參考文獻 |
Akmaev, R. A. (2001), Simulation of large-scale dynamics in the mesosphere and lower thermosphere with the Doppler-spread parameterization of gravity waves: 1. Implementation and zonal mean climatologies, J. Geophys. Res., 106, 1193–1204.
Akmaev, R. A., T. J. Fuller-Rowell, F. Wu, J. M. Forbes, X. Zhang, A. F. Anghel, M. D. Iredell, S. Moorthi, and H.-M. Juang (2008). Tidal variability in the lower thermosphere: Comparison of Whole Atmosphere Model (WAM) simulations with observations from TIMED. Geophys. Res. Lett., (35), L03810, doi: 10.1029/2007GL032584
Araki, T. (1994). A physical model of the geomagnetic sudden commencement. In M. Engebretson, K. Takahashi, & M. Scholer (Eds.), Solar wind sources of magnetospheric ultra-low-frequency waves (p. 183).
Berger, T. E., Holzinger, M. J., Sutton, E. K., & Thayer, J. P. (2020). Flying through uncertainty. Space Weather, 18(1), e2019SW002373. https://doi.org/10.1029/2019SW002373
Bortnik, J., R. M. Thorne, T. P. O’Brien, J. C. Green, R. J. Strangeway, Y. Y. Shprits, and D. N. Baker (2006), Observation of two distinct, rapid loss mechanisms during the 20 November 2003 radiation belt dropout event, J. Geophys. Res., 111, A12216, doi:10.1029/2006JA011802
Bowman, B., Tobiska, W. K., Marcos, F., Huang, C., Lin, C., & Burke, W. (2008). A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices. In AIAA/AAS Astrodynamics specialist conference and exhibit (p. 6438).
Bruinsma, S., D. Tamagnan, and R. Biancale (2004), Atmospheric densities derived from CHAMP/STAR accelerometer observations, Planet. Space Sci. 52, 297–312. https://doi.org/10.1016/j.pss.2003.11.004
Bruinsma, S., J. M. Forbes, R. S. Nerem, and X. Zhang (2006), Thermosphere density response to the 20–21 November 2003 solar and geomagnetic storm from CHAMP and GRACE accelerometer data, J. Geophys. Res., 111, A06303, doi:10.1029/2005JA011284
Bussy?Virat, C. D., Ridley, A. J., & Getchius, J. W. (2018). Effects of uncertainties in the atmospheric density on the probability of collision between space objects. Space Weather, 16, 519–537. https://doi.org/10.1029/2017SW001705
Cheng, C.-C., Liu, J.-Y., Lin, C. C. H., & Cheng, Y.-C. (2022). Daily dynamo electric fields derived by using equatorial ionization anomaly crests of the total electron content. Space Weather, 20, e2022SW003073. https://doi.org/10.1029/2022SW003073
Cheng, C. C., Liu, J. Y., Chang, F. Y. et al. R/esponse of ion velocities of daytime ionospheric wavenumber-4 to solar activity observed by ROCSAT-1 and DEMETER. Terr Atmos Ocean Sci 35, 8 (2024). https://doi.org/10.1007/s44195-024-00068-4
Christensen, A. B., et al. (2003), Initial observations with the Global Ultraviolet Imager (GUVI) in the NASA TIMED satellite mission, J. Geophys. Res., 108(A12), 1451, doi:10.1029/2003JA009918
Codrescu, S. M., Codrescu, M. V.,& Fedrizzi, M. (2018). An Ensemble Kalman Filter for the thermosphere-ionosphere. Space Weather, 16, 57–68. https://doi.org/10.1002/2017SW001752
Codrescu, M. V., Stefan M. Codrescu, & Mariangel Fedrizzi (2022), Storm time neutral density assimilation in the thermosphere ionosphere with TIDA. J. Space Weather Space Clim. 12 16. https://doi.org/10.1051/swsc/2022011
Cole, K. D. (1962). Joule heating of the upper atmosphere, Australian J. Phys. 15, 223-235.
