博碩士論文 109289001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:52.15.123.168
姓名 林家龍(Chia-Lung Lin)  查詢紙本館藏   畢業系所 天文研究所
論文名稱
(Scalable, Advanced Machine Learning-based Approaches for Stellar Flare Identification: Application to TESS short-cadence Data and Analysis of a New Flare Catalogue)
相關論文
★ 土衛六「泰坦」離子球層的化學-動力學模型★ KBOs星體碰撞與生命及行星大氣起源
★ 行星狀星雲形態之多光譜波段觀測★ 木衛一埃歐鈉雲噴流之結構與時間變化
★ 早期太陽系系統中KBOs的形成與碰撞演化★ 彗星2001A2 (LINEAR)的光度觀測
★ SDSS之RR Lyrae候選變星之確認觀測★ 銀河系核心及盤面的隨機恆星形成歷史
★ 宇宙射線中的氦原子核能譜★ 小行星對於地球原始海水的貢獻
★ 行星狀星雲Hα結構之分析★ 在星系團中的相對論性電子和SZ效應
★ 重力透鏡和交互作用星系的資料探勘★ 在疏散星團中尋找系外行星與變星
★ 原恆星吸積盤動態模擬與氣體固態粒子作用初步探討★ 大型EKBO(Quaoar, Ixion, 2004DW)的自轉週期和表面顏色的測量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我開發了一個多算法機器學習模型,用以分析光變曲線來探測恆星閃焰。我定義出的四種閃焰光變曲線特徵作為訓練指標,來訓練深度神經網絡 (Deep Neural Network, DNN)、隨機森林 (Random Forest, RF)和XGBoost演算法的模型。這些模型性能通過準確率、精確率、召回率和F1分數進行評估,大多超過94%。我利用此模型分析以前已發表的閃焰文獻的資料,在與文獻中的TESS M型矮星閃焰識別結果進行比對驗證後,我的模型成功重新探測到了超過92%的已知閃焰,同時還檢測到約2000個文獻中未發現的小型事件。這測試證明了我的模型有比以往文獻中的閃焰探測法有更高的靈敏度。經過處理130萬個光變曲線後,我的模型識別出近18,000顆閃焰恆星和250,000個閃焰。我將這些發現統整成一個大型目錄並發表公開,該目錄記錄了閃焰和與閃焰星的特性。我的結果表明總閃焰能量和閃焰振幅與顏色之間存在強相關性,與先前的研究一致。我也對閃焰頻率分佈進行分析,與先前研究不同的是,這一次我評估了由於低振幅事件檢測不完全性而引起的頻率誤差,進而改進了閃焰頻率分布的?律斜率。我測定了約120,000顆恆星的自轉週期,從而揭示了自轉週期與閃焰活動之間的關係。我發現,恆星的自轉週期可明確分別出閃焰能量飽和區以及未飽和區,也能分別出coronal X射線發射飽和以及未飽和區,這表明了恆星的Coronal heating機制與閃焰能量高度相關。我還發現,在早期型和未飽和恆星中,X射線發射隨著閃焰光度增加得更快,表明這些天體中有更高效的coronal heating。另外,我在一些白矮星 (white dwarfs)和熱亞矮星(hot subdwarfs)中野檢測到了閃焰。然而,經過影像與顏色分析,我認為這些閃焰極可能來自未解析的低質量伴星,而非這些星體本身。
摘要(英) By being inspired by my prior researches on stellar flares, I developed a multi-algorithm machine learning approach aimed at significantly enhancing the efficiency of flare detection in light curves, thereby deepening our understanding of stellar flares from vast datasets.
I applied this approach to TESS 2-minute survey data from Sectors 1-72 to identify stellar flares.
Models trained with Deep Neural Network, Random Forest, and XGBoost algorithms, respectively, utilized four flare light curve characteristics as input features. Model performance was evaluated using accuracy, precision, recall, and F1-score metrics, all exceeding 94\%. Validation against previously reported TESS M dwarf flare identifications showed that my models successfully recovered over 92\% of the flares while detecting $sim2,000$ more small events, thus extending the detection sensitivity of previous work. After processing 1.3 million light curves, the models identified nearly 18,000 flare stars and 250,000 flares. I present an extensive catalog documenting both flare and stellar properties. I found strong correlations in total flare energy and flare amplitude with color, in agreement with previous studies. Flare frequency distributions were analyzed, refining power-law slopes for flare behavior with the frequency uncertainties due to the detection incompleteness of low-amplitude events. I determined rotation periods for $sim120,000$ stars thus yielding the relationship between rotation period and flare activity. I found that the transition in rotation period between the saturated and unsaturated regimes in flare energy coincides with the same transition in rotation period separating the saturated and unsaturated levels in coronal X-ray emission. Stellar X-ray emission increases more rapidly with flare luminosity in earlier-type and unsaturated stars, indicating more efficient coronal heating in these objects. Additionally, the models detected flares in white dwarfs and hot subdwarfs that are likely arising from unresolved low-mass companions.
