博碩士論文 109683003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.116.42.179
姓名 鄭景中(Ching-Chung Cheng)  查詢紙本館藏   畢業系所 太空科學與工程學系
論文名稱 全大氣模型熱氣層中性大氣資料同化
(THERMOSPHERIC NEUTRAL DENSITY DATA ASSIMILATION BASED ON THE WHOLE ATMOSPHERE MODEL)
相關論文
★ 台灣地區1996年散塊E層之變化★ 2000年4月6日磁暴研究
★ 利用GPS觀測與IRI 模擬研究1997及2000年台灣經度赤道異常峰之變化★ 台灣地區1996及2000年電離層散狀F層與全球定位系統相位擾亂之比較
★ 電離層地震前兆之研究★ 電離層波動垂直能量傳播之研究
★ 南美洲磁赤道地區散狀F層於太陽活動極大期之研究★ 台灣地區中界層於第22-23太陽週期間之特性研究
★ 利用全球定位系統觀測電離層地震前兆★ 臺灣地區電離層季節異常與太陽活動之相關性研究
★ 台灣地區地震與閃電之研究★ 台灣地區地震前之電離層電子濃度異常
★ 磁暴時低緯度電離層變化★ 電離層赤道異常與赤道電噴流
★ 日出前及日落後電離層高度變化之研究★ 電離層探測儀與全球定位系統聯合觀測電離層F層電漿密度不規則體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 太空天氣的擾動會使中性粒子濃度產生劇烈變化,影響熱氣層與電離層之耦合作用,並造成通訊與導航系統的影響。然而,目前的大氣模型缺乏對高層大氣中性氣體準確預報的能力。此篇論文基於Iterative Driver Estimation and Assimilation (IDEA)資料同化技術改善全大氣模型(Whole Atmosphere Model, WAM)中性氣體濃度預報能力。然而由於2003 年11月20日發生之磁暴事件之強度,WAM模型設定需做部分修改。第一個是允許輸入模型之planetary K (Kp)指數超過9,第二個是修改模型內部之太陽風風速之經驗模式。調整後的WAM,利用Challenging Mini-Satellite Payload (CHAMP) 衛星之中性粒子濃度資料進行資料同化後,其預報之中性粒子濃度準確度顯著提升,與CHAMP以及另一獨立的觀測資料Global Ultraviolet Imager (GUVI) limb-scan airglow observations aboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED)相吻合。在高度270至320公里範圍內,IDEA-WAM與GUVI誤差(root-mean-square errors, RMSe)最小,揭示了GUVI資料在此高度範圍的實用性。為了探討未來類似GUVI limb scan儀器資料的可用性,我們將GUVI的觀測資料與WAM模型進行同化。結果顯示,同化後的粒子濃度與觀測值接近,於地磁寧靜期,該濃度與CHAMP資料吻合。於磁暴期間,同化後的表現與CHAMP資料雖有誤差,但相較於同化前的模式預報有顯著提升。由於衛星觀測之空間與時間範圍的限制,High Accuracy Satellite Drag Model (HASDM) 被視為是穩定的全球尺度且長期的中性大氣濃度資料。故本論文嘗試將HASDM與WAM模式進行資料同化。其結果顯示,與HASDM之同化可有效消除模式偏差(bias),並且可以期望未來應用在校正不同太陽活動下的模式誤差。
儘管經由IDEA資料同化技術消除了大部分模式誤差,研究結果仍顯示,在磁暴期間,同化後的模式存在少量誤差。該誤差推測是由於高緯度至極區的由極區對流(convection)產生之濃度空洞結構(density hole structure)位置並未準確地被模式估算,進而造成模式低估粒子濃度。然而,在未來仍然需要更進一步的研究以解決該問題。此外,為了更準確捕捉磁暴期間熱氣層之快速變化並降低了兩個參數之間的互相關性,我們亦嘗試調整Kp之同化窗格由3個小時降低至1.5小時,而F10.7則保持24小時不變。結果顯示,同化後的模式偏差有效降低,然而誤差及標準差皆變大,暗示了增加時間解析度的同時,降低了IDEA系統的可觀測性(observability)。另一方面,為避免Kp與太陽風之經驗關係(empirical relationship)所產生之誤差,以及未來銜接至預報系統時所可能產生的誤差,我們嘗試使用solar heating及Joule heating scale factors做為IDEA系統的估量參數(estimators),並讓模式輸入實際觀測的太陽風驅動參數(observed solar wind drivers),結果顯示該scale factors可同樣應用於IDEA系統之中。
本篇論文證明IDEA資料同化技術可以有效校正地磁寧靜與擾動期的WAM中性粒子濃度,並證明CHAMP和GUVI皆可應用於資料同化技術上,HASDM資料則可以有效消除模式偏差(bias)。本文對WAM模式的校正將會對熱氣層與電離層耦合作用有更進一步的了解,提升全大氣現報與預報能力,並提供更準確的低軌衛星軌道追蹤與預測能力。
摘要(英) Space weather disturbances lead to significant changes in the neutral density and have a substantial impact on the thermosphere-ionosphere system due to the interaction between neutral particles and plasma. These subsequently affect the satellite drag, which plays an important role in satellite orbit maintenance, collision avoidance, and satellite traffic management. However, we still lack the ability to reliably predict the dynamic density of the upper atmosphere. The Iterative Driver Estimation and Assimilation (IDEA) data assimilation technique was employed with the Whole Atmosphere Model (WAM) to enhance neutral density specification in the upper thermosphere. Given the intensity of the November 2003 storm, two changes were necessary in WAM prior to applying IDEA. The first was to allow the Kp geomagnetic index to