參考文獻 |
Abels, E. R., & Breakefield, X. O. (2016). Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. Cell Mol Neurobiol, 36(3), 301-312. https://doi.org/10.1007/s10571-016-0366-z
Altman, B. J., Stine, Z. E., & Dang, C. V. (2016). From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer, 16(10), 619-634. https://doi.org/10.1038/nrc.2016.71
Anker, M. S., Holcomb, R., Muscaritoli, M., von Haehling, S., Haverkamp, W., Jatoi, A., Morley, J. E., Strasser, F., Landmesser, U., Coats, A. J. S., & Anker, S. D. (2019). Orphan disease status of cancer cachexia in the USA and in the European Union: a systematic review. J Cachexia Sarcopenia Muscle, 10(1), 22-34. https://doi.org/10.1002/jcsm.12402
Argiles, J. M., Busquets, S., Toledo, M., & Lopez-Soriano, F. J. (2009). The role of cytokines in cancer cachexia. Curr Opin Support Palliat Care, 3(4), 263-268. https://doi.org/10.1097/SPC.0b013e3283311d09
Awad, S., Skipper, W., Vostrejs, W., Ozorowski, K., Min, K., Pfuhler, L., Mehta, D., & Cooke, A. (2024). The YBX3 RNA-binding protein posttranscriptionally controls SLC1A5 mRNA in proliferating and differentiating skeletal muscle cells. J Biol Chem, 300(2), 105602. https://doi.org/10.1016/j.jbc.2023.105602
Baghban, R., Roshangar, L., Jahanban-Esfahlan, R., Seidi, K., Ebrahimi-Kalan, A., Jaymand, M., Kolahian, S., Javaheri, T., & Zare, P. (2020). Tumor microenvironment complexity and therapeutic implications at a glance. Cell Communication and Signaling, 18(1), 59. https://doi.org/10.1186/s12964-020-0530-4
Baracos, V. E., Martin, L., Korc, M., Guttridge, D. C., & Fearon, K. C. H. (2018). Cancer-associated cachexia. Nat Rev Dis Primers, 4, 17105. https://doi.org/10.1038/nrdp.2017.105
Bhaskar, P. T., & Hay, N. (2007). The Two TORCs and Akt. Developmental Cell, 12(4), 487-502. https://doi.org/10.1016/j.devcel.2007.03.020
Bhutia, Y. D., & Ganapathy, V. (2016). Glutamine transporters in mammalian cells and their functions in physiology and cancer. Biochim Biophys Acta, 1863(10), 2531-2539. https://doi.org/10.1016/j.bbamcr.2015.12.017
Bilodeau, P. A., Coyne, E. S., & Wing, S. S. (2016). The ubiquitin proteasome system in atrophying skeletal muscle: roles and regulation. Am J Physiol Cell Physiol, 311(3), C392-403. https://doi.org/10.1152/ajpcell.00125.2016
Biolo, G., Fleming, R. Y., Maggi, S. P., & Wolfe, R. R. (1995). Transmembrane transport and intracellular kinetics of amino acids in human skeletal muscle. Am J Physiol, 268(1 Pt 1), E75-84. https://doi.org/10.1152/ajpendo.1995.268.1.E75
Bodine, S. C., & Baehr, L. M. (2014). Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab, 307(6), E469-484. https://doi.org/10.1152/ajpendo.00204.2014
Bodineau, C., Tome, M., Courtois, S., Costa, A. S. H., Sciacovelli, M., Rousseau, B., Richard, E., Vacher, P., Parejo-Perez, C., Bessede, E., Varon, C., Soubeyran, P., Frezza, C., Murdoch, P. D. S., Villar, V. H., & Duran, R. V. (2021). Two parallel pathways connect glutamine metabolism and mTORC1 activity to regulate glutamoptosis. Nat Commun, 12(1), 4814. https://doi.org/10.1038/s41467-021-25079-4