Davis, C. J., Wild, M. N., Lockwood, M., and Tulunay, Y. K. (1997). Ionospheric and geomagnetic responses to changes in IMF Bz: a superposed epoch study, Ann. Geophys., 15, 217–230, SRef-ID: 1432-0576/ag/1997-15-217.
Doornbos Eelco, Jose van den IJssel, Hermann Luhr, Matthias Forster and Georg Koppenwallner (2010). Neutral density and crosswind determination from arbitrarily oriented multiaxis accelerometers on satellites. J. Spacecr. Rock. 47 (4), 580–589. https://doi.org/10.2514/1.48114.
Dudok de Wit, T., Bruinsma, S., & Shibasaki, K. (2014). Synoptic radio observations as proxies for upper atmosphere modelling. Journal of Space Weather and Space Climate, 4(27), A06. https://doi.org/10.1051/swsc/2014003
Emmert, J. T., Jones, M. Jr., Siskind, D.E., Drob, D. P., Picone, J. M., Stevens,M. H., et al. (2022). NRLMSIS 2.1:An empirical model of nitric oxide incorporated into MSIS. Journal of Geophysical Research: Space Physics,127, e2022JA030896. https://doi.org/10.1029/2022JA030896
Fejer B. G., J. W. Jensen, and S. Y. Su (2008), Quiet time equatorial F region vertical plasma drift model derived from ROCSAT-1 observations, Journal of Geophysical Research, VOL. 113, A05304, doi:10.1029/2007JA012801
Fiori, R. A. D., Boteler, D. H., & Gillies, D. M. (2014). Assessment of GIC risk due to geomagnetic sudden commencements and identification of the current systems responsible. Space Weather, 12(1), 76–91. https://doi.org/10.1002/2013SW000967
Fok, M.?C., T. E. Moore, S. P. Slinker, J. A. Fedder, D. C. Delcourt, M. Nose, and S.?H. Chen (2011), Modeling the superstorm in November 2003, J. Geophys. Res., 116, A00J17, doi:10.1029/2010JA015720.
Forbes, J.M., R. Gonzalez, F.A. Marcos, D. Revelle, and H. Parish, Magnetic storm response of the lower therrmosphere, J. Geophys. Res., 101,2313, (1996).
Forbes, J.M., S.E. Palo, and F.A. Marcos, Longitude structure of thermospheric density, J. Geophys. Res., 103, in press, (1998).
Foster, J., Holt, J. M., Musgrove, R., & Evans, D. (1986). Ionospheric convection associated with discrete levels of particle precipitation. Geo-physical Research Letters, 13(7), 656–659. https://doi.org/10.1029/GL013i007p00656
Foster, J. C., Coster, A. J., Erickson, P. J., Holt, J. M., Lind, F. D., Rideout, W., et al. (2005). Multiradar observations of the polar tongue of ioni-zation. Journal of Geophysical Research, 110(A9). doi:10.1029/2004JA010928.
Fuller-Rowell, T. J., and D. Rees (1980), A three-dimensional time-dependent global model of the thermosphere, J. Atmos. Sci., 37, 2546– 2567.
Fuller-Rowell, T. J., D. Rees, S. Quegan, R. J. Moffett, M. V. Codrescu, and G. H. Millward (1996), A coupled thermosphere ionosphere model (CTIM), in Handbook of Ionospheric Models, STEP Report, edited by R. W. Schunk, pp. 217– 238, Elsevier, New York.