關鍵字(中) ★ Stellar Flares
★ Machine Learning
★ Random Forest
★ Deep Neural Network
★ XGBoost
★ Stellar Astrophysics
關鍵字(英)
論文目次 Contents
1 Introduction 1
1.1 What are Stellar Flares? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 My studies on Stellar Flares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 A Comparative Study of the Magnetic Activities of Low-mass Stars from
M-type to G-type (Lin et al., 2019) . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 EDEN: Flare Activity of the Nearby Exoplanet-hosting M Dwarf Wolf 359
Based on K2 and EDEN Light Curves. (Lin et al., 2021) . . . . . . . . . . . 9
1.2.3 Mass–accretion, spectral, and photometric properties of T Tauri stars in Tau-
rus based on TESS and LAMOST (Lin et al., 2023) . . . . . . . . . . . . . 14
1.3 Application of Machine-Learning Technique to Stellar Flare Study . . . . . . . 17
2 Dataset Pre-processing and sample collection from TESS short cadence observa-
tion 21
2.1 Flare Candidate Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Definition of Flare Profile Characteristics . . . . . . . . . . . . . . . . . . . . . 25
2.3 Oversampling the dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3 Machine Learning Models training 32
3.1 Deep Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 XGBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4 Model Performance Assessment 45
4.1 Flare detection by our ML models, the MultiAlgorithm Voting Approach . . . 45
4.2 Comparison to Gunther et al. (2020) . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Limitations of generalized detrending method and segmentation strategy for
improving flare detection reliability . . . . . . . . . . . . . . . . . . . . . . . . 50
5 Implementation across the full dataset of TESS short-cadence observations 56
5.1 Flare detection results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 Flare Parameters and Uncertainty Estimates due to the Limited Cadence . . . 60
6 Discussion 64
6.1 Flare Energy, Amplitude, and Duration across different spectral types . . . . . 65
6.2 Flare frequency distribution with detection sensitivity calibration for stars
from M- to A-types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3 Stellar Flare Activity and Rotation Period . . . . . . . . . . . . . . . . . . . . . 71
6.4 Relationship between Flare activity and X-ray luminosity . . . . . . . . . . . . 73
6.5 Flare detection in other types of stars . . . . . . . . . . . . . . . . . . . . . . . . 75
7 Conclusions 80
Bibliography 85
參考文獻 Abadi, Martin et al. (2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous Sys-
tems. Software available from tensorflow.org. URL: https://www.tensorflow.org/.
Agarap, Abien Fred (Mar. 2018). “Deep Learning using Rectified Linear Units (ReLU)”.
In: arXiv e-prints, arXiv:1803.08375, arXiv:1803.08375. DOI: 10.48550/arXiv.1803.
08375. arXiv: 1803.08375 [cs.NE].
Aschwanden, Markus J. and Manuel Gudel (Mar. 2021). “Self-organized Criticality in Stel-
lar Flares”. In: The Astrophysical Journal 910.1, 41, p. 41. DOI: 10.3847/1538- 4357/
abdec7. arXiv: 2106.06490 [astro-ph.SR].
Astropy Collaboration et al. (Oct. 2013). “Astropy: A community Python package for as-
tronomy”. In: Astronomy & Astrophysics 558, A33, A33. DOI: 10.1051/0004- 6361/
201322068. arXiv: 1307.6212 [astro-ph.IM].
Babcock, H. W. (Mar. 1961). “The Topology of the Sun’s Magnetic Field and the 22-Year
Cycle.” In: The Astrophysical Journal 133, p. 572. DOI: 10.1086/147060.
Bai, Jian-Ying and Ali Esamdin (Dec. 2020). “Flare Properties of A-type Stars in Kepler
Data”. In: The Astrophysical Journal 905.2, 110, p. 110. DOI: 10 . 3847 / 1538 - 4357 /
abc479.
Balona, L. A. (July 2012). “Kepler observations of flaring in A-F type stars”. In: Monthly
Notices of the Royal Astronomical Society 423.4, pp. 3420–3429. DOI: 10.1111/j.1365-
2966.2012.21135.x.
Barnes, Sydney A. (Nov. 2007). “Ages for Illustrative Field Stars Using Gyrochronology:
Viability, Limitations, and Errors”. In: The Astrophysical Journal 669.2, pp. 1167–1189. DOI:
10.1086/519295. arXiv: 0704.3068 [astro-ph].
Baron, Dalya (Apr. 2019). “Machine Learning in Astronomy: a practical overview”. In: arXiv
e-prints, arXiv:1904.07248, arXiv:1904.07248. DOI: 10 . 48550 / arXiv . 1904 . 07248.
arXiv: 1904.07248 [astro-ph.IM].
Barron, J. et al. (Nov. 2020). “MOBSTER: Identifying Candidate Magnetic O Stars through
Rotational Modulation of TESS Photometry”. In: Stellar Magnetism: A Workshop in Hon-
our of the Career and Contributions of John D. Landstreet. Ed. by Gregg Wade et al. Vol. 11,
pp. 226–235. DOI: 10.48550/arXiv.2001.04534. arXiv: 2001.04534 [astro-ph.SR].
Boyajian, T. S. et al. (Apr. 2016). “Planet Hunters IX. KIC 8462852 - where’s the flux?” In:
Monthly Notices of the Royal Astronomical Society 457.4, pp. 3988–4004. DOI: 10.1093/
mnras/stw218. arXiv: 1509.03622 [astro-ph.SR].