exceed 9 and the second was to modify the relationship between Kp and the solar wind parameters used to drive the model. With these changes in place, results show that WAM ingesting the accelerometer estimates of neutral density from the Challenging Mini-Satellite Payload (CHAMP) satellite effectively captured the thermospheric neutral density at the CHAMP’s altitude. Furthermore, data assimilation outputs were also validated against an independent neutral density data set from the Global Ultraviolet Imager (GUVI) limb-scan daytime airglow observations aboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite, and the strong agreement within 270-320 km altitude shows the utility of the IDEA technique and a potential use case of GUVI data set in the IDEA system. An experiment was conducted in which WAM ingested GUVI-derived neutral density at 300 km, and IDEA-GUVI data assimilation outputs closely matched GUVI observations throughout the storm period, while another data source should be incorporated to supplement the information. Given the limited spatial and temporal coverage of satellite measurements, High Accuracy Satellite Drag Model (HASDM) density database was employed for robust, global-scale, and long-term data integration into the IDEA scheme. Results show that the IDEA-HASDM effectively eliminated the model bias and brought the model density into the agreement with CHAMP during the quiet time. The prominent discrepancy, however, between WAM and CHAMP densities arises from the density dips at high latitudes during the peak of the storm. This discrepancy might result from different locations of observed and modeled high-latitude density hole structures, while further investigations are required to address this issue in the future. Additionally, to capture the rapid changes in the thermosphere, a reduced Kp estimation window from 3 to 1.5 hours was experimented. Meanwhile, the estimated F10.7 value remained unchanged at 24 hr in order to limit the correlation between Kp and F10.7 corrections. While this adjustment significantly reduced the model bias, it resulted in worse root-mean-square errors and standard deviation, which suggests that estimating six 1.5-hour Kp values instead of three 3-hour Kp lowers the observability of these interrelated and correlated parameters. For the future transition from a nowcasting to a forecasting system, solar and Joule heating scale factors were used as the estimators in IDEA, allowing the model to ingest the observed solar wind drivers. The good agreement between IDEA and CHAMP shows that the two scale factors can equally be integrated in the IDEA system.
This dissertation demonstrates the utility of the IDEA scheme based on WAM and that using various data sources, such as neutral density estimates from accelerometers and airglow limb scan measurement and HASDM database. The improvements made to WAM can further enhance our understanding of the thermosphere-ionosphere coupling, bolster the whole atmosphere nowcasting and forecasting capability, and improve the accuracy of LEO satellite orbit determination.