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R. L., Soerjomataram, I., & Jemal, A. (2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 74(3), 229-263. https://doi.org/10.3322/caac.21834
Buckingham, M. (2007). Skeletal muscle progenitor cells and the role of Pax genes. C R Biol, 330(6-7), 530-533. https://doi.org/10.1016/j.crvi.2007.03.015
Campos, F. G. (2017). Colorectal cancer in young adults: A difficult challenge. World J Gastroenterol, 23(28), 5041-5044. https://doi.org/10.3748/wjg.v23.i28.5041
Chal, J., & Pourquie, O. (2017). Making muscle: skeletal myogenesis in vivo and in vitro. Development, 144(12), 2104-2122. https://doi.org/10.1242/dev.151035
Choi, Y. K., & Park, K. G. (2018). Targeting Glutamine Metabolism for Cancer Treatment. Biomol Ther (Seoul), 26(1), 19-28. https://doi.org/10.4062/biomolther.2017.178
Collins, C. A., Gnocchi, V. F., White, R. B., Boldrin, L., Perez-Ruiz, A., Relaix, F., Morgan, J. E., & Zammit, P. S. (2009). Integrated functions of Pax3 and Pax7 in the regulation of proliferation, cell size and myogenic differentiation. PLoS One, 4(2), e4475. https://doi.org/10.1371/journal.pone.0004475
Curthoys, N. P., & Watford, M. (1995). Regulation of glutaminase activity and glutamine metabolism. Annu Rev Nutr, 15, 133-159. https://doi.org/10.1146/annurev.nu.15.070195.001025
Di, W., Zhang, W., Zhu, B., Li, X., Tang, Q., & Zhou, Y. (2021). Colorectal cancer prompted adipose tissue browning and cancer cachexia through transferring exosomal miR-146b-5p. J Cell Physiol, 236(7), 5399-5410. https://doi.org/10.1002/jcp.30245
Eagle, H. (1955). Nutrition needs of mammalian cells in tissue culture. Science, 122(3168), 501-514. https://doi.org/10.1126/science.122.3168.501
Fan, S. J., Kroeger, B., Marie, P. P., Bridges, E. M., Mason, J. D., McCormick, K., Zois, C. E., Sheldon, H., Khalid Alham, N., Johnson, E., Ellis, M., Stefana, M. I., Mendes, C. C., Wainwright, S. M., Cunningham, C., Hamdy, F. C., Morris, J. F., Harris, A. L., Wilson, C., & Goberdhan, D. C. (2020). Glutamine deprivation alters the origin and function of cancer cell exosomes. Embo j, 39(16), e103009. https://doi.org/10.15252/embj.2019103009
Fearon, K., Strasser, F., Anker, S. D., Bosaeus, I., Bruera, E., Fainsinger, R. L., Jatoi, A., Loprinzi, C., MacDonald, N., Mantovani, G., Davis, M., Muscaritoli, M., Ottery, F., Radbruch, L., Ravasco, P., Walsh, D., Wilcock, A., Kaasa, S., & Baracos, V. E. (2011). Definition and classification of cancer cachexia: an international consensus. Lancet Oncol, 12(5), 489-495. https://doi.org/10.1016/s1470-2045(10)70218-7
Gandhi, A. Y., Yu, J., Gupta, A., Guo, T., Iyengar, P., & Infante, R. E. (2022). Cytokine-Mediated STAT3 Transcription Supports ATGL/CGI-58-Dependent Adipocyte Lipolysis in Cancer Cachexia. Front Oncol, 12, 841758. https://doi.org/10.3389/fonc.2022.841758
Garber, A. J., Karl, I. E., & Kipnis, D. M. (1976). Alanine and glutamine synthesis and release from skeletal muscle. I. Glycolysis and amino acid release. J Biol Chem, 251(3), 826-835.