Fuller-Rowell, T. J., Matsuo, T., Codrescu, M., & Marcos, F. (1999). Modeling thermospheric neutral density waves and holes in response to high latitude forcing. Advances in Space Research, 24(11), 1447–1458. https://doi.org/10.1016/S0273-1177(99)00705-X
Gardner, L. C., Schunk, R. W., Scherliess, L., Eccles, V., Basu, S., & Valladeres, C. (2018). Modeling the midlatitude ionosphere storm-enhanced density distribution with a data assimilation model. Space Weather, 16. https://doi.org/10.1029/2018SW001882
Gjerloev, J. W., & Hoffman, R. A. (2001). The convection electric field in auroral substorms. Journal of Geophysical Research, 106(A7), 12919–12931. https://doi.org/10.1029/1999JA000240
Hagan, M. E., A. Maute, R. G. Roble, A. D. Richmond, T. J. Immel, and S. L. England (2007), Connections between deep tropical clouds and the Earth’s ionosphere, Geophysical Research Letters, 34, L20109, doi:10.1029/2007GL030142
Han, J., and H.-L. Pan (2011). Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Wea. Forecasting, 26, 520–533, doi:10.1175/WAF-D-10-05038.1
Hedin, A.E., Spencer, N.W., Mayr, H.G. The semidiurnal and terdiurnal tides in the equatorial thermosphere from AE-E measurements. J. Geophys. Res. 85, 1787–1791, 1980.
Hennessy, B.; Rutten, M.; Tingay, S.; Summers, A.; Gustainis, D.; Crosse, B.; Sokolowski, M. Establishing the Capabilities of the MurchisonWidefield Array as a Passive Radar for the Surveillance of Space. Remote Sens. 2022, 14, 2571. https://doi.org/10.3390/rs14112571
Hinteregger, H. E., K. Fukui, and B. R. Gilson (1981), Observational, reference, and model data on solar EUV from measurements on AE-E, Geophys. Res. Lett., 8, 1147–1150. https://doi.org/10.1029/GL008i011p01147
Immel T. J., E. Sagawa, S. L. England, S. B. Henderson, M. E. Hagan, S. B. Mende, H. U. Frey, C. M. Swenson, and L. J. Paxton (2006), Control of equatorial ionospheric morphology by atmospheric tides, Geophysical Research Letters, vol. 33, L15108, doi:10.1029/2006GL026161
Jenkins, R. W., and Paghis, I. (1963). Criteria for the association of solar flares with geomagnetic disturbances, Can. J. Phys. 41, 1056-1075.
Juang, H.-M. H. (2011). A multiconserving discretization with enthalpy as a thermodynamic prognostic variable in generalized hybrid vertical coordinates for the NCEP Global Forecast System. Mon. Wea. Rev., 139, 1583–1607, doi:10.1175/2010MWR3295.1
Juang, H.-M. H. (2014): A discretization of deep-atmospheric nonhydrostatic dynamics on generalized hybrid vertical coordinates for NCEP global spectral model. NCEP Office Note 477, 39 pp., http://www.lib.ncep.noaa.gov/ncepofficenotes/files/on477.pdf
Kakinami Y., C. H. Lin, J. Y. Liu, M. Kamogawa, S. Watanabe, and M. Parrot (2011), Daytime longitudinal structures of electron density and temperature in the topside ionosphere observed by the Hinotori and DEMETER satellites, Journal of Geophysical Research Space Physics, VOL. 116, A05316, doi:10.1029/2010JA015632
Knipp, D., Kilcommons, L., Hunt, L., Mlynczak, M., Pilipenko, V., Bowman, B., Deng, Y., & Drake, K. (2013). Thermospheric damping response to sheath-enhanced geospace storms. Geophysical Research Letters, 40, 1263–1267. https://doi.org/10.1002/grl.50197
Kockarts, G., 1980. Nitric oxide cooling in the terrestrial atmosphere. Geophys. Res. Lett. 7 (2), 137–140.
