博碩士論文 111821012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:52.14.230.29
姓名 張?之(Pin-Chih Chang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 探討玉米黑穗病中PR-1La依賴的阿魏酸訊息傳導路徑
(Investigating the PR-1La-Dependent FA-Sensing Signaling Pathway in Ustilago maydis)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-12-31以後開放)
摘要(中) 雙型性絲狀真菌是一類能夠感知環境訊號並從營養型轉變為絲狀菌絲型態的微生物。這種形態轉換使它們能夠啟動感染過程,並在宿主植物體內完成整個生命週期。絲狀型態的產生需要一系列後續訊息路徑的激活,包括環境感知、特定基因的表達上調,以及複雜的調控網路的參與。在先前的研究發現,生物營養型真菌玉米黑穗病菌 (Ustilago maydis) 能夠感知宿主植物中的酚類化合物,並通過其細胞壁效應蛋白UmPR-1La來誘導絲狀生長。被UmPR-1La保護的絲狀菌絲能夠有效抵抗植物酚類化合物的毒性,提高其生存能力。但是,依賴於UmPR-1La感知酚類化合物的具體信號傳導通路仍不清楚。本研究表明,玉米黑穗病菌通過G蛋白信號通路感知訊號,以UmPR-1La依賴的方式觸發菌絲的形成。剔除GPA3會導致細胞形態明顯變化,維持絲狀生長;相反地,當GPA3活性型態被持續表達時,細胞對酚類化合物保持不敏感,保持芽胞形態。另一方面,在酚類化合物處理下,剔除GPA1不會誘導絲狀生長。這表明, GPA1在UmPR-1La依賴的絲狀生長中起正向作用,與GPA3的負向作用不同。而GPA2和GPA4在剔除後不具有顯著的影響。通過比較轉錄組分析,我發現G蛋白信號通路、MAPK信號通路以及一些效應蛋白和轉錄因子的表達都發生了上調,在參與配對、費洛蒙感知、絲狀菌絲生長和毒力上扮演UmPR-1La依賴和不依賴的角色。除此之外,也發現到費洛蒙基因MFA 的正向誘導受到UmPR-1La的存在所影響,然而,費洛蒙接收與訊息傳遞和UmPR-1La所產生的菌絲之間的關係仍需要日後的研究,在本篇論文,我主要發現型態轉換受環境訊號影響並受配對機制的過程所交互作用共同產生的結果,使真菌可以生長及成功佔領寄主。
摘要(英) Dimorphic filamentous fungi are capable to respond to environmental cues, transitioning from vegetative to filamentous cells. This transition enables them to initiate the infection process and complete life cycle within hosts. The initiation of filamentous growth requires the activation of subsequent events, including environmental sensing, upregulation of specific genes, and involvement of regulatory networks. We have previously demonstrated that the biotrophic fungus U. maydis responds to plant phenolics by inducing filamentous growth through a cell wall-associated effector protein, UmPR-1La. The UmPR-1La-shielded filaments effectively counteract the toxicity of plant phenolics and enhance survival. However, the specific signaling pathway dependent on the perception of phenolics by UmPR-1La remains unexplored. Here, I demonstrate that U. maydis perceives signals through the G-protein signaling pathway to trigger the filament formation in an UmPR-1La-dependent manner. The deletion of GPA3 resulted in cells exhibiting distinct morphology and remaining in filamentous form. In contrast, when the active form of Gpa3 was constitutively expressed, cells were insensitive to the phenolic treatment and retained sporidial morphology. On the other hand, the deletion of GPA1 did not induce filamentation, and the cells stayed as yeast-like cells. My findings suggest that, compared to the negative role of Gpa3, Gpa1 positively regulates U. maydis filamentous growth in an UmPR-1La-dependent manner, whereas Gpa2 and Gpa4 are dispensable in this signaling pathway. Through comparative transcriptomics analysis, I identified the upregulation of components in the G-protein signaling pathway (including Gpa2 and GPCR proteins) and the MAPK signaling pathway. Additionally, I also observed the upregulation of effector proteins and transcription factors that are known to regulate the events of mating/pheromone sensing and filamentous growth/virulence, both in UmPR-1La-dependent and independent manners. Indeed, the upregulation of pheromone gene MFA was also dependent on the presence of UmPR-1La. However, how pheromone sensing and host-signal perception are integrated to trigger the UmPR-1La-dependent filamentous growth is currently unknown and awaits investigation. My findings highlight the complexity of morphological transitions, demonstrating that these processes integrate both host environmental cues and the mating process. This underscores the intricate interplay between external signals and internal cellular mechanisms required for fungal development and successful adaptation in plant hosts.