關鍵字(中) ★ 太空天氣
★ 熱氣層
★ 中性大氣
★ 資料同化
★ 全大氣模型
★ 磁暴
關鍵字(英) ★ thermosphere
★ neutral density
★ IDEA data assimilation
★ whole atmosphere model
★ CHAMP
★ TIMED/GUVI
★ HASDM
★ geomagnetic storm
論文目次 Table of Contents
摘要 i
Abstract iii
Acknowledgement v
Table of Content vi
List of Figures vii
List of Tables x

Chapter 1. Introduction 1
1.1 Motivation and objective 1
1.2 Thermosphere and ionosphere 3
Chapter 2. Methodology and Dataset 10
2.1 Whole atmosphere model (WAM) 10
2.2 Iterative driver estimation and assimilation (IDEA) 15
2.3 Satellite measurements and HASDM neutral density database 25
Chapter 3. Thermospheric Neutral Density Data Assimilation 38
3.1 WAM vs CHAMP neutral density observations 40
3.2 Assimilation experiments design 44
3.3 Data assimilation in the quiet time 47
3.4 Data assimilation during the geomagnetic disturbed period 49
3.5 IDEA neutral density evaluation and validation 55
3.6 Data assimilation using TIMED/GUVI and HASDM densities 66
Chapter 4. Discussion 79
4.1 Density dips anomalies at high latitudes 81
4.2 Changing the data assimilation windows 85
4.3 IDEA data assimilation using solar heating/Joule heating scaling 88
4.4 Future applications 92
Chapter 5. Summary and Conclusion 95
Reference 99
參考文獻 Akmaev, R. A. (2001), Simulation of large-scale dynamics in the mesosphere and lower thermosphere with the Doppler-spread parameterization of gravity waves: 1. Implementation and zonal mean climatologies, J. Geophys. Res., 106, 1193–1204.
Akmaev, R. A., T. J. Fuller-Rowell, F. Wu, J. M. Forbes, X. Zhang, A. F. Anghel, M. D. Iredell, S. Moorthi, and H.-M. Juang (2008). Tidal variability in the lower thermosphere: Comparison of Whole Atmosphere Model (WAM) simulations with observations from TIMED. Geophys. Res. Lett., (35), L03810, doi: 10.1029/2007GL032584
Araki, T. (1994). A physical model of the geomagnetic sudden commencement. In M. Engebretson, K. Takahashi, & M. Scholer (Eds.), Solar wind sources of magnetospheric ultra-low-frequency waves (p. 183).
Berger, T. E., Holzinger, M. J., Sutton, E. K., & Thayer, J. P. (2020). Flying through uncertainty. Space Weather, 18(1), e2019SW002373. https://doi.org/10.1029/2019SW002373
Bortnik, J., R. M. Thorne, T. P. O’Brien, J. C. Green, R. J. Strangeway, Y. Y. Shprits, and D. N. Baker (2006), Observation of two distinct, rapid loss mechanisms during the 20 November 2003 radiation belt dropout event, J. Geophys. Res., 111, A12216, doi:10.1029/2006JA011802
Bowman, B., Tobiska, W. K., Marcos, F., Huang, C., Lin, C., & Burke, W. (2008). A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices. In AIAA/AAS Astrodynamics specialist conference and exhibit (p. 6438).