Gonzalez, A., Hall, M. N., Lin, S. C., & Hardie, D. G. (2020). AMPK and TOR: The Yin and Yang of Cellular Nutrient Sensing and Growth Control. Cell Metab, 31(3), 472-492. https://doi.org/10.1016/j.cmet.2020.01.015
Hensley, C. T., Wasti, A. T., & DeBerardinis, R. J. (2013). Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest, 123(9), 3678-3684. https://doi.org/10.1172/jci69600
Hernandez-Hernandez, J. M., Garcia-Gonzalez, E. G., Brun, C. E., & Rudnicki, M. A. (2017). The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration. Semin Cell Dev Biol, 72, 10-18. https://doi.org/10.1016/j.semcdb.2017.11.010
Huang, F., Zhao, Y., Zhao, J., Wu, S., Jiang, Y., Ma, H., & Zhang, T. (2014). Upregulated SLC1A5 promotes cell growth and survival in colorectal cancer. Int J Clin Exp Pathol, 7(9), 6006-6014.
Huang, Y.-F., Wang, Y., & Watford, M. (2007). Glutamine Directly Downregulates Glutamine Synthetase Protein Levels in Mouse C2C12 Skeletal Muscle Myotubes12. The Journal of Nutrition, 137(6), 1357-1362. https://doi.org/https://doi.org/10.1093/jn/137.6.1357
Huot, J. R., Novinger, L. J., Pin, F., & Bonetto, A. (2020). HCT116 colorectal liver metastases exacerbate muscle wasting in a mouse model for the study of colorectal cancer cachexia. Dis Model Mech, 13(1). https://doi.org/10.1242/dmm.043166
Isesele, P. O., & Mazurak, V. C. (2021). Regulation of Skeletal Muscle Satellite Cell Differentiation by Omega-3 Polyunsaturated Fatty Acids: A Critical Review. Front Physiol, 12, 682091. https://doi.org/10.3389/fphys.2021.682091
Jang, Y. N., & Baik, E. J. (2013). JAK-STAT pathway and myogenic differentiation. Jakstat, 2(2), e23282. https://doi.org/10.4161/jkst.23282
Jing, X., Yang, F., Shao, C., Wei, K., Xie, M., Shen, H., & Shu, Y. (2019). Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer, 18(1), 157. https://doi.org/10.1186/s12943-019-1089-9
Kalluri, R., & LeBleu, V. S. (2020). The biology, function, and biomedical applications of exosomes. Science, 367(6478). https://doi.org/10.1126/science.aau6977
Khalil, R. (2018). Ubiquitin-Proteasome Pathway and Muscle Atrophy. Adv Exp Med Biol, 1088, 235-248. https://doi.org/10.1007/978-981-13-1435-3_10
Komander, D. (2009). The emerging complexity of protein ubiquitination. Biochem Soc Trans, 37(Pt 5), 937-953. https://doi.org/10.1042/bst0370937
Kuhn, K. S., Schuhmann, K., Stehle, P., Darmaun, D., & Furst, P. (1999). Determination of glutamine in muscle protein facilitates accurate assessment of proteolysis and de novo synthesis-derived endogenous glutamine production. Am J Clin Nutr, 70(4), 484-489. https://doi.org/10.1093/ajcn/70.4.484
Labow, B. I., Souba, W. W., & Abcouwer, S. F. (2001). Mechanisms Governing the Expression of the Enzymes of Glutamine Metabolism—Glutaminase and Glutamine Synthetase. The Journal of Nutrition, 131(9), 2467S-2474S. https://doi.org/https://doi.org/10.1093/jn/131.9.2467S
Leowattana, W., Leowattana, P., & Leowattana, T. (2023). Systemic treatment for metastatic colorectal cancer. World J Gastroenterol, 29(10), 1569-1588. https://doi.org/10.3748/wjg.v29.i10.1569
