參考文獻 |
參考文獻
[1] Y. Ao, Z. Wang, J. Hu, M. Yao, and W. J. S. R. Zhang, "Identification of essential genes and immune cell infiltration in rheumatoid arthritis by bioinformatics analysis," vol. 13, no. 1, p. 2032, 2023.
[2] D. Wu et al., "Systemic complications of rheumatoid arthritis: Focus on pathogenesis and treatment," vol. 13, p. 1051082, 2022.
[3] J. Bullock et al., "Rheumatoid arthritis: a brief overview of the treatment," vol. 27, no. 6, pp. 501-507, 2019.
[4] M. Babaahmadi et al., "Rheumatoid arthritis: the old issue, the new therapeutic approach," vol. 14, no. 1, p. 268, 2023.
[5] Y. Guan, Y. Zhang, Y. Zhu, and Y. J. S. R. Wang, "CXCL10 as a shared specific marker in rheumatoid arthritis and inflammatory bowel disease and a clue involved in the mechanism of intestinal flora in rheumatoid arthritis," vol. 13, no. 1, p. 9754, 2023.
[6] S. K. J. J. o. M. C. P. Agarwal, "Biologic agents in rheumatoid arthritis: an update for managed care professionals," vol. 17, no. 9 Supp B, pp. S14-S18, 2011.
[7] G. Litjens et al., "A survey on deep learning in medical image analysis," vol. 42, pp. 60-88, 2017.
[8] M. W. Libbrecht and W. S. J. N. R. G. Noble, "Machine learning applications in genetics and genomics," vol. 16, no. 6, pp. 321-332, 2015.
[9] E. W. Steyerberg, M. J. Eijkemans, F. E. Harrell Jr, and J. D. F. J. S. i. m. Habbema, "Prognostic modelling with logistic regression analysis: a comparison of selection and estimation methods in small data sets," vol. 19, no. 8, pp. 1059-1079, 2000.
[10] R. Diaz-Uriarte and S. A. J. a. p. q.-b. de Andres, "Variable selection from random forests: application to gene expression data," 2005.
[11] C. Ding and X. He, "K-means clustering via principal component analysis," in Proceedings of the twenty-first international conference on Machine learning, 2004, p. 29.
[12] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. J. B. i. b. Dudley, "Deep learning for healthcare: review, opportunities and challenges," vol. 19, no. 6, pp. 1236-1246, 2018.
[13] A. E. Johnson, M. M. Ghassemi, S. Nemati, K. E. Niehaus, D. A. Clifton, and G. D. J. P. o. t. I. Clifford, "Machine learning and decision support in critical care," vol. 104, no. 2, pp. 444-466, 2016.
[14] H. Liao et al., "Use of mass spectrometry to identify protein biomarkers of disease severity in the synovial fluid and serum of patients with rheumatoid arthritis," vol. 50, no. 12, pp. 3792-3803, 2004.
[15] N. Jung et al., "LC-MS/MS-based serum proteomics reveals a distinctive signature in a rheumatoid arthritis mouse model after treatment with mesenchymal stem cells," vol. 17, no. 11, p. e0277218, 2022.
[16] J. Kedra, T. Davergne, B. Braithwaite, H. Servy, and L. J. E. R. o. C. I. Gossec, "Machine learning approaches to improve disease management of patients with rheumatoid arthritis: review and future directions," vol. 17, no. 12, pp. 1311-1321, 2021.
[17] D. W. Huang, B. T. Sherman, and R. A. J. N. p. Lempicki, "Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources," vol. 4, no. 1, pp. 44-57, 2009.
[18] W. Xiong et al., "Bioinformatics analysis and experimental validation of differential genes and pathways in bone nonunions," pp. 1-24, 2024.
[19] S. Jahangir et al., "LC-MS/MS-Based Serum Protein Profiling for Identification of Candidate Biomarkers in Pakistani Rheumatoid Arthritis Patients," vol. 12, no. 3, p. 464, 2022.
[20] Y.-J. Chen, W.-A. Chang, L.-Y. Wu, Y.-L. Hsu, C.-H. Chen, and P.-L. J. I. J. o. M. S. Kuo, "Systematic analysis of differential expression profile in rheumatoid arthritis chondrocytes using next-generation sequencing and bioinformatics approaches," vol. 15, no. 11, p. 1129, 2018.
[21] F. Wu, F. Gao, S. He, and Y. J. M. M. R. Xiao, "Identification of hub genes in chronically hypoxic myocardium using bioinformatics analysis," vol. 19, no. 5, pp. 3871-3881, 2019.
[22] Q. Qin, R. Song, P. Du, C. Gao, Q. Yao, and J.-a. J. J. o. I. R. Zhang, "Systemic proteomic analysis reveals distinct exosomal protein profiles in rheumatoid arthritis," vol. 2021, no. 1, p. 9421720, 2021.
[23] J. A. Vizcaino et al., "ProteomeXchange provides globally coordinated proteomics data submission and dissemination," vol. 32, no. 3, pp. 223-226, 2014.