Breiman, Leo (1996). “Bagging predictors”. In: Machine learning 24, pp. 123–140.
— (2001). “Random forests”. In: Machine learning 45, pp. 5–32.
Bridle, John (1989). “Training Stochastic Model Recognition Algorithms as Networks can
Lead to Maximum Mutual Information Estimation of Parameters”. In: Advances in Neu-
ral Information Processing Systems. Ed. by D. Touretzky. Vol. 2. Morgan-Kaufmann. URL:
https : / / proceedings . neurips . cc / paper _ files / paper / 1989 / file /
0336dcbab05b9d5ad24f4333c7658a0e-Paper.pdf.
Buitinck, Lars et al. (2013). “API design for machine learning software: experiences from the
scikit-learn project”. In: ECML PKDD Workshop: Languages for Data Mining and Machine
Learning, pp. 108–122.
Carrington, R. C. (Nov. 1859). “Description of a Singular Appearance seen in the Sun on
September 1, 1859”. In: Monthly Notices of the Royal Astronomical Society 20, pp. 13–15.
DOI: 10.1093/mnras/20.1.13.
Chang, H. Y. et al. (Jan. 2017). “LAMOST Observations of Flaring M Dwarfs in the Kepler
Field”. In: The Astrophysical Journal 834.1, 92, p. 92. DOI: 10.3847/1538-4357/834/
1/92. arXiv: 1610.04541 [astro-ph.SR].
Chang, H. Y. et al. (Nov. 2018). “Hyperflares of M Dwarfs”. In: The Astrophysical Journal
867.1, 78, p. 78. DOI: 10.3847/1538-4357/aae2bc.
Chang, S. W., Y. I. Byun, and J. D. Hartman (Nov. 2015). “Photometric Study on Stellar
Magnetic Activity. I. Flare Variability of Red Dwarf Stars in the Open Cluster M37”. In:
The Astrophysical Journal 814.1, 35, p. 35. DOI: 10.1088/0004-637X/814/1/35. arXiv:
1510.01005 [astro-ph.SR].
Chawla, Nitesh V et al. (2002). “SMOTE: synthetic minority over-sampling technique”. In:
Journal of artificial intelligence research 16, pp. 321–357.
Chen, Howard et al. (Jan. 2021). “Persistence of flare-driven atmospheric chemistry on rocky
habitable zone worlds”. In: Nature Astronomy 5, pp. 298–310. DOI: 10.1038/s41550-
020-01264-1. arXiv: 2101.04507 [astro-ph.EP].
Chen, Tianqi and Carlos Guestrin (2016). “Xgboost: A scalable tree boosting system”. In:
Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data
mining, pp. 785–794.
Christe, Steven et al. (Jan. 2017). “Exploring impulsive solar magnetic energy release and
particle acceleration with focused hard X-ray imaging spectroscopy”. In: arXiv e-prints,
arXiv:1701.00792, arXiv:1701.00792. DOI: 10 . 48550 / arXiv . 1701 . 00792. arXiv:
1701.00792 [astro-ph.SR].
Clauset, Aaron, Cosma Rohilla Shalizi, and M. E. J. Newman (Jan. 2009). “Power-Law Distri-
butions in Empirical Data”. In: SIAM Review 51.4, pp. 661–703. DOI: 10.1137/070710111.
arXiv: 0706.1062 [physics.data-an].
Cliver, E. W. et al. (Nov. 2020). “On the Size of the Flare Associated with the Solar Proton
Event in 774 AD”. In: The Astrophysical Journal 903.1, 41, p. 41. DOI: 10.3847/1538-
4357/abad93.
Dal Tio, Piero et al. (Oct. 2021). “Dissecting the Gaia HR diagram within 200 pc”. In: Monthly
Notices of the Royal Astronomical Society 506.4, pp. 5681–5697. DOI: 10 . 1093 / mnras /
stab1964. arXiv: 2107.01844 [astro-ph.SR].
Davenport, James R. A. (Sept. 2016). “The Kepler Catalog of Stellar Flares”. In: The As-
trophysical Journal 829.1, 23, p. 23. DOI: 10 . 3847 / 0004 - 637X / 829 / 1 / 23. arXiv:
1607.03494 [astro-ph.SR].
Davenport, James R. A. et al. (Feb. 2019). “The Evolution of Flare Activity with Stellar Age”.
In: The Astrophysical Journal 871.2, 241, p. 241. DOI: 10 . 3847 / 1538 - 4357 / aafb76.
arXiv: 1901.00890 [astro-ph.SR].
Dietrich, Jeremy et al. (Apr. 2023). “EDEN Survey: Small Transiting Planet Detection Limits
and Constraints on the Occurrence Rates of Planets around Late-M Dwarfs within 15
pc”. In: The Astronomical Journal 165.4, 149, p. 149. DOI: 10.3847/1538-3881/acba0b.
arXiv: 2302.04138 [astro-ph.EP].
Doyle, L. et al. (Oct. 2018). “Investigating the rotational phase of stellar flares on M dwarfs
using K2 short cadence data”. In: Monthly Notices of the Royal Astronomical Society 480.2,
pp. 2153–2164. DOI: 10.1093/mnras/sty1963. arXiv: 1807.08592 [astro-ph.SR].