Bruinsma, S., D. Tamagnan, and R. Biancale (2004), Atmospheric densities derived from CHAMP/STAR accelerometer observations, Planet. Space Sci. 52, 297–312. https://doi.org/10.1016/j.pss.2003.11.004
Bruinsma, S., J. M. Forbes, R. S. Nerem, and X. Zhang (2006), Thermosphere density response to the 20–21 November 2003 solar and geomagnetic storm from CHAMP and GRACE accelerometer data, J. Geophys. Res., 111, A06303, doi:10.1029/2005JA011284
Bussy?Virat, C. D., Ridley, A. J., & Getchius, J. W. (2018). Effects of uncertainties in the atmospheric density on the probability of collision between space objects. Space Weather, 16, 519–537. https://doi.org/10.1029/2017SW001705
Cheng, C.-C., Liu, J.-Y., Lin, C. C. H., & Cheng, Y.-C. (2022). Daily dynamo electric fields derived by using equatorial ionization anomaly crests of the total electron content. Space Weather, 20, e2022SW003073. https://doi.org/10.1029/2022SW003073
Cheng, C. C., Liu, J. Y., Chang, F. Y. et al. R/esponse of ion velocities of daytime ionospheric wavenumber-4 to solar activity observed by ROCSAT-1 and DEMETER. Terr Atmos Ocean Sci 35, 8 (2024). https://doi.org/10.1007/s44195-024-00068-4
Christensen, A. B., et al. (2003), Initial observations with the Global Ultraviolet Imager (GUVI) in the NASA TIMED satellite mission, J. Geophys. Res., 108(A12), 1451, doi:10.1029/2003JA009918
Codrescu, S. M., Codrescu, M. V.,& Fedrizzi, M. (2018). An Ensemble Kalman Filter for the thermosphere-ionosphere. Space Weather, 16, 57–68. https://doi.org/10.1002/2017SW001752
Codrescu, M. V., Stefan M. Codrescu, & Mariangel Fedrizzi (2022), Storm time neutral density assimilation in the thermosphere ionosphere with TIDA. J. Space Weather Space Clim. 12 16. https://doi.org/10.1051/swsc/2022011
Cole, K. D. (1962). Joule heating of the upper atmosphere, Australian J. Phys. 15, 223-235.
Davis, C. J., Wild, M. N., Lockwood, M., and Tulunay, Y. K. (1997). Ionospheric and geomagnetic responses to changes in IMF Bz: a superposed epoch study, Ann. Geophys., 15, 217–230, SRef-ID: 1432-0576/ag/1997-15-217.
Doornbos Eelco, Jose van den IJssel, Hermann Luhr, Matthias Forster and Georg Koppenwallner (2010). Neutral density and crosswind determination from arbitrarily oriented multiaxis accelerometers on satellites. J. Spacecr. Rock. 47 (4), 580–589. https://doi.org/10.2514/1.48114.
Dudok de Wit, T., Bruinsma, S., & Shibasaki, K. (2014). Synoptic radio observations as proxies for upper atmosphere modelling. Journal of Space Weather and Space Climate, 4(27), A06. https://doi.org/10.1051/swsc/2014003
Emmert, J. T., Jones, M. Jr., Siskind, D.E., Drob, D. P., Picone, J. M., Stevens,M. H., et al. (2022). NRLMSIS 2.1:An empirical model of nitric oxide incorporated into MSIS. Journal of Geophysical Research: Space Physics,127, e2022JA030896. https://doi.org/10.1029/2022JA030896
Fejer B. G., J. W. Jensen, and S. Y. Su (2008), Quiet time equatorial F region vertical plasma drift model derived from ROCSAT-1 observations, Journal of Geophysical Research, VOL. 113, A05304, doi:10.1029/2007JA012801
Fiori, R. A. D., Boteler, D. H., & Gillies, D. M. (2014). Assessment of GIC risk due to geomagnetic sudden commencements and identification of the current systems responsible. Space Weather, 12(1), 76–91. https://doi.org/10.1002/2013SW000967
Fok, M.?C., T. E. Moore, S. P. Slinker, J. A. Fedder, D. C. Delcourt, M. Nose, and S.?H. Chen (2011), Modeling the superstorm in November 2003, J. Geophys. Res., 116, A00J17, doi:10.1029/2010JA015720.
Forbes, J.M., R. Gonzalez, F.A. Marcos, D. Revelle, and H. Parish, Magnetic storm response of the lower therrmosphere, J. Geophys. Res., 101,2313, (1996).
Forbes, J.M., S.E. Palo, and F.A. Marcos, Longitude structure of thermospheric density, J. Geophys. Res., 103, in press, (1998).
Foster, J., Holt, J. M., Musgrove, R., & Evans, D. (1986). Ionospheric convection associated with discrete levels of particle precipitation. Geo-physical Research Letters, 13(7), 656–659. https://doi.org/10.1029/GL013i007p00656
Foster, J. C., Coster, A. J., Erickson, P. J., Holt, J. M., Lind, F. D., Rideout, W., et al. (2005). Multiradar observations of the polar tongue of ioni-zation. Journal of Geophysical Research, 110(A9). doi:10.1029/2004JA010928.