關鍵字(中) ★ 玉米黑穗病
★ G 蛋白媒介訊息傳導路徑
★ 假性菌絲
★ 酚類化合物
★ 類PR蛋白
關鍵字(英) ★ Ustilago maydis
★ G protein-mediated signaling pathway
★ G protein-coupled receptor
★ pseudohyphae formation
★ phenolic compound
★ PR1-like
論文目次 中文摘要 I
Abstract II
致謝 IV
Index V
Table Index VII
Figure Index VIII
Chapter 1. Introduction 1
1.1 GPCR-G protein signaling networks in nutrient sensing 1
1.2 GPCR in pheromone sensing and mating process 2
1.3 The cAMP-PKA pathway- downstream players of GPCR-G protein signaling 4
1.4 The MAPK pathway- downstream players of GPCR-G protein signaling 5
1.5 Transcription factors involving in the signaling pathways 8
1.6 U. maydis effectors and overview of this work 12
Chapter 2. Material and methods 14
2.1 Strains and culture conditions 14
2.2 Bioinformatic analysis 14
2.3 PCR reaction 14
2.4 E. coli transformation 15
2.5 Colony PCR 15
2.6 Fungal deletion strains and complementation strains 16
2.7 Plasmid construction 16
2.8 U. maydis protoplast preparation 17
2.9 Protoplast transformation 18
2.10 U. maydis genomic DNA extraction 18
2.11 Southern blot 19
2.12 Phenolic treatment 20
2.13 Total RNA extraction 20
2.14 Reverse transcription and quantitative PCR analyses 21
2.15 Secretion assay 22
Chapter 3. Results 24
3.1 Gpa3 negatively regulates hyphae formation 24
3.2 Gpa1 positively and Gpa3 negatively regulate the pseudohyphae formation in FA treatment 24
3.3 Gpa1 partially regulates the expression of GPA2. 25
3.4 Transcriptome analysis of the putative GPCR 26
3.5 Components involved in the Rbf1-mediated b-filament pathway are upregulated in response to FA 27
3.5.1 Double deletion mutants in two MAPKs kpp2 and kpp6 are impaired in the filament formation under FA condition 27
3.5.2 Protein-Kinase C (PKC) is upregulated and may be involved in filament formation 29
3.5.3 Transcription factors involved in the Rbf1-mediated b-filament pathway are upregulated in response to FA 29
3.6 Effector and pheromone genes are upregulated in a PR-1La-dependent manner. 30
Chapter 4. Discussion 31
4.1 G proteins are involved in the PR-1La-dependent triggering filamentous pathway 31
4.2 Cross-talk between signaling pathways in response to plant signals 31
4.3 The Pheromone gene MFA as a key indicator of morphology transition 32
4.4 Hypothesis and Future Directions 33
Chapter 5. Tables and Figures 35
Chapter 6. Reference 88
Chapter 7. Appendix 94
參考文獻 1. Bockaert, J. and J.P. Pin, Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J, 1999. 18(7): p. 1723-9.
2. Hamm, H.E. and A. Gilchrist, Heterotrimeric G proteins. Curr Opin Cell Biol, 1996. 8(2): p. 189-96.
3. Xue, C., Y.-P. Hsueh, and J. Heitman, Magnificent seven: roles of G protein-coupled receptors in extracellular sensing in fungi. FEMS microbiology reviews, 2008. 32(6): p. 1010-1032.
4. Li, L., et al., Heterotrimeric G Protein Signaling in Filamentous Fungi*. Annual Review of Microbiology, 2007. 61(Volume 61, 2007): p. 423-452.