Doyle, L. et al. (Oct. 2019). “Probing the origin of stellar flares on M dwarfs using TESS data
sectors 1-3”. In: Monthly Notices of the Royal Astronomical Society 489.1, pp. 437–445. DOI:
10.1093/mnras/stz2205. arXiv: 1908.02698 [astro-ph.SR].
Feinstein, Adina D. et al. (Nov. 2020). “Flare Statistics for Young Stars from a Convolutional
Neural Network Analysis of TESS Data”. In: The Astronomical Journal 160.5, 219, p. 219.
DOI: 10.3847/1538-3881/abac0a. arXiv: 2005.07710 [astro-ph.SR].
Fischer, W. J. et al. (July 2023). “Accretion Variability as a Guide to Stellar Mass Assembly”.
In: Protostars and Planets VII. Ed. by S. Inutsuka et al. Vol. 534. Astronomical Society of
the Pacific Conference Series, p. 355. DOI: 10 . 48550 / arXiv . 2203 . 11257. arXiv:
2203.11257 [astro-ph.SR].
Freund, S. et al. (Aug. 2022). “The stellar content of the ROSAT all-sky survey”. In: Astron-
omy & Astrophysics 664, A105, A105. DOI: 10.1051/0004- 6361/202142573. arXiv:
2205.12874 [astro-ph.SR].
Ge, Jian et al. (June 2022). “ET White Paper: To Find the First Earth 2.0”. In: arXiv e-prints,
arXiv:2206.06693, arXiv:2206.06693. DOI: 10 . 48550 / arXiv . 2206 . 06693. arXiv:
2206.06693 [astro-ph.IM].
Geron, Aurelien (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. "
O’Reilly Media, Inc."
Gershberg, R. E. (Nov. 1972). “Some results of the cooperative photometric observations of
the UV Cet-type flare stars in the years 1967 71”. In: Astrophysics and Space Science 19.1,
pp. 75–92. DOI: 10.1007/BF00643168.
Gershberg, R. E. et al. (Nov. 1999). “Catalogue and bibliography of the UV Cet-type flare
stars and related objects in the solar vicinity”. In: Astronomy and Astrophysics Supplement
Series 139, pp. 555–558. DOI: 10.1051/aas:1999407.
Gibbs, Aidan et al. (Apr. 2020). “EDEN: Sensitivity Analysis and Transiting Planet Detection
Limits for Nearby Late Red Dwarfs”. In: The Astronomical Journal 159.4, 169, p. 169. DOI:
10.3847/1538-3881/ab7926. arXiv: 2002.10017 [astro-ph.EP].
Gilbert, Emily A. et al. (Apr. 2022). “Flares, Rotation, and Planets of the AU Mic System
from TESS Observations”. In: The Astronomical Journal 163.4, 147, p. 147. DOI: 10.3847/
1538-3881/ac23ca. arXiv: 2109.03924 [astro-ph.EP].
Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep learning. MIT press.
Gryciuk, M. et al. (June 2017). “Flare Characteristics from X-ray Light Curves”. In: Solar
Physics 292.6, 77, p. 77. DOI: 10.1007/s11207-017-1101-8.
Gunther, Maximilian N. et al. (Feb. 2020). “Stellar Flares from the First TESS Data Release:
Exploring a New Sample of M Dwarfs”. In: The Astronomical Journal 159.2, 60, p. 60. DOI:
10.3847/1538-3881/ab5d3a. arXiv: 1901.00443 [astro-ph.EP].
Hawley, Suzanne L. and Bjorn R. Pettersen (Sept. 1991). “The Great Flare of 1985 April 12
on AD Leonis”. In: The Astrophysical Journal 378, p. 725. DOI: 10.1086/170474.
Hawley, Suzanne L. et al. (Dec. 2014). “Kepler Flares. I. Active and Inactive M Dwarfs”. In:
The Astrophysical Journal 797.2, 121, p. 121. DOI: 10.1088/0004- 637X/797/2/121.
arXiv: 1410.7779 [astro-ph.SR].
Hermes, J. J. et al. (June 2017). “When flux standards go wild: white dwarfs in the age of
Kepler”. In: Monthly Notices of the Royal Astronomical Society 468.2, pp. 1946–1952. DOI:
10.1093/mnras/stx567. arXiv: 1703.02048 [astro-ph.SR].
Hermes, J. J. et al. (June 2021). “8.9 hr Rotation in the Partly Burnt Runaway Stellar Remnant
LP 40-365 (GD 492)”. In: The Astrophysical Journal Letters 914.1, L3, p. L3. DOI: 10.3847/
2041-8213/ac00a8. arXiv: 2105.06480 [astro-ph.SR].
Hoerl, Arthur E. and Robert W. Kennard (1970). “Ridge Regression: Biased Estimation for
Nonorthogonal Problems”. In: Technometrics 12.1, pp. 55–67. ISSN: 00401706. URL: http:
//www.jstor.org/stable/1267351 (visited on 11/28/2023).