Fuller-Rowell, T. J., and D. Rees (1980), A three-dimensional time-dependent global model of the thermosphere, J. Atmos. Sci., 37, 2546– 2567.
Fuller-Rowell, T. J., D. Rees, S. Quegan, R. J. Moffett, M. V. Codrescu, and G. H. Millward (1996), A coupled thermosphere ionosphere model (CTIM), in Handbook of Ionospheric Models, STEP Report, edited by R. W. Schunk, pp. 217– 238, Elsevier, New York.
Fuller-Rowell, T. J., Matsuo, T., Codrescu, M., & Marcos, F. (1999). Modeling thermospheric neutral density waves and holes in response to high latitude forcing. Advances in Space Research, 24(11), 1447–1458. https://doi.org/10.1016/S0273-1177(99)00705-X
Gardner, L. C., Schunk, R. W., Scherliess, L., Eccles, V., Basu, S., & Valladeres, C. (2018). Modeling the midlatitude ionosphere storm-enhanced density distribution with a data assimilation model. Space Weather, 16. https://doi.org/10.1029/2018SW001882
Gjerloev, J. W., & Hoffman, R. A. (2001). The convection electric field in auroral substorms. Journal of Geophysical Research, 106(A7), 12919–12931. https://doi.org/10.1029/1999JA000240
Hagan, M. E., A. Maute, R. G. Roble, A. D. Richmond, T. J. Immel, and S. L. England (2007), Connections between deep tropical clouds and the Earth’s ionosphere, Geophysical Research Letters, 34, L20109, doi:10.1029/2007GL030142
Han, J., and H.-L. Pan (2011). Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Wea. Forecasting, 26, 520–533, doi:10.1175/WAF-D-10-05038.1
Hedin, A.E., Spencer, N.W., Mayr, H.G. The semidiurnal and terdiurnal tides in the equatorial thermosphere from AE-E measurements. J. Geophys. Res. 85, 1787–1791, 1980.
Hennessy, B.; Rutten, M.; Tingay, S.; Summers, A.; Gustainis, D.; Crosse, B.; Sokolowski, M. Establishing the Capabilities of the MurchisonWidefield Array as a Passive Radar for the Surveillance of Space. Remote Sens. 2022, 14, 2571. https://doi.org/10.3390/rs14112571
Hinteregger, H. E., K. Fukui, and B. R. Gilson (1981), Observational, reference, and model data on solar EUV from measurements on AE-E, Geophys. Res. Lett., 8, 1147–1150. https://doi.org/10.1029/GL008i011p01147
Immel T. J., E. Sagawa, S. L. England, S. B. Henderson, M. E. Hagan, S. B. Mende, H. U. Frey, C. M. Swenson, and L. J. Paxton (2006), Control of equatorial ionospheric morphology by atmospheric tides, Geophysical Research Letters, vol. 33, L15108, doi:10.1029/2006GL026161
Jenkins, R. W., and Paghis, I. (1963). Criteria for the association of solar flares with geomagnetic disturbances, Can. J. Phys. 41, 1056-1075.
Juang, H.-M. H. (2011). A multiconserving discretization with enthalpy as a thermodynamic prognostic variable in generalized hybrid vertical coordinates for the NCEP Global Forecast System. Mon. Wea. Rev., 139, 1583–1607, doi:10.1175/2010MWR3295.1
Juang, H.-M. H. (2014): A discretization of deep-atmospheric nonhydrostatic dynamics on generalized hybrid vertical coordinates for NCEP global spectral model. NCEP Office Note 477, 39 pp., http://www.lib.ncep.noaa.gov/ncepofficenotes/files/on477.pdf
Kakinami Y., C. H. Lin, J. Y. Liu, M. Kamogawa, S. Watanabe, and M. Parrot (2011), Daytime longitudinal structures of electron density and temperature in the topside ionosphere observed by the Hinotori and DEMETER satellites, Journal of Geophysical Research Space Physics, VOL. 116, A05316, doi:10.1029/2010JA015632
Knipp, D., Kilcommons, L., Hunt, L., Mlynczak, M., Pilipenko, V., Bowman, B., Deng, Y., & Drake, K. (2013). Thermospheric damping response to sheath-enhanced geospace storms. Geophysical Research Letters, 40, 1263–1267. https://doi.org/10.1002/grl.50197
Kockarts, G., 1980. Nitric oxide cooling in the terrestrial atmosphere. Geophys. Res. Lett. 7 (2), 137–140.
