參考文獻 |
1. Buckingham, M. and P.W. Rigby, Gene regulatory networks and transcriptional mechanisms that control myogenesis. Dev Cell, 2014. 28(3): p. 225-38.
2. Quarto, N., et al., Origin matters: differences in embryonic tissue origin and Wnt signaling determine the osteogenic potential and healing capacity of frontal and parietal calvarial bones. J Bone Miner Res, 2010. 25(7): p. 1680-94.
3. Berendsen, A.D. and B.R. Olsen, Bone development. Bone, 2015. 80: p. 14-18.
4. Chan, W.C.W., et al., Regulation and Role of Transcription Factors in Osteogenesis. Int J Mol Sci, 2021. 22(11).
5. Iizuka, K., T. Machida, and M. Hirafuji, Skeletal muscle is an endocrine organ. J Pharmacol Sci, 2014. 125(2): p. 125-31.
6. Hoffmann, C. and C. Weigert, Skeletal Muscle as an Endocrine Organ: The Role of Myokines in Exercise Adaptations. Cold Spring Harb Perspect Med, 2017. 7(11).
7. McCarthy, J.J. and K.A. Esser, Anabolic and catabolic pathways regulating skeletal muscle mass. Curr Opin Clin Nutr Metab Care, 2010. 13(3): p. 230-5.
8. McPherron, A.C., A.M. Lawler, and S.J. Lee, Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature, 1997. 387(6628): p. 83-90.
9. Weigert, C., et al., The secretome of the working human skeletal muscle--a promising opportunity to combat the metabolic disaster? Proteomics Clin Appl, 2014. 8(1-2): p. 5-18.
10. Henningsen, J., et al., Dynamics of the skeletal muscle secretome during myoblast differentiation. Mol Cell Proteomics, 2010. 9(11): p. 2482-96.
11. Jodeiri Farshbaf, M. and K. Alvina, Multiple Roles in Neuroprotection for the Exercise Derived Myokine Irisin. Front Aging Neurosci, 2021. 13: p. 649929.
12. Peng, H., et al., Myokine mediated muscle-kidney crosstalk suppresses metabolic reprogramming and fibrosis in damaged kidneys. Nature Communications, 2017. 8.
13. Severinsen, M.C.K. and B.K. Pedersen, Muscle-Organ Crosstalk: The Emerging Roles of Myokines. Endocr Rev, 2020. 41(4): p. 594-609.
14. Lee, P., et al., Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab, 2014. 19(2): p. 302-9.
15. Ribas, F., et al., FGF21 expression and release in muscle cells: involvement of MyoD and regulation by mitochondria-driven signalling. Biochem J, 2014. 463(2): p. 191-9.
16. Bostrom, P., et al., A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 2012. 481(7382): p. 463-8.
17. LeBleu, V.S., et al., PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol, 2014. 16(10): p. 992-1003, 1-15.
18. Loffler, D., et al., Serum irisin levels are regulated by acute strenuous exercise. J Clin Endocrinol Metab, 2015. 100(4): p. 1289-99.
19. Moon, H.S. and C.S. Mantzoros, Regulation of cell proliferation and malignant potential by irisin in endometrial, colon, thyroid and esophageal cancer cell lines. Metabolism, 2014. 63(2): p. 188-93.
20. Liu, J., et al., Irisin inhibits pancreatic cancer cell growth via the AMPK-mTOR pathway. Sci Rep, 2018. 8(1): p. 15247.
21. Provatopoulou, X., et al., Serum irisin levels are lower in patients with breast cancer: association with disease diagnosis and tumor characteristics. BMC Cancer, 2015. 15: p. 898.
22. Itoh, N., FGF21 as a Hepatokine, Adipokine, and Myokine in Metabolism and Diseases. Front Endocrinol (Lausanne), 2014. 5: p. 107.
23. Fisher, F.M., et al., Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology, 2011. 152(8): p. 2996-3004.
24. Fisher, F.M., et al., FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev, 2012. 26(3): p. 271-81.
25. Izumiya, Y., et al., FGF21 is an Akt-regulated myokine. FEBS Lett, 2008. 582(27): p. 3805-10.
26. Yan, B., et al., FGF21-FGFR1 controls mitochondrial homeostasis in cardiomyocytes by modulating the degradation of OPA1. Cell Death Dis, 2023. 14(5): p. 311.
27. Lee, J.H. and H.S. Jun, Role of Myokines in Regulating Skeletal Muscle Mass and Function. Front Physiol, 2019. 10: p. 42.
28. Schranner, D., et al., Metabolite Concentration Changes in Humans After a Bout of Exercise: a Systematic Review of Exercise Metabolomics Studies. Sports Med Open, 2020. 6(1): p. 11.
29. Li, V.L., et al., An exercise-inducible metabolite that suppresses feeding and obesity. Nature, 2022. 606(7915): p. 785-790.
30. Tajbakhsh, S., Skeletal muscle stem cells in developmental versus regenerative myogenesis. J Intern Med, 2009. 266(4): p. 372-89.
31. Bentzinger, C.F., J. von Maltzahn, and M.A. Rudnicki, Extrinsic regulation of satellite cell specification. Stem Cell Res Ther, 2010. 1(3): p. 27.
