye-sensitized solar cell (DSSC) based building-integrated photovoltaic (BIPV) glazing after 2 years of ambient exposure, J. Phys. Chem. C 2019, 123, 23834?23837.
[31] M.Saifullah, J. Gwakab and J. H. Yun, Comprehensive review on material requirements, present status, and future prospects for building-integrated semitransparent photovoltaics (BISTPV), J. Mater. Chem. A 2016, 4, 8512?8540.
[32] N. M. Johnson, Y. Y. Smolin, C. Shindler, D. Hagaman, M. Soroush, K. K. S. Lau and H. F Ji, Photochromic dye-sensitized solar cells, AIMS Mater. Sci. 2015, 2, 503?509.
[33] S. Ma, H. Ting, Y. Ma, L. Zheng, M. Zhang, L. Xiao and Z. Chen, Smart photovoltaics based on dye-sensitized solar cells using photochromic spiropyran derivatives as photosensitizers, AIP Adv. 2015, 5, 057154.
[34] J. M. A. Castan, V. M. Mwalukuku, A. J. Riquelme, J. Liotier, Q. Huaulme, J. A. Anta, P. Maldivi and R. Demadrille, Photochromic spiro-indoline naphthoxazines and naphthopyrans in dye-sensitized solar cells, Mater. Chem. Front. 2022, 6, 2994?3005.
[35] A. I. Simpang, A. Ghifari, S. Y. Han, D. Hayati, D. X. Long, Y. H. Jang and J. Hong, Metal-free organic dyes featuring an azobenzene bridge for photochromic dye-sensitized solar cells, ChemistrySelect 2023, 8, e202204571.
[36] M. Hara and R. Ejima, Fabrication and characterization of co-sensitized dye solar cells using energy transfer from spiropyran derivatives to SQ2 dye, Molecules 2024, 29, 4896.
[37] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, Dye-sensitized solar cells, Chem. Rev. 2010, 110, 6595?6663.
[38] W. Wu, J. Wang, Z. Zheng, Y. Hu, J. Jin, Q. Zhang and J. Hua, A strategy to design novel structure photochromic sensitizers for dye-sensitized solar cells, Sci, Rep. 2015, 5, 8592.
[39] S. K. Osler, M. E. McFadden and M. J. Robb, Comparison of the reactivity of isomeric 2H- and 3H-naphthopyran mechanophores, J Polym Sci. 2021, 59, 2537?2544.
[40] C. C. Ko, L. X. Wu, K. M. C. Wong, N. Zhu and V. W. W. Yam, Synthesis, characterization and photochromic studies of spirooxazine-containing 2,2’-bipyridine ligands and their rhenium(I) tricarbonyl complexes, Chem. Eur. J. 2004, 10, 766?776.
[41] M. J. Robb, T. A. Kim, A. J. Halmes, S. R. White, N. R. Sottos and J. S. Moore, Regioisomer-specific mechanochromism of naphthopyran in polymeric materials, J. Am. Chem. Soc. 2016, 138, 12328?12331.
[42] V. P. Grachev, G. M. Bakova, L. I. Makhonina, E. A. Yurieva, S. M. Aldoshin, A. M. Gorelik and V. A. Barachevskii, Synthesis and study of photochromic properties of copolymers based on functionalized chromenes, Russ. Chem. Bull. 2011, 60, 1469?1475.
[43] K.M. McElhinny, P. Huang, Y. Joo, C. Kanimozhi, A. Lakkham, K. Sakurai, P. G. Evans and P. Gopalan, Optically reconfigurable monolayer of azobenzene donor molecules on oxide surfaces, Langmuir 2017, 33, 2157?2168.
[44] C. C. Ko, L. X. Wu, M. C. Wong, N. Zhu and W. W. Yam, Synthesis, characterization and photochromic studies of spirooxazine containing 2,2’-bipyridine ligands and their rhenium(I) tricarbonyl complexes, Chem. Eur. J. 2004, 10, 766?776.
[45] C. L. Fraser, N. R. Anastasi and J. J. S. Lamba, Synthesis of halomethyl and other bipyridine derivatives by reaction of 4,4’-bis[(trimethylsilyl)methyl]-2,2’-bipyridine with electrophiles in the presence of fluoride ion, J. Org. Chem. 1997, 62, 9314?9317.
[46] T. Huang, Q. Yu, S. Liu, K. Y. Zhang, W. Huang and Q. Zhao, Rational design of phosphorescent iridium(III) complexes for selective glutathione sensing and amplified photodynamic therapy, ChemBioChem 2019, 20, 576?586.
[47] J. I. Son, A. Kim, H. B. Noh, H. J. Lee, Y. B. Shim and K. H. Park, Synthesis and catalytic hydrogen transfer reaction of ruthenium(II) complex, Bull. Korean Chem. Soc. 2012, 33, 319?321.
[48] L. S. Matos, R. C. Amaral and N. Y. M. Iha, Visible photosensitization of trans-styrylpyridine coordinated to fac-[Re(CO)3(dcbH2)]+: New insights, Inorg. Chem. 2018, 57, 9316?9326.
