參考文獻 |
1. Bockaert, J. and J.P. Pin, Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J, 1999. 18(7): p. 1723-9.
2. Hamm, H.E. and A. Gilchrist, Heterotrimeric G proteins. Curr Opin Cell Biol, 1996. 8(2): p. 189-96.
3. Xue, C., Y.-P. Hsueh, and J. Heitman, Magnificent seven: roles of G protein-coupled receptors in extracellular sensing in fungi. FEMS microbiology reviews, 2008. 32(6): p. 1010-1032.
4. Li, L., et al., Heterotrimeric G Protein Signaling in Filamentous Fungi*. Annual Review of Microbiology, 2007. 61(Volume 61, 2007): p. 423-452.
5. Gao, J., et al., Fungal G-Protein-Coupled Receptors: A Promising Mediator of the Impact of Extracellular Signals on Biosynthesis of Ochratoxin A. Front Microbiol, 2021. 12: p. 631392.
6. Holsbeeks, I., et al., The eukaryotic plasma membrane as a nutrient-sensing device. Trends in Biochemical Sciences, 2004. 29(10): p. 556-564.
7. Dijck, P.V., Nutrient sensing G protein-coupled receptors: interesting targets for antifungals? Medical Mycology, 2009. 47(7): p. 671-680.
8. Pan, X. and J. Heitman, Protein kinase A operates a molecular switch that governs yeast pseudohyphal differentiation. Mol Cell Biol, 2002. 22(12): p. 3981-93.
9. Kraakman, L., et al., A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Mol Microbiol, 1999. 32(5): p. 1002-12.
10. Welton, R.M. and C.S. Hoffman, Glucose monitoring in fission yeast via the Gpa2 galpha, the git5 Gbeta and the git3 putative glucose receptor. Genetics, 2000. 156(2): p. 513-21.
11. Maidan, M.M., et al., The G protein-coupled receptor Gpr1 and the Galpha protein Gpa2 act through the cAMP-protein kinase A pathway to induce morphogenesis in Candida albicans. Mol Biol Cell, 2005. 16(4): p. 1971-86.
12. Maidan, M.M., J.M. Thevelein, and P. Van Dijck, Carbon source induced yeast-to-hypha transition in Candida albicans is dependent on the presence of amino acids and on the G-protein-coupled receptor Gpr1. Biochem Soc Trans, 2005. 33(Pt 1): p. 291-3.
13. Pausch, M.H., G-protein-coupled receptors in Saccharomyces cerevisiae: high-throughput screening assays for drug discovery. Trends in Biotechnology, 1997. 15(12): p. 487-494.
14. Dohlman, H.G., et al., Model systems for the study of seven-transmembrane-segment receptors. Annu Rev Biochem, 1991. 60: p. 653-88.
15. Bardwell, L., A walk-through of the yeast mating pheromone response pathway. Peptides, 2005. 26(2): p. 339-50.
16. Schwartz, M.A. and H.D. Madhani, Principles of MAP kinase signaling specificity in Saccharomyces cerevisiae. Annu Rev Genet, 2004. 38: p. 725-48.
17. Lanver, D., et al., Ustilago maydis effectors and their impact on virulence. Nature Reviews Microbiology, 2017. 15(7): p. 409-421.
18. Kahmann, R. and J. Kamper, Ustilago maydis: how its biology relates to pathogenic development. New Phytologist, 2004. 164(1): p. 31-42.
19. Spellig, T., et al., Pheromones trigger filamentous growth in Ustilago maydis. EMBO J, 1994. 13(7): p. 1620-7.
20. Bolker, M., M. Urban, and R. Kahmann, The a mating type locus of U. maydis specifies cell signaling components. Cell, 1992. 68(3): p. 441-450.
21. Urban, M., R. Kahmann, and M. Bolker, Identification of the pheromone response element in Ustilago maydis. Mol Gen Genet, 1996. 251(1): p. 31-7.
22. Yu, C., et al., Progress in pathogenesis research of Ustilago maydis, and the metabolites involved along with their biosynthesis. Molecular Plant Pathology, 2023. 24(5): p. 495-509.
23. Regenfelder, E., et al., G proteins in Ustilago maydis: transmission of multiple signals? The EMBO journal, 1997.
24. Kaffarnik, F., et al., PKA and MAPK phosphorylation of Prf1 allows promoter discrimination in Ustilago maydis. EMBO J, 2003. 22(21): p. 5817-26.