5. Gao, J., et al., Fungal G-Protein-Coupled Receptors: A Promising Mediator of the Impact of Extracellular Signals on Biosynthesis of Ochratoxin A. Front Microbiol, 2021. 12: p. 631392.
6. Holsbeeks, I., et al., The eukaryotic plasma membrane as a nutrient-sensing device. Trends in Biochemical Sciences, 2004. 29(10): p. 556-564.
7. Dijck, P.V., Nutrient sensing G protein-coupled receptors: interesting targets for antifungals? Medical Mycology, 2009. 47(7): p. 671-680.
8. Pan, X. and J. Heitman, Protein kinase A operates a molecular switch that governs yeast pseudohyphal differentiation. Mol Cell Biol, 2002. 22(12): p. 3981-93.
9. Kraakman, L., et al., A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Mol Microbiol, 1999. 32(5): p. 1002-12.
10. Welton, R.M. and C.S. Hoffman, Glucose monitoring in fission yeast via the Gpa2 galpha, the git5 Gbeta and the git3 putative glucose receptor. Genetics, 2000. 156(2): p. 513-21.
11. Maidan, M.M., et al., The G protein-coupled receptor Gpr1 and the Galpha protein Gpa2 act through the cAMP-protein kinase A pathway to induce morphogenesis in Candida albicans. Mol Biol Cell, 2005. 16(4): p. 1971-86.
12. Maidan, M.M., J.M. Thevelein, and P. Van Dijck, Carbon source induced yeast-to-hypha transition in Candida albicans is dependent on the presence of amino acids and on the G-protein-coupled receptor Gpr1. Biochem Soc Trans, 2005. 33(Pt 1): p. 291-3.
13. Pausch, M.H., G-protein-coupled receptors in Saccharomyces cerevisiae: high-throughput screening assays for drug discovery. Trends in Biotechnology, 1997. 15(12): p. 487-494.
14. Dohlman, H.G., et al., Model systems for the study of seven-transmembrane-segment receptors. Annu Rev Biochem, 1991. 60: p. 653-88.
15. Bardwell, L., A walk-through of the yeast mating pheromone response pathway. Peptides, 2005. 26(2): p. 339-50.
16. Schwartz, M.A. and H.D. Madhani, Principles of MAP kinase signaling specificity in Saccharomyces cerevisiae. Annu Rev Genet, 2004. 38: p. 725-48.
17. Lanver, D., et al., Ustilago maydis effectors and their impact on virulence. Nature Reviews Microbiology, 2017. 15(7): p. 409-421.
18. Kahmann, R. and J. Kamper, Ustilago maydis: how its biology relates to pathogenic development. New Phytologist, 2004. 164(1): p. 31-42.
19. Spellig, T., et al., Pheromones trigger filamentous growth in Ustilago maydis. EMBO J, 1994. 13(7): p. 1620-7.
20. Bolker, M., M. Urban, and R. Kahmann, The a mating type locus of U. maydis specifies cell signaling components. Cell, 1992. 68(3): p. 441-450.
21. Urban, M., R. Kahmann, and M. Bolker, Identification of the pheromone response element in Ustilago maydis. Mol Gen Genet, 1996. 251(1): p. 31-7.
22. Yu, C., et al., Progress in pathogenesis research of Ustilago maydis, and the metabolites involved along with their biosynthesis. Molecular Plant Pathology, 2023. 24(5): p. 495-509.
23. Regenfelder, E., et al., G proteins in Ustilago maydis: transmission of multiple signals? The EMBO journal, 1997.
24. Kaffarnik, F., et al., PKA and MAPK phosphorylation of Prf1 allows promoter discrimination in Ustilago maydis. EMBO J, 2003. 22(21): p. 5817-26.
25. Kruger, J., et al., Crosstalk between cAMP and pheromone signalling pathways in Ustilago maydis. Mol Gen Genet, 1998. 260(2-3): p. 193-8.
26. Banuett, F., Signalling in the yeasts: an informational cascade with links to the filamentous fungi. Microbiol Mol Biol Rev, 1998. 62(2): p. 249-74.