Howard, Ward S. and Meredith A. MacGregor (Feb. 2022). “No Such Thing as a Simple
Flare: Substructure and Quasi-periodic Pulsations Observed in a Statistical Sample of 20
s Cadence TESS Flares”. In: The Astrophysical Journal 926.2, 204, p. 204. DOI: 10.3847/
1538-4357/ac426e. arXiv: 2110.13155 [astro-ph.SR].
Howard, Ward S. et al. (Dec. 2023). “Characterizing the Near-infrared Spectra of Flares
from TRAPPIST-1 during JWST Transit Spectroscopy Observations”. In: The Astrophysi-
cal Journal 959.1, 64, p. 64. DOI: 10.3847/1538- 4357/acfe75. arXiv: 2310.03792
[astro-ph.EP].
Huang, Chung-Kai et al. (Mar. 2021). “The TAOS II Survey: Real-time Detection and Char-
acterization of Occultation Events”. In: Publications of the Astronomical Society of the Pacific
133.1021, 034503, p. 034503. DOI: 10.1088/1538-3873/abd4bc.
Jackman, James A. G. et al. (July 2021). “Stellar flares detected with the Next Generation
Transit Survey”. In: Monthly Notices of the Royal Astronomical Society 504.3, pp. 3246–3264.
DOI: 10.1093/mnras/stab979. arXiv: 2104.02648 [astro-ph.SR].
Jackman, James A. G. et al. (Mar. 2023). “Extending optical flare models to the UV: results
from comparing of TESS and GALEX flare observations for M Dwarfs”. In: Monthly
Notices of the Royal Astronomical Society 519.3, pp. 3564–3583. DOI: 10 . 1093 / mnras /
stac3135. arXiv: 2210.15688 [astro-ph.SR].
Jenkins, Jon M. et al. (Aug. 2016). “The TESS science processing operations center”. In: Soft-
ware and Cyberinfrastructure for Astronomy IV. Ed. by Gianluca Chiozzi and Juan C. Guz-
man. Vol. 9913. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference
Series, 99133E, 99133E. DOI: 10.1117/12.2233418.
Kingma, Diederik P. and Jimmy Ba (Dec. 2014). “Adam: A Method for Stochastic Opti-
mization”. In: arXiv e-prints, arXiv:1412.6980, arXiv:1412.6980. DOI: 10.48550/arXiv.
1412.6980. arXiv: 1412.6980 [cs.LG].
Kospal, A. et al. (July 2018). “Spots, Flares, Accretion, and Obscuration in the Pre-main-
sequence Binary DQ Tau”. In: The Astrophysical Journal 862.1, 44, p. 44. DOI: 10.3847/
1538-4357/aacafa. arXiv: 1806.01546 [astro-ph.SR].
Kowalski, Adam F. et al. (Feb. 2019). “The Near-ultraviolet Continuum Radiation in the
Impulsive Phase of HF/GF-type dMe Flares. I. Data”. In: The Astrophysical Journal 871.2,
167, p. 167. DOI: 10.3847/1538-4357/aaf058. arXiv: 1811.04021 [astro-ph.SR].
Krucker, Sam et al. (Oct. 2011). “High-resolution Imaging of Solar Flare Ribbons and Its Im-
plication on the Thick-target Beam Model”. In: The Astrophysical Journal 739.2, 96, p. 96.
DOI: 10.1088/0004-637X/739/2/96.
Lafarga, M. et al. (Aug. 2021). “The CARMENES search for exoplanets around M dwarfs.
Mapping stellar activity indicators across the M dwarf domain”. In: Astronomy & Astro-
physics 652, A28, A28. DOI: 10.1051/0004- 6361/202140605. arXiv: 2105.13467
[astro-ph.SR].
LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (May 2015). “Deep learning”. In: Nature
521.7553, pp. 436–444. DOI: 10.1038/nature14539.
Leighton, Robert B. (Apr. 1969). “A Magneto-Kinematic Model of the Solar Cycle”. In: The
Astrophysical Journal 156, p. 1. DOI: 10.1086/149943.
Lemaitre, Guillaume, Fernando Nogueira, and Christos K. Aridas (2017). “Imbalanced-
learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learn-
ing”. In: Journal of Machine Learning Research 18.17, pp. 1–5. URL: http://jmlr.org/
papers/v18/16-365.
Lightkurve Collaboration et al. (Dec. 2018). Lightkurve: Kepler and TESS time series analysis in
Python. Astrophysics Source Code Library, record ascl:1812.013.
Lin, C. L. et al. (Mar. 2019). “A Comparative Study of the Magnetic Activities of Low-mass
Stars from M-type to G-type”. In: The Astrophysical Journal 873.1, 97, p. 97. DOI: 10 .
3847/1538-4357/ab041c.
Lin, Chia-Lung et al. (July 2021). “EDEN: Flare Activity of the Nearby Exoplanet-hosting
M Dwarf Wolf 359 Based on K2 and EDEN Light Curves”. In: The Astronomical Journal
162.1, 11, p. 11. DOI: 10.3847/1538-3881/abf933.
Lin, Chia-Lung et al. (Sept. 2023). “Mass Accretion, Spectral, and Photometric Properties of
T Tauri Stars in Taurus Based on TESS and LAMOST”. In: The Astronomical Journal 166.3,
82, p. 82. DOI: 10.3847/1538-3881/ace322. arXiv: 2307.11207 [astro-ph.SR].