25. Kruger, J., et al., Crosstalk between cAMP and pheromone signalling pathways in Ustilago maydis. Mol Gen Genet, 1998. 260(2-3): p. 193-8.
26. Banuett, F., Signalling in the yeasts: an informational cascade with links to the filamentous fungi. Microbiol Mol Biol Rev, 1998. 62(2): p. 249-74.
27. Kronstad, J., et al., Signaling via cAMP in fungi: interconnections with mitogen-activated protein kinase pathways. Archives of microbiology, 1998. 170: p. 395-404.
28. Borges-Walmsley, M.I. and A.R. Walmsley, cAMP signalling in pathogenic fungi: control of dimorphic switching and pathogenicity. Trends in Microbiology, 2000. 8(3): p. 133-141.
29. D′Souza, C.A. and J. Heitman, Conserved cAMP signaling cascades regulate fungal development and virulence. FEMS Microbiol Rev, 2001. 25(3): p. 349-64.
30. Xue, Y., M. Batlle, and J.P. Hirsch, GPR1 encodes a putative G protein-coupled receptor that associates with the Gpa2p Galpha subunit and functions in a Ras-independent pathway. EMBO J, 1998. 17(7): p. 1996-2007.
31. Pan, X. and J. Heitman, Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol, 1999. 19(7): p. 4874-87.
32. Toda, T., et al., In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell, 1985. 40(1): p. 27-36.
33. Kataoka, T., D. Broek, and M. Wigler, DNA sequence and characterization of the S. cerevisiae gene encoding adenylate cyclase. Cell, 1985. 43(2 Pt 1): p. 493-505.
34. Tamaki, H., Glucose-stimulated cAMP-protein kinase A pathway in yeast Saccharomyces cerevisiae. J Biosci Bioeng, 2007. 104(4): p. 245-50.
35. Gold, S., et al., cAMP regulates morphogenesis in the fungal pathogen Ustilago maydis. Genes Dev, 1994. 8(23): p. 2805-16.
36. Durrenberger, F., K. Wong, and J.W. Kronstad, Identification of a cAMP-dependent protein kinase catalytic subunit required for virulence and morphogenesis in Ustilago maydis. Proc Natl Acad Sci U S A, 1998. 95(10): p. 5684-9.
37. Muller, P., et al., Guanyl nucleotide exchange factor Sql2 and Ras2 regulate filamentous growth in Ustilago maydis. Eukaryot Cell, 2003. 2(3): p. 609-17.
38. Muller, P., et al., The Gbeta-subunit-encoding gene bpp1 controls cyclic-AMP signaling in Ustilago maydis. Eukaryot Cell, 2004. 3(3): p. 806-14.
39. Gold, S.E., et al., The Ustilago maydis regulatory subunit of a cAMP-dependent protein kinase is required for gall formation in maize. Plant Cell, 1997. 9(9): p. 1585-94.
40. Cullen, P.J. and G.F. Sprague, Jr., The regulation of filamentous growth in yeast. Genetics, 2012. 190(1): p. 23-49.
41. Zhao, X., R. Mehrabi, and J.R. Xu, Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryot Cell, 2007. 6(10): p. 1701-14.
42. Courchesne, W.E., R. Kunisawa, and J. Thorner, A putative protein kinase overcomes pheromone-induced arrest of cell cycling in S. cerevisiae. Cell, 1989. 58(6): p. 1107-19.
43. Kamada, Y., et al., Activation of yeast protein kinase C by Rho1 GTPase. J Biol Chem, 1996. 271(16): p. 9193-6.
44. Levin, D.E., Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev, 2005. 69(2): p. 262-91.
45. Muller, P., et al., Mating and pathogenic development of the Smut fungus Ustilago maydis are regulated by one mitogen-activated protein kinase cascade. Eukaryot Cell, 2003. 2(6): p. 1187-99.
46. Banuett, F. and I. Herskowitz, Identification of fuz7, a Ustilago maydis MEK/MAPKK homolog required for a-locus-dependent and -independent steps in the fungal life cycle. Genes Dev, 1994. 8(12): p. 1367-78.