Lacey, T. (1998), Tutorial: the Kalman Filter 11.1 Introduction 11.2 Mean Squared Error. https://api.semanticscholar.org/CorpusID:48574040
Lei, J., Thayer, J. P., Lu, G., Burns, A. G., Wang, W., Sutton, E. K., & Emery, B. A. (2011). Rapid recovery of thermosphere density during the October 2003 geomagnetic storms. Journal of Geophysical Research, 116, A03306. https://doi.org/10.1029/2010JA016164
Lei, J., Burns, A. G., Thayer, J. P., Wang, W., Mlynczak, M. G., Hunt, L. A., Dou, X., & Sutton, E. (2012). Overcooling in the upper thermosphere during the recovery phase of the 2003 October storms. Journal of Geophysical Research, 117, A03314. https://doi.org/10.1029/2011JA016994
Liu, H., H. Lu‥hr, V. Henize, and W. Ko‥hler (2005), Global distribution of the thermospheric total mass density derived from CHAMP, J. Geophys. Res., 110, A04301, doi:10.1029/2004JA010741.
Liu, H., and H. Lu‥hr (2005), Strong disturbance of the upper thermospheric density due to magnetic storms: CHAMP observations, J. Geophys. Res., 110, A09S29, doi:10.1029/2004JA010908.
Luhr, H., Schlegel, K., Araki, T., Rother, M., & Forster, M. (2009). Night-time sudden commencements observed by CHAMP and ground-based magnetometers and their relationship to solar wind parameters. Annales Geophysicae, 27(5), 1897–1907. https://doi.org/10.5194/angeo-27-1897-2009
Marsh, D. R., S. C. Solomon, and A. E. Reynolds (2004), Empirical model of nitric oxide in the lower thermosphere, J. Geophys. Res., 109, A07301, doi:10.1029/2003JA010199.
Matsuo, T., I.-T. Lee, and J. L. Anderson (2013), Thermospheric mass density specification using an ensemble Kalman filter, J. Geophys. Res. Space Physics, 118, 1339–1350, doi:10.1002/jgra.50162.
Mehta, P. M., A. C. Walker, E. K. Sutton, and H. C. Godinez (2017), New density estimates derived using accelerometers on board the CHAMP and GRACE satellites, Space Weather,15, 558–576, doi:10.1002/2016SW001562
Meier, R. R. and Anderson Jr., D. E. (1983): Determination of atmospheric composition and temperature from the UV dayglow, Planet. Space Sci., 31, 967–976
Meier, R., G. Crowley, D. J. Strickland, A. B. Christensen, L. J. Paxton, D. Morrison, and C. L. Hackert (2005), First look at the 20 November 2003 superstorm with TIMED/GUVI: Comparisons with a thermospheric global circulation model, J. Geophys. Res., 110, A09S41, doi:10.1029/2004JA010990
Meier, R. R., and J. M. Picone (1994), Retrieval of absolute thermospheric concentrations from the far UV dayglow: An application of discrete inverse theory, J. Geophys. Res., 99, 6307.
Meier, R. R., J. M. Picone, D. P. Drob, and R. Roble (2001), Similarity transformation-based analysis of atmospheric models, data, and inverse remote sensing algorithms, J. Geophys. Res., 106, 15,519– 15,532.
Meier R. R., et al. (2015) Remote Sensing of Earth’s Limb by TIMED/GUVI: Retrieval of thermospheric composition and temperature, Earth and Space Science, 2, 1–37, doi: 10.1002/2014EA000035.
Menke, W. (1989), Geophysical Data Analysis: Discrete Inverse Theory, Int. Geophys. Ser., vol. 45, Academic, San Diego, Calif.