Li, Y. P., Chen, Y., John, J., Moylan, J., Jin, B., Mann, D. L., & Reid, M. B. (2005). TNF-alpha acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. Faseb j, 19(3), 362-370. https://doi.org/10.1096/fj.04-2364com
Malla, J., Zahra, A., Venugopal, S., Selvamani, T. Y., Shoukrie, S. I., Selvaraj, R., Dhanoa, R. K., Hamouda, R. K., & Mostafa, J. (2022). What Role Do Inflammatory Cytokines Play in Cancer Cachexia? Cureus, 14(7), e26798. https://doi.org/10.7759/cureus.26798
Miao, C., Zhang, W., Feng, L., Gu, X., Shen, Q., Lu, S., Fan, M., Li, Y., Guo, X., Ma, Y., Liu, X., Wang, H., & Zhang, X. (2021). Cancer-derived exosome miRNAs induce skeletal muscle wasting by Bcl-2-mediated apoptosis in colon cancer cachexia. Mol Ther Nucleic Acids, 24, 923-938. https://doi.org/10.1016/j.omtn.2021.04.015
Nicklin, P., Bergman, P., Zhang, B., Triantafellow, E., Wang, H., Nyfeler, B., Yang, H., Hild, M., Kung, C., Wilson, C., Myer, V. E., MacKeigan, J. P., Porter, J. A., Wang, Y. K., Cantley, L. C., Finan, P. M., & Murphy, L. O. (2009). Bidirectional transport of amino acids regulates mTOR and autophagy. Cell, 136(3), 521-534. https://doi.org/10.1016/j.cell.2008.11.044
Nurjhan, N., Bucci, A., Perriello, G., Stumvoll, M., Dailey, G., Bier, D. M., Toft, I., Jenssen, T. G., & Gerich, J. E. (1995). Glutamine: a major gluconeogenic precursor and vehicle for interorgan carbon transport in man. J Clin Invest, 95(1), 272-277. https://doi.org/10.1172/jci117651
Pan, M., Reid, M. A., Lowman, X. H., Kulkarni, R. P., Tran, T. Q., Liu, X., Yang, Y., Hernandez-Davies, J. E., Rosales, K. K., Li, H., Hugo, W., Song, C., Xu, X., Schones, D. E., Ann, D. K., Gradinaru, V., Lo, R. S., Locasale, J. W., & Kong, M. (2016). Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation. Nature Cell Biology, 18(10), 1090-1101. https://doi.org/10.1038/ncb3410
Pedersen, K. S., Gatto, F., Zerahn, B., Nielsen, J., Pedersen, B. K., Hojman, P., & Gehl, J. (2020). Exercise-Mediated Lowering of Glutamine Availability Suppresses Tumor Growth and Attenuates Muscle Wasting. iScience, 23(4), 100978. https://doi.org/10.1016/j.isci.2020.100978
Prado, B. L., & Qian, Y. (2019). Anti-cytokines in the treatment of cancer cachexia. Ann Palliat Med, 8(1), 67-79. https://doi.org/10.21037/apm.2018.07.06
Ruan, G. T., Xie, H. L., Yuan, K. T., Lin, S. Q., Zhang, H. Y., Liu, C. A., Shi, J. Y., Ge, Y. Z., Song, M. M., Hu, C. L., Zhang, X. W., Liu, X. Y., Yang, M., Wang, K. H., Zheng, X., Chen, Y., Hu, W., Cong, M. H., Zhu, L. C., . . . Shi, H. P. (2023). Prognostic value of systemic inflammation and for patients with colorectal cancer cachexia. J Cachexia Sarcopenia Muscle, 14(6), 2813-2823. https://doi.org/10.1002/jcsm.13358
Ruers, T., & Bleichrodt, R. P. (2002). Treatment of liver metastases, an update on the possibilities and results. Eur J Cancer, 38(7), 1023-1033. https://doi.org/10.1016/s0959-8049(02)00059-x
Sakata, T., Ferdous, G., Tsuruta, T., Satoh, T., Baba, S., Muto, T., Ueno, A., Kanai, Y., Endou, H., & Okayasu, I. (2009). L-type amino-acid transporter 1 as a novel biomarker for high-grade malignancy in prostate cancer. Pathol Int, 59(1), 7-18. https://doi.org/10.1111/j.1440-1827.2008.02319.x