Lacey, T. (1998), Tutorial: the Kalman Filter 11.1 Introduction 11.2 Mean Squared Error. https://api.semanticscholar.org/CorpusID:48574040
Lei, J., Thayer, J. P., Lu, G., Burns, A. G., Wang, W., Sutton, E. K., & Emery, B. A. (2011). Rapid recovery of thermosphere density during the October 2003 geomagnetic storms. Journal of Geophysical Research, 116, A03306. https://doi.org/10.1029/2010JA016164
Lei, J., Burns, A. G., Thayer, J. P., Wang, W., Mlynczak, M. G., Hunt, L. A., Dou, X., & Sutton, E. (2012). Overcooling in the upper thermosphere during the recovery phase of the 2003 October storms. Journal of Geophysical Research, 117, A03314. https://doi.org/10.1029/2011JA016994
Liu, H., H. Lu‥hr, V. Henize, and W. Ko‥hler (2005), Global distribution of the thermospheric total mass density derived from CHAMP, J. Geophys. Res., 110, A04301, doi:10.1029/2004JA010741.
Liu, H., and H. Lu‥hr (2005), Strong disturbance of the upper thermospheric density due to magnetic storms: CHAMP observations, J. Geophys. Res., 110, A09S29, doi:10.1029/2004JA010908.
Luhr, H., Schlegel, K., Araki, T., Rother, M., & Forster, M. (2009). Night-time sudden commencements observed by CHAMP and ground-based magnetometers and their relationship to solar wind parameters. Annales Geophysicae, 27(5), 1897–1907. https://doi.org/10.5194/angeo-27-1897-2009
Marsh, D. R., S. C. Solomon, and A. E. Reynolds (2004), Empirical model of nitric oxide in the lower thermosphere, J. Geophys. Res., 109, A07301, doi:10.1029/2003JA010199.
Matsuo, T., I.-T. Lee, and J. L. Anderson (2013), Thermospheric mass density specification using an ensemble Kalman filter, J. Geophys. Res. Space Physics, 118, 1339–1350, doi:10.1002/jgra.50162.
Mehta, P. M., A. C. Walker, E. K. Sutton, and H. C. Godinez (2017), New density estimates derived using accelerometers on board the CHAMP and GRACE satellites, Space Weather,15, 558–576, doi:10.1002/2016SW001562
Meier, R. R. and Anderson Jr., D. E. (1983): Determination of atmospheric composition and temperature from the UV dayglow, Planet. Space Sci., 31, 967–976
Meier, R., G. Crowley, D. J. Strickland, A. B. Christensen, L. J. Paxton, D. Morrison, and C. L. Hackert (2005), First look at the 20 November 2003 superstorm with TIMED/GUVI: Comparisons with a thermospheric global circulation model, J. Geophys. Res., 110, A09S41, doi:10.1029/2004JA010990
Meier, R. R., and J. M. Picone (1994), Retrieval of absolute thermospheric concentrations from the far UV dayglow: An application of discrete inverse theory, J. Geophys. Res., 99, 6307.
Meier, R. R., J. M. Picone, D. P. Drob, and R. Roble (2001), Similarity transformation-based analysis of atmospheric models, data, and inverse remote sensing algorithms, J. Geophys. Res., 106, 15,519– 15,532.
Meier R. R., et al. (2015) Remote Sensing of Earth’s Limb by TIMED/GUVI: Retrieval of thermospheric composition and temperature, Earth and Space Science, 2, 1–37, doi: 10.1002/2014EA000035.
Menke, W. (1989), Geophysical Data Analysis: Discrete Inverse Theory, Int. Geophys. Ser., vol. 45, Academic, San Diego, Calif.
Mikhailov, A. V. and Marin, D.: An interpretation of the ?oF2 and hmF2 long-term trends in the framework of the geomagnetic control concept, Ann. Geophys., 19, 733–748, https://doi.org/10.5194/angeo-19-733-2001, 2001
Mlynczak, M. et al. (2003), The natural thermostat of nitric oxide emission at 5.3 mm in the thermosphere observed during the solar storms of April 2002. Geophys. Res. Lett. 30 (21), 2100. https://doi.org/10.1029/ 2003GL017693
NCEP, 2015: NCEP GFS 0.25 Degree Global Forecast Grids Historical Archive. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 5 August 2011, https://doi.org/10.5065/D65D8PWK.