Mikhailov, A. V. and Marin, D.: An interpretation of the ?oF2 and hmF2 long-term trends in the framework of the geomagnetic control concept, Ann. Geophys., 19, 733–748, https://doi.org/10.5194/angeo-19-733-2001, 2001
Mlynczak, M. et al. (2003), The natural thermostat of nitric oxide emission at 5.3 mm in the thermosphere observed during the solar storms of April 2002. Geophys. Res. Lett. 30 (21), 2100. https://doi.org/10.1029/ 2003GL017693
NCEP, 2015: NCEP GFS 0.25 Degree Global Forecast Grids Historical Archive. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 5 August 2011, https://doi.org/10.5065/D65D8PWK.
Nicolet, M., and Mange, P. (1954). The dissociation of oxygen in the high atmosphere, J. Geophys. Res. 59, 15-45.
Oliveira, D. M., Arel, D., Raeder, J., Zesta, E., Ngwira, C. M., Carter, B. A., et al. (2018). Geomagnetically induced currents caused by interplanetary shocks with different impact angles and speeds. Space Weather, 16(6), 636–647. https://doi.org/10.1029/2018SW001880
Park, Eun-Seo, Sang-Young Park, Kyoung-Min Roh, Kyu-Hong Choi (2010), Satellite orbit determination using a batch filter based on the unscented transformation, Aerospace Science and Technology, Volume 14, Issue 6, https://doi.org/10.1016/j.ast.2010.03.007
Paxton, L.J., D.J. Strickland, M. Weiss, C.-I. Meng, "Interactive data analysis and display of far ultraviolet data" (1998), COSPAR Adv. Space Res., 22, No.11, 1577-1582.
Peterson, G., Sorge, M. & Ailor, W. (2018). Space traffic management in the age of new space, Center for Space Policy and Strategy, the Aerospace Corporation. Accessed on 16?Nov?2019 at https://aerospace.org/sites/default/files/2018?05/SpaceTrafficMgmt_0.pdf
Richards, P. G., J. A. Fennelly, and D. G. Torr (1994a), EUVAC: A solar EUV flux model for aeronomic calculations, J. Geophys. Res., 99(A5), 8981–8992. https://doi.org/10.1029/94JA00518
Richards, P. G. (2012). Reevaluation of thermosphere heating by solar EUV and UV radiation. Canadian Journal of Physics, 90(8), 759–767. https://doi.org/10.1139/p11-109
Rishbeth, H. and O. K. Garriot, Introduction to Ionospheric Physics, Academic Press (1969), New York and London.
Sagawa E., T. J. Immel, H. U. Frey, and S. B. Mende, Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV (2005), Journal of Geophysical Research, vol. 110, A11302, doi:10.1029/2004JA010848
Scherliess, L. and Fejer, B.G. (1999). Radar and satellite global equatorial F region vertical drift model. Journal of Geophysical Research 104: doi: 10.1029/1999JA900025. issn: 0148-0227.
Schlegel, K., Luhr, H., St.-Maurice, J.-P., Crowley, G., & Hackert, C. (2005). Thermospheric density structures over the polar regions observed with CHAMP. Annales de Geophysique, 23(5), 1659–1672. https://doi.org/10.5194/angeo-23-1659-2005
Schoendorf, J., Crowley, G., & Roble, R. G. (1996a). Neutral density cells in the high latitude thermosphere – 1. Solar maximum cell morphology and data analysis. Journal of Atmospheric and Terrestrial Physics, 58(15), 1751–1768. https://doi.org/10.1016/0021-9169(95)00165-4
Schoendorf, J., Crowley, G., & Roble, R. G. (1996b). Neutral density cells in the high latitude thermosphere – 2. Mechanisms. Journal of Atmospheric and Terrestrial Physics, 58(15), 1769–1781. https://doi.org/10.1016/0021-9169(95)00166-2
Schonfeld, S. J.,White, S. M., Henney, C. J., Arge, C. N., & McAteer, R. T. J. (2015). Coronal sources of the solar F10.7 radio flux. The Astrophysical Journal, 808, 29. https://doi.org/10.1088/0004-637X/ 808/1/29