47. Muller, P., et al., The MAP kinase kpp2 regulates mating and pathogenic development in Ustilago maydis. Molecular microbiology, 1999. 34(5): p. 1007-1017.
48. Brachmann, A., et al., An unusual MAP kinase is required for efficient penetration of the plant surface by Ustilago maydis. EMBO J, 2003. 22(9): p. 2199-210.
49. Garrido, E., et al., The induction of sexual development and virulence in the smut fungus Ustilago maydis depends on Crk1, a novel MAPK protein. Genes & development, 2004. 18(24): p. 3117-3130.
50. Lee, N. and J.W. Kronstad, ras2 Controls morphogenesis, pheromone response, and pathogenicity in the fungal pathogen Ustilago maydis. Eukaryot Cell, 2002. 1(6): p. 954-66.
51. Zarnack, K., Die Auswirkung der posttranslationellen Aktivierung des Transkriptionsfaktors Prf1 auf die Pheromonantwort in Ustilago maydis. Philipps-Universitat, Marburg/Lahn, 2006.
52. Nadal, M., M.D. Garcia-Pedrajas, and S.E. Gold, Dimorphism in fungal plant pathogens. FEMS microbiology letters, 2008. 284(2): p. 127-134.
53. Hamel, L.-P., et al., Mitogen-activated protein kinase signaling in plant-interacting fungi: distinct messages from conserved messengers. The Plant Cell, 2012. 24(4): p. 1327-1351.
54. Kijpornyongpan, T. and M.C. Aime, Investigating the Smuts: Common Cues, Signaling Pathways, and the Role of MAT in Dimorphic Switching and Pathogenesis. J Fungi (Basel), 2020. 6(4).
55. Baur, M., R.K. Esch, and B. Errede, Cooperative binding interactions required for function of the Ty1 sterile responsive element. Molecular and cellular biology, 1997. 17(8): p. 4330-4337.
56. Madhani, H.D. and G.R. Fink, Combinatorial control required for the specificity of yeast MAPK signaling. Science, 1997. 275(5304): p. 1314-1317.
57. Mosch, H.-U. and G.R. Fink, Dissection of filamentous growth by transposon mutagenesis in Saccharomyces cerevisiae. Genetics, 1997. 145(3): p. 671-684.
58. Madhani, H.D., C.A. Styles, and G.R. Fink, MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell, 1997. 91(5): p. 673-684.
59. Cook, J.G., L. Bardwell, and J. Thorner, Inhibitory and activating functions for MAPK Kss1 in the S. cerevisiae filamentous-growth signalling pathway. Nature, 1997. 390(6655): p. 85-88.
60. Rupp, S., et al., MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. Embo j, 1999. 18(5): p. 1257-69.
61. Chen, R.E. and J. Thorner, Systematic epistasis analysis of the contributions of protein kinase A- and mitogen-activated protein kinase-dependent signaling to nutrient limitation-evoked responses in the yeast Saccharomyces cerevisiae. Genetics, 2010. 185(3): p. 855-70.
62. Hartmann, H.A., R. Kahmann, and M. Bolker, The pheromone response factor coordinates filamentous growth and pathogenicity in Ustilago maydis. The EMBO journal, 1996. 15(7): p. 1632-1641.
63. Schlesinger, R., R. Kahmann, and J. Kamper, The homeodomains of the heterodimeric bE and bW proteins of Ustilago maydis are both critical for function. Molecular and General Genetics MGG, 1997. 254(5): p. 514-519.
64. Romeis, T., et al., Identification of a target gene for the bE-bW homeodomain protein complex in Ustilago maydis. Mol Microbiol, 2000. 37(1): p. 54-66.
65. Brachmann, A., et al., Identification of genes in the bW/bE regulatory cascade in Ustilago maydis. Mol Microbiol, 2001. 42(4): p. 1047-63.
66. Heimel, K., et al., The transcription factor Rbf1 is the master regulator for b-mating type controlled pathogenic development in Ustilago maydis. PLoS Pathog, 2010. 6(8): p. e1001035.
67. Scherer, M., et al., The Clp1 protein is required for clamp formation and pathogenic development of Ustilago maydis. Plant Cell, 2006. 18(9): p. 2388-401.