32. Rudnicki, M.A., et al., The molecular regulation of muscle stem cell function. Cold Spring Harb Symp Quant Biol, 2008. 73: p. 323-31.
33. Bentzinger, C.F., Y.X. Wang, and M.A. Rudnicki, Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol, 2012. 4(2).
34. Kuang, S., et al., Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis. J Cell Biol, 2006. 172(1): p. 103-13.
35. Collins, C.A., et al., Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell, 2005. 122(2): p. 289-301.
36. Hojo, H., S. Ohba, and U.I. Chung, Signaling pathways regulating the specification and differentiation of the osteoblast lineage. Regen Ther, 2015. 1: p. 57-62.
37. Karsenty, G. and E.F. Wagner, Reaching a genetic and molecular understanding of skeletal development. Dev Cell, 2002. 2(4): p. 389-406.
38. Calvi, L.M., et al., Osteoblastic cells regulate the haematopoietic stem cell niche. Nature, 2003. 425(6960): p. 841-6.
39. Zhang, J., et al., Identification of the haematopoietic stem cell niche and control of the niche size. Nature, 2003. 425(6960): p. 836-41.
40. Cancedda, R., F. Descalzi Cancedda, and P. Castagnola, Chondrocyte differentiation. Int Rev Cytol, 1995. 159: p. 265-358.
41. Roughley, P.J. and J.S. Mort, The role of aggrecan in normal and osteoarthritic cartilage. J Exp Orthop, 2014. 1(1): p. 8.
42. Gao, Y., et al., The ECM-cell interaction of cartilage extracellular matrix on chondrocytes. Biomed Res Int, 2014. 2014: p. 648459.
43. Kirk, B., et al., Muscle, Bone, and Fat Crosstalk: the Biological Role of Myokines, Osteokines, and Adipokines. Curr Osteoporos Rep, 2020. 18(4): p. 388-400.
44. Colaianni, G., et al., The myokine irisin increases cortical bone mass. Proc Natl Acad Sci U S A, 2015. 112(39): p. 12157-62.
45. Kim, H., et al., Irisin Mediates Effects on Bone and Fat via alphaV Integrin Receptors. Cell, 2018. 175(7): p. 1756-1768 e17.
46. Wei, W., et al., Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor gamma. Proc Natl Acad Sci U S A, 2012. 109(8): p. 3143-8.
47. Wang, X., et al., A Liver-Bone Endocrine Relay by IGFBP1 Promotes Osteoclastogenesis and Mediates FGF21-Induced Bone Resorption. Cell Metab, 2015. 22(5): p. 811-24.
48. Ishida, K. and D.R. Haudenschild, Interactions between FGF21 and BMP-2 in osteogenesis. Biochem Biophys Res Commun, 2013. 432(4): p. 677-82.
49. Yang, S., et al., Effect of FGF-21 on implant bone defects through hepatocyte growth factor (HGF)-mediated PI3K/AKT signaling pathway. Biomed Pharmacother, 2019. 109: p. 1259-1267.
50. Engler, A.J., et al., Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol, 2004. 166(6): p. 877-87.
51. Genchi, G.G., et al., Bio/non-bio interfaces: a straightforward method for obtaining long term PDMS/muscle cell biohybrid constructs. Colloids Surf B Biointerfaces, 2013. 105: p. 144-51.
52. Kaji, H., et al., Electrically induced contraction of C2C12 myotubes cultured on a porous membrane-based substrate with muscle tissue-like stiffness. Biomaterials, 2010. 31(27): p. 6981-6.
53. Kamal, K.Y., et al., Bioreactor development for skeletal muscle hypertrophy and atrophy by manipulating uniaxial cyclic strain: proof of concept. NPJ Microgravity, 2024. 10(1): p. 62.
54. Zhang, Y., et al., Applying exercise-mimetic engineered skeletal muscle model to interrogate the adaptive response of irisin to mechanical force. iScience, 2022. 25(4): p. 104135.
55. Adams, A.C., et al., Thyroid hormone regulates hepatic expression of fibroblast growth factor 21 in a PPARalpha-dependent manner. J Biol Chem, 2010. 285(19): p. 14078-82.
56. Dai, H., et al., FGF21 facilitates autophagy in prostate cancer cells by inhibiting the PI3K-Akt-mTOR signaling pathway. Cell Death Dis, 2021. 12(4): p. 303.
57. Zhang, T., et al., FGF21 increases the sensitivity of hepatocellular carcinoma to sorafenib under hypoxia. Malignancy Spectrum, 2024. 1(2): p. 99-112.
58. Tian, J., et al., OPN Deficiency Increases the Severity of Osteoarthritis Associated with Aberrant Chondrocyte Senescence and Apoptosis and Upregulates the Expression of Osteoarthritis-Associated Genes. Pain Res Manag, 2020. 2020: p. 3428587.
59. Zhu, H., et al., CRISPRa-based activation of Fgf21 and Fndc5 ameliorates obesity by promoting adipocytes browning. Clin Transl Med, 2023. 13(7): p. e1326. |