[49] A. Ambroise, R. W. Wagner, P. D. Rao, J. A. Riggs, P. Hascoat, J. R. Diers, J. Seth, R. K. Lammi, D. F. Bocian, D. Holten and J. S. Lindsey, Design and synthesis of porphyrin-based optoelectronic gates, Chem. Mater. 2001, 13, 1023?1034.
[50] Y. Q. Fang, M. I. J. Polson and G. S. Hanan, Creating new binding sites in ligands and metal complexes using the Negishi cross-coupling reaction, Inorg. Chem. 2003, 42, 5?7.
[51] P. Byabartta, Heteroleptic tris-chelates of ruthenium(II): Synthesis, spectral characterization and electrochemical properties, Spectrochim. Acetonea A 2007, 66, 521?533.
[52] R. M. O’Donnell, R. N. Sampaio, G. Li, P. G. Johansson, C. L. Ward and G. J. Meyer, Photoacidic and photobasic behavior of transition metal compounds with carboxylic acid group(s), J. Am. Chem. Soc. 2016, 138, 3891?3903.
[53] G. Konti, G. C. Vougioukalakis, M. Bidikoudi, A. G. Kontos, C. Methenitis and P. Falaras, A Ru(II) molecular antenna bearing a novel bipyridine–acrylonitrile ligand: Synthesis and application in dye solar cells, Polyhedron 2014, 82, 12?18.
[54] A. Philippopoulos, P. Falaras, E. Chatzivasiloglou, O. I. Markopoulou, V. Likodimos and G. C. Konti, Synthesis and spectroscopic characterization of new heteroleptic ruthenium(II) complexes incorporating 2-(2’-pyridyl)quinoxaline and 4-carboxy-2-(2’-pyridyl)quinoline, J Coord Chem 2012, 65, 2535?2548.
[55] A. Kroll, K. Monczak, D. Sorsche and S. Rau, A luminescent ruthenium azide complex as a substrate for copper-catalyzed click reactions, Eur. J. Inorg. Chem. 2014, 3462?3466.
[56] 黃品嘉,2022,國立中央大學化學研究所碩士學位論文(新型三?啶鋨錯合物染料合成與配位基效應之探討)。
[57] C. C. Chou, F. C. Hu, K. L. Wu, T. Duan, Y. Chi, S. H. Liu, G. H. Lee and P. T. Chou, 4,4’,5,5’-tetracarboxy-2,2’-bipyridine Ru(II) sensitizers for dye-sensitized solar cell, Inorg. Chem. 2014, 53, 8593?8599.
[58] X. Su, L. Guo, Y. Ma and X. Li, A mercuric ensemble based on a cycloruthenated complex as a visual probe for iodide in aqueous solution, Spectrochim Acta A 2016, 152, 468?474.
[59] T. Rawling, F. Buchholz and A. M. McDonagh, Convenient synthesis and purification of [Bu4N]2 [Ru(4-carboxy-4-carboxylate-2,2’-bipyridine)2(NCS)2]: A landmark DSC dye, Aust. J. Chem. 2008, 61, 405?408.
[60] R. M. Caraballo, P. Rosi, J. H. Hodak and L. M. Baraldo, Photosubstitution of monodentate ligands from Ru(II) ?dicarboxybipyridine complexes, Eur. J. Inorg. Chem. 2017, 3612?3621.
[61] C. Y. Chen, Y. M Feng, T. Y. Wu, Y. C. Liu, S. Y. Chen, T. Y. Lin, H. H. G. Tsai and C. G. Wu, Terpyridyl ruthenium complexes functionalized with conjugated heterocycles for panchromatic dye-sensitized solar cells, ACS Appl. Energy Mater. 2021, 4, 13461?13470.
[62] L. X. Santana, C. C. Vidyasagar, B. M. M. Flores, V. M. Jimeerez, Microwave assisted organic syntheses (MAOS): The green synthetic method, 《Handbook of Greener Synthesis of Nanomaterials and Compounds》2021, 1 (Fundamental Principles and Methods), 491?542.
[63] R. Y. Wang, C. W. Li, S. T. Cho, C. H. Chang, J. J. Chen and T. L. Shih, Synthesis of cinnamils and quinoxalines and their biological evaluation as anticancer agents, Arch. Pharm. 2022, 355, e2100448.
[64] R. Haraguchi, Y. Takada and S. Matsubara, Preparation of cycloheptane ring by nucleophilic cyclopropanation of 1,2-diketones with bis(iodozincio)methane, Org. Biomol. Chem. 2015, 13, 241?247.
[65] E. C. Constable, A. H. Redondo, C. E. Housecroft, M. Neuburger and S. Schaffner, Copper(i) complexes of 6,6′-disubstituted 2,2′-bipyridine dicarboxylic acids: New complexes for incorporation into copper-based dye sensitized solar cells (DSCs), Dalton Trans. 2009, 6634?6644.
[66] V. Mukkala and J. Kankare, New 2,2′-bipyridine derivatives and their luminescence properties with europium(III) and terbium(III) ions, Helv. Chim. Acta 1992, 75, 1578?1592. |