68. Chetsada, P., Functional characterization of the homeodomain transcription factor Hdp1 in Ustilago maydis. Philipps-Universitat, Marburg/Lahn.
69. Heimel, K., et al., The Ustilago maydis Clp1 protein orchestrates pheromone and b-dependent signaling pathways to coordinate the cell cycle and pathogenic development. Plant Cell, 2010. 22(8): p. 2908-22.
70. Flor-Parra, I., et al., Biz1, a zinc finger protein required for plant invasion by Ustilago maydis, regulates the levels of a mitotic cyclin. Plant Cell, 2006. 18(9): p. 2369-87.
71. Zarnack, K., et al., Pheromone-regulated target genes respond differentially to MAPK phosphorylation of transcription factor Prf1. Mol Microbiol, 2008. 69(4): p. 1041-53.
72. Tollot, M., et al., The WOPR Protein Ros1 Is a Master Regulator of Sporogenesis and Late Effector Gene Expression in the Maize Pathogen Ustilago maydis. PLoS Pathog, 2016. 12(6): p. e1005697.
73. Zahiri, A., et al., The Ustilago maydis forkhead transcription factor Fox1 is involved in the regulation of genes required for the attenuation of plant defenses during pathogenic development. Mol Plant Microbe Interact, 2010. 23(9): p. 1118-29.
74. Vollmeister, E., et al., Fungal development of the plant pathogen Ustilago maydis. FEMS Microbiology Reviews, 2012. 36(1): p. 59-77.
75. Lanver, D., et al., The Biotrophic Development of Ustilago maydis Studied by RNA-Seq Analysis. Plant Cell, 2018. 30(2): p. 300-323.
76. Mueller, A.N., et al., Compatibility in the Ustilago maydis–maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2. PLoS pathogens, 2013. 9(2): p. e1003177.
77. Misas Villamil, J.C., et al., A fungal substrate mimicking molecule suppresses plant immunity via an inter-kingdom conserved motif. Nature Communications, 2019. 10(1): p. 1576.
78. Djamei, A., et al., Metabolic priming by a secreted fungal effector. Nature, 2011. 478(7369): p. 395-398.
79. Lin, Y.-H., et al., Ustilago maydis PR-1-like protein has evolved two distinct domains for dual virulence activities. Nature Communications, 2023. 14(1): p. 5755.
80. Bolker, M., et al., Genetic regulation of mating and dimorphism in Ustilago maydis. Canadian Journal of Botany, 1995. 73(S1): p. 320-325.
81. Sievers, F., et al., Fast, scalable generation of high?quality protein multiple sequence alignments using Clustal Omega. Molecular systems biology, 2011. 7(1): p. 539.
82. Capella-Gutierrez, S., J.M. Silla-Martinez, and T. Gabaldon, trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 2009. 25(15): p. 1972-1973.
83. Tamura, K., G. Stecher, and S. Kumar, MEGA11: molecular evolutionary genetics analysis version 11. Molecular biology and evolution, 2021. 38(7): p. 3022-3027.
84. Kamper, J., A PCR-based system for highly efficient generation of gene replacement mutants in Ustilago maydis. Molecular genetics and genomics, 2004. 271: p. 103-110.
85. Spellig, T., A. Bottin, and R. Kahmann, Green fluorescent protein (GFP) as a new vital marker in the phytopathogenic fungus Ustilago maydis. Molecular and General Genetics MGG, 1996. 252: p. 503-509.
86. Livak, K.J. and T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2? ΔΔCT method. methods, 2001. 25(4): p. 402-408.
87. Hoang, C.V., C.K. Bhaskar, and L.-S. Ma, A novel core effector Vp1 promotes fungal colonization and virulence of Ustilago maydis. Journal of Fungi, 2021. 7(8): p. 589.
88. Bolker, M., et al., Tagging pathogenicity genes in Ustilago maydis by restriction enzyme-mediated integration (REMI). Mol Gen Genet, 1995. 248(5): p. 547-52.
89. Xie, J.L., et al., Signaling through Lrg1, Rho1 and Pkc1 governs Candida albicans morphogenesis in response to diverse cues. PLoS genetics, 2016. 12(10): p. e1006405.
90. Lanver, D., et al., Plant surface cues prime Ustilago maydis for biotrophic development. PLoS Pathog, 2014. 10(7): p. e1004272. |