Siemes, C., Borries, C., Bruinsma, S., Fernandez-Gomez, I., H?adczuk, N., van den IJssel, J., Kodikara, T., Vielberg, K., Visser, P. (2023). New thermosphere neutral mass density and crosswind datasets from CHAMP, GRACE, and GRACE-FO. Journal of Space Weather and Space Climate, 13, 16. https://doi.org/10.1051/swsc/2023014
Smith, A. W., Rae, I. J., Forsyth, C., Oliveira, D. M., Freeman, M. P., & Jackson, D. R. (2020). Probabilistic forecasts of storm sudden commencements from interplanetary shocks using machine learning. Space Weather, 18(11). https://doi.org/10.1029/2020SW002603
Solomon, S. C., & Qian, L. (2005). Solar extreme-ultraviolet irradiance for general circulation models. Journal of Geophysical Research, 110, A10306. https://doi.org/10.1029/2005JA011160
Storz, M. F., Bowman, B. R., Branson, M. J. I., Casali, S. J., & Tobiska, W. K. (2005). High accuracy satellite drag model (HASDM). Advances in Space Research, 36, 2497–2505. https://doi.org/10.1016/j.asr.2004.02.020
Sutton, E. K., J. M. Forbes, and R. S. Nerem (2005), Global thermospheric neutral density and wind response to the severe2003 geomagnetic storms from CHAMP accelerometer data,J. Geophys. Res.,110, A09S40, doi:10.1029/2004JA010985
Sutton, E.K., Nerem, R.S., Forbes, J.M. (2007). Density and winds in the thermosphere deduced from accelerometer data. J. Spacecr. Rockets 44, 1210–1219. https://doi.org/10.2514/1.28641.
Sutton, E. (2009). Normalized force coefficients for satellites with elongated shapes. Journal of Spacecraft and Rockets- J SPACECRAFT ROCKET 46, 112–116. https://doi.org/10.2514/1.40940.
Sutton, E. K. (2011), Accelerometer-Derived Atmospheric Densities from the CHAMP and GRACE Accelerometers: Version 2.3, AFRL Technical Memo. DTIC# ADA537198.
Sutton, E. K. (2018). A new method of physics?based data assimilation for the quiet and disturbed thermosphere. Space Weather, 16, 736–753. https://doi.org/10.1002/2017SW001785
Takeuchi, T., Araki, T., Viljanen, A., & Watermann, J. (2002). Geomagnetic negative sudden impulses: Interplanetary causes and polarization distribution. Journal of Geophysical Research, 107(A7), 1096. https://doi.org/10.1029/2001JA900152
Tobiska, W. K., Bowman, B. R., Bouwer, S. D., Cruz, A., Wahl, K., Pilinski, M. D., et al. (2021). The SET HASDM density database. Space Weather, 19, e2020SW002682. https://doi.org/10.1029/2020SW002682
Wan, W., J. Xiong, Z. Ren, L. Liu, M.?L. Zhang, F. Ding, B. Ning, B. Zhao, and X. Yue (2010), Correlation between the ionospheric WN4 signature and the upper atmospheric DE3 tide, J. Geophys. Res., 115, A11303, doi:10.1029/2010JA015527.
Weimer, D. R. (2005). Improved ionospheric electrodynamic models and application to calculating Joule heating rates. J. Geophys. Res. 110, A05306–A05321. doi:10.1029/2004JA010884
Weimer, D. R., Mehta, P. M., Licata, R. J., & Tobiska, W. K. (2023). Global variations in the time delays between polar ionospheric heating and the neutral density response. Space Weather, 21, e2022SW003410. https://doi.org/10.1029/2022SW003410
Yang, F., H. Pan, S. K. Krueger, S. Moorthi, and S. J. Lord (2006). Evaluation of the NCEP Global Forecast System at the ARM SGP site. Mon. Wea. Rev., 134, 3668–3690, doi:10.1175/MWR3264.1
Yang, F., K. Mitchell, Y. Hou, Y. Dai, X. Zeng, Z. Wang, and X. Liang (2008). Dependence of land surface albedo on solar zenith angle: Observations and model parameterizations. J. Appl. Meteor. Climatol., 47, 2963–2982, doi:10.1175/2008JAMC1843.1
指導教授 劉正彥(Jann-Yenq Liu) 審核日期 2024-10-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明