Schmidt, M., Schuler, S. C., Huttner, S. S., von Eyss, B., & von Maltzahn, J. (2019). Adult stem cells at work: regenerating skeletal muscle. Cell Mol Life Sci, 76(13), 2559-2570. https://doi.org/10.1007/s00018-019-03093-6
Sener, A., & Malaisse, W. J. (1980). L-leucine and a nonmetabolized analogue activate pancreatic islet glutamate dehydrogenase. Nature, 288(5787), 187-189. https://doi.org/10.1038/288187a0
Setiawan, T., Sari, I. N., Wijaya, Y. T., Julianto, N. M., Muhammad, J. A., Lee, H., Chae, J. H., & Kwon, H. Y. (2023). Cancer cachexia: molecular mechanisms and treatment strategies. J Hematol Oncol, 16(1), 54. https://doi.org/10.1186/s13045-023-01454-0
Tajbakhsh, S. (2009). Skeletal muscle stem cells in developmental versus regenerative myogenesis. J Intern Med, 266(4), 372-389. https://doi.org/10.1111/j.1365-2796.2009.02158.x
Urabe, F., Kosaka, N., Ito, K., Kimura, T., Egawa, S., & Ochiya, T. (2020). Extracellular vesicles as biomarkers and therapeutic targets for cancer. Am J Physiol Cell Physiol, 318(1), C29-c39. https://doi.org/10.1152/ajpcell.00280.2019
Valderrama-Trevino, A. I., Barrera-Mera, B., Ceballos-Villalva, J. C., & Montalvo-Jave, E. E. (2017). Hepatic Metastasis from Colorectal Cancer. Euroasian J Hepatogastroenterol, 7(2), 166-175. https://doi.org/10.5005/jp-journals-10018-1241
van Geldermalsen, M., Wang, Q., Nagarajah, R., Marshall, A. D., Thoeng, A., Gao, D., Ritchie, W., Feng, Y., Bailey, C. G., Deng, N., Harvey, K., Beith, J. M., Selinger, C. I., O′Toole, S. A., Rasko, J. E., & Holst, J. (2016). ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer. Oncogene, 35(24), 3201-3208. https://doi.org/10.1038/onc.2015.381
Wang, Y., Dong, Z., An, Z., & Jin, W. (2024). Cancer cachexia: Focus on cachexia factors and inter-organ communication. Chin Med J (Engl), 137(1), 44-62. https://doi.org/10.1097/cm9.0000000000002846
Wu, C., Zhu, M., Lu, Z., Zhang, Y., Li, L., Li, N., Yin, L., Wang, H., Song, W., & Xu, H. (2021). L-carnitine ameliorates the muscle wasting of cancer cachexia through the AKT/FOXO3a/MaFbx axis. Nutr Metab (Lond), 18(1), 98. https://doi.org/10.1186/s12986-021-00623-7
Yoo, H. C., Yu, Y. C., Sung, Y., & Han, J. M. (2020). Glutamine reliance in cell metabolism. Exp Mol Med, 52(9), 1496-1516. https://doi.org/10.1038/s12276-020-00504-8
Zammit, P. S. (2017). Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin Cell Dev Biol, 72, 19-32. https://doi.org/10.1016/j.semcdb.2017.11.011
Zanou, N., & Gailly, P. (2013). Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways. Cell Mol Life Sci, 70(21), 4117-4130. https://doi.org/10.1007/s00018-013-1330-4
Zechner, R., Kienesberger, P. C., Haemmerle, G., Zimmermann, R., & Lass, A. (2009). Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. J Lipid Res, 50(1), 3-21. https://doi.org/10.1194/jlr.R800031-JLR200
Zhang, J., Pavlova, N. N., & Thompson, C. B. (2017). Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine. Embo j, 36(10), 1302-1315. https://doi.org/10.15252/embj.201696151
Zierath, J. R., & Hawley, J. A. (2004). Skeletal muscle fiber type: influence on contractile and metabolic properties. PLoS Biol, 2(10), e348. https://doi.org/10.1371/journal.pbio.0020348 |