27. Kronstad, J., et al., Signaling via cAMP in fungi: interconnections with mitogen-activated protein kinase pathways. Archives of microbiology, 1998. 170: p. 395-404.
28. Borges-Walmsley, M.I. and A.R. Walmsley, cAMP signalling in pathogenic fungi: control of dimorphic switching and pathogenicity. Trends in Microbiology, 2000. 8(3): p. 133-141.
29. D′Souza, C.A. and J. Heitman, Conserved cAMP signaling cascades regulate fungal development and virulence. FEMS Microbiol Rev, 2001. 25(3): p. 349-64.
30. Xue, Y., M. Batlle, and J.P. Hirsch, GPR1 encodes a putative G protein-coupled receptor that associates with the Gpa2p Galpha subunit and functions in a Ras-independent pathway. EMBO J, 1998. 17(7): p. 1996-2007.
31. Pan, X. and J. Heitman, Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol, 1999. 19(7): p. 4874-87.
32. Toda, T., et al., In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell, 1985. 40(1): p. 27-36.
33. Kataoka, T., D. Broek, and M. Wigler, DNA sequence and characterization of the S. cerevisiae gene encoding adenylate cyclase. Cell, 1985. 43(2 Pt 1): p. 493-505.
34. Tamaki, H., Glucose-stimulated cAMP-protein kinase A pathway in yeast Saccharomyces cerevisiae. J Biosci Bioeng, 2007. 104(4): p. 245-50.
35. Gold, S., et al., cAMP regulates morphogenesis in the fungal pathogen Ustilago maydis. Genes Dev, 1994. 8(23): p. 2805-16.
36. Durrenberger, F., K. Wong, and J.W. Kronstad, Identification of a cAMP-dependent protein kinase catalytic subunit required for virulence and morphogenesis in Ustilago maydis. Proc Natl Acad Sci U S A, 1998. 95(10): p. 5684-9.
37. Muller, P., et al., Guanyl nucleotide exchange factor Sql2 and Ras2 regulate filamentous growth in Ustilago maydis. Eukaryot Cell, 2003. 2(3): p. 609-17.
38. Muller, P., et al., The Gbeta-subunit-encoding gene bpp1 controls cyclic-AMP signaling in Ustilago maydis. Eukaryot Cell, 2004. 3(3): p. 806-14.
39. Gold, S.E., et al., The Ustilago maydis regulatory subunit of a cAMP-dependent protein kinase is required for gall formation in maize. Plant Cell, 1997. 9(9): p. 1585-94.
40. Cullen, P.J. and G.F. Sprague, Jr., The regulation of filamentous growth in yeast. Genetics, 2012. 190(1): p. 23-49.
41. Zhao, X., R. Mehrabi, and J.R. Xu, Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryot Cell, 2007. 6(10): p. 1701-14.
42. Courchesne, W.E., R. Kunisawa, and J. Thorner, A putative protein kinase overcomes pheromone-induced arrest of cell cycling in S. cerevisiae. Cell, 1989. 58(6): p. 1107-19.
43. Kamada, Y., et al., Activation of yeast protein kinase C by Rho1 GTPase. J Biol Chem, 1996. 271(16): p. 9193-6.
44. Levin, D.E., Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev, 2005. 69(2): p. 262-91.
45. Muller, P., et al., Mating and pathogenic development of the Smut fungus Ustilago maydis are regulated by one mitogen-activated protein kinase cascade. Eukaryot Cell, 2003. 2(6): p. 1187-99.
46. Banuett, F. and I. Herskowitz, Identification of fuz7, a Ustilago maydis MEK/MAPKK homolog required for a-locus-dependent and -independent steps in the fungal life cycle. Genes Dev, 1994. 8(12): p. 1367-78.
47. Muller, P., et al., The MAP kinase kpp2 regulates mating and pathogenic development in Ustilago maydis. Molecular microbiology, 1999. 34(5): p. 1007-1017.
48. Brachmann, A., et al., An unusual MAP kinase is required for efficient penetration of the plant surface by Ustilago maydis. EMBO J, 2003. 22(9): p. 2199-210.