[24] Y. Perez-Riverol et al., "The PRIDE database and related tools and resources in 2019: improving support for quantification data," vol. 47, no. D1, pp. D442-D450, 2019.
[25] J. Ma et al., "iProX: an integrated proteome resource," vol. 47, no. D1, pp. D1211-D1217, 2019.
[26] P. Downton et al., "Chronic inflammatory arthritis drives systemic changes in circadian energy metabolism," vol. 119, no. 18, p. e2112781119, 2022.
[27] P. Han et al., "Serum antigenome profiling reveals diagnostic models for rheumatoid arthritis," vol. 13, p. 884462, 2022.
[28] C. Hu et al., "Proteome profiling identifies serum biomarkers in rheumatoid arthritis," vol. 13, p. 865425, 2022.
[29] O. J. Arntz et al., "Profiling of plasma extracellular vesicles identifies proteins that strongly associate with patient’s global assessment of disease activity in rheumatoid arthritis," vol. 10, p. 1247778, 2024.
[30] D. Kessner, M. Chambers, R. Burke, D. Agus, and P. J. B. Mallick, "ProteoWizard: open source software for rapid proteomics tools development," vol. 24, no. 21, pp. 2534-2536, 2008.
[31] L. Kall, J. D. Canterbury, J. Weston, W. S. Noble, and M. J. J. N. m. MacCoss, "Semi-supervised learning for peptide identification from shotgun proteomics datasets," vol. 4, no. 11, pp. 923-925, 2007.
[32] A. T. Kong, F. V. Leprevost, D. M. Avtonomov, D. Mellacheruvu, and A. I. J. N. m. Nesvizhskii, "MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry–based proteomics," vol. 14, no. 5, pp. 513-520, 2017.
[33] F. da Veiga Leprevost et al., "Philosopher: a versatile toolkit for shotgun proteomics data analysis," vol. 17, no. 9, pp. 869-870, 2020.
[34] F. Yu, S. E. Haynes, A. I. J. M. Nesvizhskii, and C. Proteomics, "IonQuant enables accurate and sensitive label-free quantification with FDR-controlled match-between-runs," vol. 20, 2021.
[35] G. Van Rossum and F. L. Drake, An introduction to Python. Network Theory Ltd. Bristol, 2003.
[36] S. J. L. J. o. R. i. S. N. Kappal and Formal, "Data normalization using median median absolute deviation MMAD based Z-score for robust predictions vs. min–max normalization," vol. 19, no. 4, pp. 39-44, 2019.
[37] S. Liu et al., "Fibrinogen-like protein 1 is a novel biomarker for predicting disease activity and prognosis of rheumatoid arthritis," vol. 11, p. 579228, 2020.
[38] B. J. Almokhtar and A. Elengoe, "Determination of the EGFR Gene Role in Lung Cancer Pathway using STRING and Cytoscape Software," 2024.
[39] H. Cao, Y. Fu, Z. Zhang, and W. J. F. i. P. Guo, "Unbiased transcriptome mapping and modeling identify candidate genes and compounds of osteoarthritis," vol. 13, p. 888533, 2022.
[40] T. Chen and C. Guestrin, "Xgboost: A scalable tree boosting system," in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 2016, pp. 785-794.
[41] A. Taherkhani, G. Cosma, and T. M. J. N. McGinnity, "AdaBoost-CNN: An adaptive boosting algorithm for convolutional neural networks to classify multi-class imbalanced datasets using transfer learning," vol. 404, pp. 351-366, 2020.
[42] L. J. M. l. Breiman, "Random forests," vol. 45, pp. 5-32, 2001.
[43] C.-Y. J. Peng, K. L. Lee, and G. M. J. T. j. o. e. r. Ingersoll, "An introduction to logistic regression analysis and reporting," vol. 96, no. 1, pp. 3-14, 2002.
[44] M.-C. Popescu, V. E. Balas, L. Perescu-Popescu, N. J. W. T. o. C. Mastorakis, and Systems, "Multilayer perceptron and neural networks," vol. 8, no. 7, pp. 579-588, 2009.
[45] V. J. S. o. E. Jakkula, Washington State University, "Tutorial on support vector machine (svm)," vol. 37, no. 2.5, p. 3, 2006.
[46] S. G. Zikiryayevna, P. U. Sunatovich, K. U. J. E. J. o. M. Azimovich, and N. Sciences, "RELATIONSHIP BETWEEN ANEMIA AND HAPTOGLOBIN GENOTYPE IN PATIENTS WITH RHEUMATOID ARTHRITIS," vol. 4, no. 10, pp. 26-32, 2024.
[47] Y. Okuda et al., "Serum amyloid A (SAA) 1, SAA 2 and apolipoprotein E isotype frequencies in rheumatoid arthritis patients with AA amyloidosis," vol. 39, no. 1, pp. 3-10, 1999.
[48] E. L. Leung et al., "Roles of serum amyloid A 1 protein isoforms in rheumatoid arthritis," vol. 10, pp. 174-182, 2022.
[49] D. Davalos and K. Akassoglou, "Fibrinogen as a key regulator of inflammation in disease," in Seminars in immunopathology, 2012, vol. 34, pp. 43-62: Springer. |