Nicolet, M., and Mange, P. (1954). The dissociation of oxygen in the high atmosphere, J. Geophys. Res. 59, 15-45.
Oliveira, D. M., Arel, D., Raeder, J., Zesta, E., Ngwira, C. M., Carter, B. A., et al. (2018). Geomagnetically induced currents caused by interplanetary shocks with different impact angles and speeds. Space Weather, 16(6), 636–647. https://doi.org/10.1029/2018SW001880
Park, Eun-Seo, Sang-Young Park, Kyoung-Min Roh, Kyu-Hong Choi (2010), Satellite orbit determination using a batch filter based on the unscented transformation, Aerospace Science and Technology, Volume 14, Issue 6, https://doi.org/10.1016/j.ast.2010.03.007
Paxton, L.J., D.J. Strickland, M. Weiss, C.-I. Meng, "Interactive data analysis and display of far ultraviolet data" (1998), COSPAR Adv. Space Res., 22, No.11, 1577-1582.
Peterson, G., Sorge, M. & Ailor, W. (2018). Space traffic management in the age of new space, Center for Space Policy and Strategy, the Aerospace Corporation. Accessed on 16?Nov?2019 at https://aerospace.org/sites/default/files/2018?05/SpaceTrafficMgmt_0.pdf
Richards, P. G., J. A. Fennelly, and D. G. Torr (1994a), EUVAC: A solar EUV flux model for aeronomic calculations, J. Geophys. Res., 99(A5), 8981–8992. https://doi.org/10.1029/94JA00518
Richards, P. G. (2012). Reevaluation of thermosphere heating by solar EUV and UV radiation. Canadian Journal of Physics, 90(8), 759–767. https://doi.org/10.1139/p11-109
Rishbeth, H. and O. K. Garriot, Introduction to Ionospheric Physics, Academic Press (1969), New York and London.
Sagawa E., T. J. Immel, H. U. Frey, and S. B. Mende, Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV (2005), Journal of Geophysical Research, vol. 110, A11302, doi:10.1029/2004JA010848
Scherliess, L. and Fejer, B.G. (1999). Radar and satellite global equatorial F region vertical drift model. Journal of Geophysical Research 104: doi: 10.1029/1999JA900025. issn: 0148-0227.
Schlegel, K., Luhr, H., St.-Maurice, J.-P., Crowley, G., & Hackert, C. (2005). Thermospheric density structures over the polar regions observed with CHAMP. Annales de Geophysique, 23(5), 1659–1672. https://doi.org/10.5194/angeo-23-1659-2005
Schoendorf, J., Crowley, G., & Roble, R. G. (1996a). Neutral density cells in the high latitude thermosphere – 1. Solar maximum cell morphology and data analysis. Journal of Atmospheric and Terrestrial Physics, 58(15), 1751–1768. https://doi.org/10.1016/0021-9169(95)00165-4
Schoendorf, J., Crowley, G., & Roble, R. G. (1996b). Neutral density cells in the high latitude thermosphere – 2. Mechanisms. Journal of Atmospheric and Terrestrial Physics, 58(15), 1769–1781. https://doi.org/10.1016/0021-9169(95)00166-2
Schonfeld, S. J.,White, S. M., Henney, C. J., Arge, C. N., & McAteer, R. T. J. (2015). Coronal sources of the solar F10.7 radio flux. The Astrophysical Journal, 808, 29. https://doi.org/10.1088/0004-637X/ 808/1/29
Siemes, C., Borries, C., Bruinsma, S., Fernandez-Gomez, I., H?adczuk, N., van den IJssel, J., Kodikara, T., Vielberg, K., Visser, P. (2023). New thermosphere neutral mass density and crosswind datasets from CHAMP, GRACE, and GRACE-FO. Journal of Space Weather and Space Climate, 13, 16. https://doi.org/10.1051/swsc/2023014