49. Garrido, E., et al., The induction of sexual development and virulence in the smut fungus Ustilago maydis depends on Crk1, a novel MAPK protein. Genes & development, 2004. 18(24): p. 3117-3130.
50. Lee, N. and J.W. Kronstad, ras2 Controls morphogenesis, pheromone response, and pathogenicity in the fungal pathogen Ustilago maydis. Eukaryot Cell, 2002. 1(6): p. 954-66.
51. Zarnack, K., Die Auswirkung der posttranslationellen Aktivierung des Transkriptionsfaktors Prf1 auf die Pheromonantwort in Ustilago maydis. Philipps-Universitat, Marburg/Lahn, 2006.
52. Nadal, M., M.D. Garcia-Pedrajas, and S.E. Gold, Dimorphism in fungal plant pathogens. FEMS microbiology letters, 2008. 284(2): p. 127-134.
53. Hamel, L.-P., et al., Mitogen-activated protein kinase signaling in plant-interacting fungi: distinct messages from conserved messengers. The Plant Cell, 2012. 24(4): p. 1327-1351.
54. Kijpornyongpan, T. and M.C. Aime, Investigating the Smuts: Common Cues, Signaling Pathways, and the Role of MAT in Dimorphic Switching and Pathogenesis. J Fungi (Basel), 2020. 6(4).
55. Baur, M., R.K. Esch, and B. Errede, Cooperative binding interactions required for function of the Ty1 sterile responsive element. Molecular and cellular biology, 1997. 17(8): p. 4330-4337.
56. Madhani, H.D. and G.R. Fink, Combinatorial control required for the specificity of yeast MAPK signaling. Science, 1997. 275(5304): p. 1314-1317.
57. Mosch, H.-U. and G.R. Fink, Dissection of filamentous growth by transposon mutagenesis in Saccharomyces cerevisiae. Genetics, 1997. 145(3): p. 671-684.
58. Madhani, H.D., C.A. Styles, and G.R. Fink, MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell, 1997. 91(5): p. 673-684.
59. Cook, J.G., L. Bardwell, and J. Thorner, Inhibitory and activating functions for MAPK Kss1 in the S. cerevisiae filamentous-growth signalling pathway. Nature, 1997. 390(6655): p. 85-88.
60. Rupp, S., et al., MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. Embo j, 1999. 18(5): p. 1257-69.
61. Chen, R.E. and J. Thorner, Systematic epistasis analysis of the contributions of protein kinase A- and mitogen-activated protein kinase-dependent signaling to nutrient limitation-evoked responses in the yeast Saccharomyces cerevisiae. Genetics, 2010. 185(3): p. 855-70.
62. Hartmann, H.A., R. Kahmann, and M. Bolker, The pheromone response factor coordinates filamentous growth and pathogenicity in Ustilago maydis. The EMBO journal, 1996. 15(7): p. 1632-1641.
63. Schlesinger, R., R. Kahmann, and J. Kamper, The homeodomains of the heterodimeric bE and bW proteins of Ustilago maydis are both critical for function. Molecular and General Genetics MGG, 1997. 254(5): p. 514-519.
64. Romeis, T., et al., Identification of a target gene for the bE-bW homeodomain protein complex in Ustilago maydis. Mol Microbiol, 2000. 37(1): p. 54-66.
65. Brachmann, A., et al., Identification of genes in the bW/bE regulatory cascade in Ustilago maydis. Mol Microbiol, 2001. 42(4): p. 1047-63.
66. Heimel, K., et al., The transcription factor Rbf1 is the master regulator for b-mating type controlled pathogenic development in Ustilago maydis. PLoS Pathog, 2010. 6(8): p. e1001035.
67. Scherer, M., et al., The Clp1 protein is required for clamp formation and pathogenic development of Ustilago maydis. Plant Cell, 2006. 18(9): p. 2388-401.
68. Chetsada, P., Functional characterization of the homeodomain transcription factor Hdp1 in Ustilago maydis. Philipps-Universitat, Marburg/Lahn.
69. Heimel, K., et al., The Ustilago maydis Clp1 protein orchestrates pheromone and b-dependent signaling pathways to coordinate the cell cycle and pathogenic development. Plant Cell, 2010. 22(8): p. 2908-22.