Maehara, Hiroyuki et al. (May 2012). “Superflares on solar-type stars”. In: Nature 485.7399,
pp. 478–481. DOI: 10.1038/nature11063.
Medina, Amber A. et al. (Dec. 2020). “Flare Rates, Rotation Periods, and Spectroscopic Ac-
tivity Indicators of a Volume-complete Sample of Mid- to Late-M Dwarfs within 15 pc”.
In: The Astrophysical Journal 905.2, 107, p. 107. DOI: 10 . 3847 / 1538 - 4357 / abc686.
arXiv: 2010.15635 [astro-ph.SR].
Osten, Rachel A. et al. (Mar. 2005). “From Radio to X-Ray: Flares on the dMe Flare Star
EV Lacertae”. In: The Astrophysical Journal 621.1, pp. 398–416. DOI: 10.1086/427275.
arXiv: astro-ph/0411236 [astro-ph].
Paegert, Martin et al. (Aug. 2021). “TESS Input Catalog versions 8.1 and 8.2: Phantoms in the
8.0 Catalog and How to Handle Them”. In: arXiv e-prints, arXiv:2108.04778, arXiv:2108.04778.
DOI: 10.48550/arXiv.2108.04778. arXiv: 2108.04778 [astro-ph.EP].
Parker, E. N. (July 1963). “The Solar-Flare Phenomenon and the Theory of Reconnection
and Annihiliation of Magnetic Fields.” In: The Astrophysical Journal Supplement Series 8,
p. 177. DOI: 10.1086/190087.
Parker, Eugene N. (Sept. 1955). “Hydromagnetic Dynamo Models.” In: The Astrophysical
Journal 122, p. 293. DOI: 10.1086/146087.
Pedregosa, F. et al. (2011). “Scikit-learn: Machine Learning in Python”. In: Journal of Machine
Learning Research 12, pp. 2825–2830.
Pelisoli, Ingrid et al. (Sept. 2022). “Discovery and analysis of three magnetic hot subdwarf
stars: evidence for merger-induced magnetic fields”. In: Monthly Notices of the Royal As-
tronomical Society 515.2, pp. 2496–2510. DOI: 10.1093/mnras/stac1069. arXiv: 2204.
06575 [astro-ph.SR].
Petrucci, Romina P. et al. (Jan. 2024). “Exploring the photometric variability of ultra-cool
dwarfs with TESS”. In: Monthly Notices of the Royal Astronomical Society 527.3, pp. 8290–
8304. DOI: 10.1093/mnras/stad3720. arXiv: 2311.13591 [astro-ph.SR].
Pitkin, M. et al. (Dec. 2014). “A Bayesian method for detecting stellar flares”. In: Monthly
Notices of the Royal Astronomical Society 445.3, pp. 2268–2284. DOI: 10 . 1093 / mnras /
stu1889. arXiv: 1406.1712 [astro-ph.SR].
Pizzocaro, D. et al. (Aug. 2019). “Activity and rotation of the X-ray emitting Kepler stars”.
In: Astronomy & Astrophysics 628, A41, A41. DOI: 10.1051/0004-6361/201731674.
arXiv: 1906.05587 [astro-ph.SR].
Pizzolato, N. et al. (Jan. 2003). “The stellar activity-rotation relationship revisited: Depen-
dence of saturated and non-saturated X-ray emission regimes on stellar mass for late-
type dwarfs”. In: Astronomy & Astrophysics 397, pp. 147–157. DOI: 10 . 1051 / 0004 -
6361:20021560.
Priest, E. R. (Jan. 1999). “Heating the Solar Corona by Magnetic Reconnection”. In: Astro-
physics and Space Science 264, pp. 77–100. DOI: 10.1023/A:1002440524834.
Priest, Eric (Feb. 2023). “Magnetic reconnection on the Sun: ESPD Senior Prize Lecture”. In:
Advances in Space Research 71.4, pp. 1856–1865. DOI: 10.1016/j.asr.2022.03.028.
Prsa, A. et al. (Aug. 2022). “VizieR Online Data Catalog: TESS Eclipsing Binary stars. I. Sec-
tors 1-26 (Prsa+, 2022)”. In: VizieR Online Data Catalog, J/ApJS/258/16, J/ApJS/258/16.
DOI: 10.26093/cds/vizier.22580016.
Pye, J. P. et al. (Sept. 2015). “A survey of stellar X-ray flares from the XMM-Newton serendip-
itous source catalogue: HIPPARCOS-Tycho cool stars”. In: Astronomy & Astrophysics 581,
A28, A28. DOI: 10.1051/0004-6361/201526217. arXiv: 1506.05289 [astro-ph.SR].
Rackham, Benjamin V., Daniel Apai, and Mark S. Giampapa (Feb. 2018). “The Transit Light
Source Effect: False Spectral Features and Incorrect Densities for M-dwarf Transiting
Planets”. In: The Astrophysical Journal 853.2, 122, p. 122. DOI: 10.3847/1538- 4357/
aaa08c. arXiv: 1711.05691 [astro-ph.EP].