Smith, A. W., Rae, I. J., Forsyth, C., Oliveira, D. M., Freeman, M. P., & Jackson, D. R. (2020). Probabilistic forecasts of storm sudden commencements from interplanetary shocks using machine learning. Space Weather, 18(11). https://doi.org/10.1029/2020SW002603
Solomon, S. C., & Qian, L. (2005). Solar extreme-ultraviolet irradiance for general circulation models. Journal of Geophysical Research, 110, A10306. https://doi.org/10.1029/2005JA011160
Storz, M. F., Bowman, B. R., Branson, M. J. I., Casali, S. J., & Tobiska, W. K. (2005). High accuracy satellite drag model (HASDM). Advances in Space Research, 36, 2497–2505. https://doi.org/10.1016/j.asr.2004.02.020
Sutton, E. K., J. M. Forbes, and R. S. Nerem (2005), Global thermospheric neutral density and wind response to the severe2003 geomagnetic storms from CHAMP accelerometer data,J. Geophys. Res.,110, A09S40, doi:10.1029/2004JA010985
Sutton, E.K., Nerem, R.S., Forbes, J.M. (2007). Density and winds in the thermosphere deduced from accelerometer data. J. Spacecr. Rockets 44, 1210–1219. https://doi.org/10.2514/1.28641.
Sutton, E. (2009). Normalized force coefficients for satellites with elongated shapes. Journal of Spacecraft and Rockets- J SPACECRAFT ROCKET 46, 112–116. https://doi.org/10.2514/1.40940.
Sutton, E. K. (2011), Accelerometer-Derived Atmospheric Densities from the CHAMP and GRACE Accelerometers: Version 2.3, AFRL Technical Memo. DTIC# ADA537198.
Sutton, E. K. (2018). A new method of physics?based data assimilation for the quiet and disturbed thermosphere. Space Weather, 16, 736–753. https://doi.org/10.1002/2017SW001785
Takeuchi, T., Araki, T., Viljanen, A., & Watermann, J. (2002). Geomagnetic negative sudden impulses: Interplanetary causes and polarization distribution. Journal of Geophysical Research, 107(A7), 1096. https://doi.org/10.1029/2001JA900152
Tobiska, W. K., Bowman, B. R., Bouwer, S. D., Cruz, A., Wahl, K., Pilinski, M. D., et al. (2021). The SET HASDM density database. Space Weather, 19, e2020SW002682. https://doi.org/10.1029/2020SW002682
Wan, W., J. Xiong, Z. Ren, L. Liu, M.?L. Zhang, F. Ding, B. Ning, B. Zhao, and X. Yue (2010), Correlation between the ionospheric WN4 signature and the upper atmospheric DE3 tide, J. Geophys. Res., 115, A11303, doi:10.1029/2010JA015527.
Weimer, D. R. (2005). Improved ionospheric electrodynamic models and application to calculating Joule heating rates. J. Geophys. Res. 110, A05306–A05321. doi:10.1029/2004JA010884
Weimer, D. R., Mehta, P. M., Licata, R. J., & Tobiska, W. K. (2023). Global variations in the time delays between polar ionospheric heating and the neutral density response. Space Weather, 21, e2022SW003410. https://doi.org/10.1029/2022SW003410
Yang, F., H. Pan, S. K. Krueger, S. Moorthi, and S. J. Lord (2006). Evaluation of the NCEP Global Forecast System at the ARM SGP site. Mon. Wea. Rev., 134, 3668–3690, doi:10.1175/MWR3264.1
Yang, F., K. Mitchell, Y. Hou, Y. Dai, X. Zeng, Z. Wang, and X. Liang (2008). Dependence of land surface albedo on solar zenith angle: Observations and model parameterizations. J. Appl. Meteor. Climatol., 47, 2963–2982, doi:10.1175/2008JAMC1843.1 |