70. Flor-Parra, I., et al., Biz1, a zinc finger protein required for plant invasion by Ustilago maydis, regulates the levels of a mitotic cyclin. Plant Cell, 2006. 18(9): p. 2369-87.
71. Zarnack, K., et al., Pheromone-regulated target genes respond differentially to MAPK phosphorylation of transcription factor Prf1. Mol Microbiol, 2008. 69(4): p. 1041-53.
72. Tollot, M., et al., The WOPR Protein Ros1 Is a Master Regulator of Sporogenesis and Late Effector Gene Expression in the Maize Pathogen Ustilago maydis. PLoS Pathog, 2016. 12(6): p. e1005697.
73. Zahiri, A., et al., The Ustilago maydis forkhead transcription factor Fox1 is involved in the regulation of genes required for the attenuation of plant defenses during pathogenic development. Mol Plant Microbe Interact, 2010. 23(9): p. 1118-29.
74. Vollmeister, E., et al., Fungal development of the plant pathogen Ustilago maydis. FEMS Microbiology Reviews, 2012. 36(1): p. 59-77.
75. Lanver, D., et al., The Biotrophic Development of Ustilago maydis Studied by RNA-Seq Analysis. Plant Cell, 2018. 30(2): p. 300-323.
76. Mueller, A.N., et al., Compatibility in the Ustilago maydis–maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2. PLoS pathogens, 2013. 9(2): p. e1003177.
77. Misas Villamil, J.C., et al., A fungal substrate mimicking molecule suppresses plant immunity via an inter-kingdom conserved motif. Nature Communications, 2019. 10(1): p. 1576.
78. Djamei, A., et al., Metabolic priming by a secreted fungal effector. Nature, 2011. 478(7369): p. 395-398.
79. Lin, Y.-H., et al., Ustilago maydis PR-1-like protein has evolved two distinct domains for dual virulence activities. Nature Communications, 2023. 14(1): p. 5755.
80. Bolker, M., et al., Genetic regulation of mating and dimorphism in Ustilago maydis. Canadian Journal of Botany, 1995. 73(S1): p. 320-325.
81. Sievers, F., et al., Fast, scalable generation of high?quality protein multiple sequence alignments using Clustal Omega. Molecular systems biology, 2011. 7(1): p. 539.
82. Capella-Gutierrez, S., J.M. Silla-Martinez, and T. Gabaldon, trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 2009. 25(15): p. 1972-1973.
83. Tamura, K., G. Stecher, and S. Kumar, MEGA11: molecular evolutionary genetics analysis version 11. Molecular biology and evolution, 2021. 38(7): p. 3022-3027.
84. Kamper, J., A PCR-based system for highly efficient generation of gene replacement mutants in Ustilago maydis. Molecular genetics and genomics, 2004. 271: p. 103-110.
85. Spellig, T., A. Bottin, and R. Kahmann, Green fluorescent protein (GFP) as a new vital marker in the phytopathogenic fungus Ustilago maydis. Molecular and General Genetics MGG, 1996. 252: p. 503-509.
86. Livak, K.J. and T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2? ΔΔCT method. methods, 2001. 25(4): p. 402-408.
87. Hoang, C.V., C.K. Bhaskar, and L.-S. Ma, A novel core effector Vp1 promotes fungal colonization and virulence of Ustilago maydis. Journal of Fungi, 2021. 7(8): p. 589.
88. Bolker, M., et al., Tagging pathogenicity genes in Ustilago maydis by restriction enzyme-mediated integration (REMI). Mol Gen Genet, 1995. 248(5): p. 547-52.
89. Xie, J.L., et al., Signaling through Lrg1, Rho1 and Pkc1 governs Candida albicans morphogenesis in response to diverse cues. PLoS genetics, 2016. 12(10): p. e1006405.
90. Lanver, D., et al., Plant surface cues prime Ustilago maydis for biotrophic development. PLoS Pathog, 2014. 10(7): p. e1004272.
指導教授 馬麗珊 吳少傑(Lay-Sun Ma Shaw-Jye Wu) 審核日期 2024-10-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明