Raetz, St. et al. (May 2020). “Rotation-activity relations and flares of M dwarfs with K2 long-
and short-cadence data”. In: Astronomy & Astrophysics 637, A22, A22. DOI: 10.1051/
0004-6361/201937350. arXiv: 2003.11937 [astro-ph.SR].
Rauer, H. et al. (Nov. 2014). “The PLATO 2.0 mission”. In: Experimental Astronomy 38.1-2,
pp. 249–330. DOI: 10.1007/s10686-014-9383-4. arXiv: 1310.0696 [astro-ph.EP].
Reiners, A., G. Basri, and M. Browning (Feb. 2009). “Evidence for Magnetic Flux Saturation
in Rapidly Rotating M Stars”. In: The Astrophysical Journal 692.1, pp. 538–545. DOI: 10.
1088/0004-637X/692/1/538. arXiv: 0810.5139 [astro-ph].
Ricker, George R. et al. (Jan. 2015). “Transiting Exoplanet Survey Satellite (TESS)”. In: Journal
of Astronomical Telescopes, Instruments, and Systems 1, 014003, p. 014003. DOI: 10.1117/
1.JATIS.1.1.014003.
Sanchez, Sabrina, Alexandre Fournier, and Julien Aubert (Jan. 2014). “The Predictability
of Advection-dominated Flux-transport Solar Dynamo Models”. In: The Astrophysical
Journal 781.1, 8, p. 8. DOI: 10 . 1088 / 0004 - 637X / 781 / 1 / 8. arXiv: 1306 . 4561
[astro-ph.SR].
Schaefer, Bradley E., Jeremy R. King, and Constantine P. Deliyannis (Feb. 2000). “Superflares
on Ordinary Solar-Type Stars”. In: The Astrophysical Journal 529.2, pp. 1026–1030. DOI:
10.1086/308325. arXiv: astro-ph/9909188 [astro-ph].
Segura, Antigona et al. (Sept. 2010). “The Effect of a Strong Stellar Flare on the Atmospheric
Chemistry of an Earth-like Planet Orbiting an M Dwarf”. In: Astrobiology 10.7, pp. 751–
771. DOI: 10.1089/ast.2009.0376. arXiv: 1006.0022 [astro-ph.EP].
Shibayama, Takuya et al. (Nov. 2013a). “Superflares on Solar-type Stars Observed with
Kepler. I. Statistical Properties of Superflares”. In: The Astrophysical Journal Supplement
Series 209.1, 5, p. 5. DOI: 10 . 1088 / 0067 - 0049 / 209 / 1 / 5. arXiv: 1308 . 1480
[astro-ph.SR].
— (Nov. 2013b). “Superflares on Solar-type Stars Observed with Kepler. I. Statistical Prop-
erties of Superflares”. In: The Astrophysical Journal Supplement Series 209.1, 5, p. 5. DOI:
10.1088/0067-0049/209/1/5. arXiv: 1308.1480 [astro-ph.SR].
Shrestha, Ajay and Ausif Mahmood (2019). “Review of Deep Learning Algorithms and
Architectures”. In: IEEE Access 7, pp. 53040–53065. DOI: 10 . 1109 / ACCESS . 2019 .
2912200.
Skumanich, A. (Feb. 1972). “Time Scales for Ca II Emission Decay, Rotational Braking, and
Lithium Depletion”. In: The Astrophysical Journal 171, p. 565. DOI: 10.1086/151310.
Spergel, D. et al. (Mar. 2015). “Wide-Field InfrarRed Survey Telescope-Astrophysics Fo-
cused Telescope Assets WFIRST-AFTA 2015 Report”. In: arXiv e-prints, arXiv:1503.03757,
arXiv:1503.03757. DOI: 10.48550/arXiv.1503.03757. arXiv: 1503.03757 [astro-ph.IM].
Stassun, Keivan G. et al. (Oct. 2019). “The Revised TESS Input Catalog and Candidate Tar-
get List”. In: The Astronomical Journal 158.4, 138, p. 138. DOI: 10.3847/1538- 3881/
ab3467. arXiv: 1905.10694 [astro-ph.SR].
Sullivan, Peter W. et al. (Aug. 2015). “The Transiting Exoplanet Survey Satellite: Simula-
tions of Planet Detections and Astrophysical False Positives”. In: The Astrophysical Jour-
nal 809.1, 77, p. 77. DOI: 10 . 1088 / 0004 - 637X / 809 / 1 / 77. arXiv: 1506 . 03845
[astro-ph.EP].
Tibshirani, Robert (1996). “Regression Shrinkage and Selection via the Lasso”. In: Journal
of the Royal Statistical Society. Series B (Methodological) 58.1, pp. 267–288. ISSN: 00359246.
URL: http://www.jstor.org/stable/2346178 (visited on 11/28/2023).
Tofflemire, Benjamin M. et al. (Jan. 2017). “Accretion and Magnetic Reconnection in the
Classical T Tauri Binary DQ Tau”. In: The Astrophysical Journal 835.1, 8, p. 8. DOI: 10.
3847/1538-4357/835/1/8. arXiv: 1612.02431 [astro-ph.SR].
Toriumi, Shin and Vladimir S. Airapetian (Mar. 2022). “Universal Scaling Laws for Solar
and Stellar Atmospheric Heating”. In: The Astrophysical Journal 927.2, 179, p. 179. DOI:
10.3847/1538-4357/ac5179. arXiv: 2202.01232 [astro-ph.SR].
Tu, Zuo-Lin et al. (Apr. 2021). “Superflares, Chromospheric Activities, and Photometric
Variabilities of Solar-type Stars from the Second-year Observation of TESS and Spec-
tra of LAMOST”. In: The Astrophysical Journal Supplement Series 253.2, 35, p. 35. DOI:
10.3847/1538-4365/abda3c. arXiv: 2101.02901 [astro-ph.SR].
Tu, Zuo-Lin et al. (Aug. 2022). “Convolutional Neural Networks for Searching Superflares
from Pixel-level Data of the Transiting Exoplanet Survey Satellite”. In: The Astrophysical
Journal 935.2, 90, p. 90. DOI: 10 . 3847 / 1538 - 4357 / ac7f2c. arXiv: 2204 . 04019
[astro-ph.SR].
Tuomi, M. et al. (June 2019). “Frequency of planets orbiting M dwarfs in the Solar neigh-
bourhood”. In: arXiv e-prints, arXiv:1906.04644, arXiv:1906.04644. DOI: 10.48550/arXiv.
1906.04644. arXiv: 1906.04644 [astro-ph.EP].
Vida, Krisztian and Rachael M. Roettenbacher (Sept. 2018). “Finding flares in Kepler data
using machine-learning tools”. In: Astronomy & Astrophysics 616, A163, A163. DOI: 10.
1051/0004-6361/201833194. arXiv: 1806.00334 [astro-ph.SR].
Vida, Krisztian et al. (Oct. 2019). “Flaring Activity of Proxima Centauri from TESS Observa-
tions: Quasiperiodic Oscillations during Flare Decay and Inferences on the Habitability
of Proxima b”. In: The Astrophysical Journal 884.2, 160, p. 160. DOI: 10 . 3847 / 1538 -
4357/ab41f5. arXiv: 1907.12580 [astro-ph.SR].
Vida, Krisztian et al. (Aug. 2021). “Finding flares in Kepler and TESS data with recurrent
deep neural networks”. In: Astronomy & Astrophysics 652, A107, A107. DOI: 10.1051/
0004-6361/202141068. arXiv: 2105.11485 [astro-ph.SR].
Wright, Nicholas J. et al. (Dec. 2011). “The Stellar-activity-Rotation Relationship and the
Evolution of Stellar Dynamos”. In: The Astrophysical Journal 743.1, 48, p. 48. DOI: 10 .
1088/0004-637X/743/1/48. arXiv: 1109.4634 [astro-ph.SR].
Wu, Chi-Ju, Wing-Huen Ip, and Li-Ching Huang (Jan. 2015). “A Study of Variability in
the Frequency Distributions of the Superflares of G-type Stars Observed by the Kepler
Mission”. In: The Astrophysical Journal 798.2, 92, p. 92. DOI: 10.1088/0004-637X/798/
2/92.
Xing, Keyu et al. (Apr. 2024). “Flare Hunting in Hot Subdwarf and White Dwarf Stars from
Cycles 1–5 of TESS Photometry”. In: The Astrophysical Journal Supplement Series 271.2, 57,
p. 57. DOI: 10.3847/1538-4365/ad2ddd. arXiv: 2402.16018 [astro-ph.SR].
Yadav, Rakesh K. et al. (Jan. 2015). “Formation of starspots in self-consistent global dynamo
models: Polar spots on cool stars”. In: Astronomy & Astrophysics 573, A68, A68. DOI: 10.
1051/0004-6361/201424589. arXiv: 1407.3187 [astro-ph.SR].
Yang, Huiqin and Jifeng Liu (Apr. 2019). “The Flare Catalog and the Flare Activity in the
Kepler Mission”. In: The Astrophysical Journal Supplement Series 241.2, 29, p. 29. DOI: 10.
3847/1538-4365/ab0d28. arXiv: 1903.01056 [astro-ph.SR].
Yang, Zilu et al. (Jan. 2023). “Properties of flare events based on light curves from the TESS
survey”. In: Astronomy & Astrophysics 669, A15, A15. DOI: 10 . 1051 / 0004 - 6361 /
202142710.
Zechmeister, M. and M. Kurster (Mar. 2009). “The generalised Lomb-Scargle periodogram.
A new formalism for the floating-mean and Keplerian periodograms”. In: Astronomy
& Astrophysics 496.2, pp. 577–584. DOI: 10 . 1051 / 0004 - 6361 : 200811296. arXiv:
0901.2573 [astro-ph.IM].
Zhang, Zhanbo et al. (Oct. 2018). “The Near-infrared Transmission Spectra of TRAPPIST-1
Planets b, c, d, e, f, and g and Stellar Contamination in Multi-epoch Transit Spectra”. In:
The Astronomical Journal 156.4, 178, p. 178. DOI: 10.3847/1538-3881/aade4f. arXiv:
1802.02086 [astro-ph.EP].
指導教授 葉永烜(Wing-Huen Ip) 審核日期 2024-12-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明