參考文獻 |
1. Cox, A., Management of interstitial cystitis/bladder pain syndrome. Can Urol Assoc J, 2018. 12(6 Suppl 3): p. S157-s160.
2. Hanno, P., et al., International Consultation on IC - Rome, September 2004/Forging an International Consensus: progress in painful bladder syndrome/interstitial cystitis. Report and abstracts. Int Urogynecol J Pelvic Floor Dysfunct, 2005. 16 Suppl 1: p. S2-s34.
3. Hanno, P.M., et al., Diagnosis and treatment of interstitial cystitis/bladder pain syndrome: AUA guideline amendment. J Urol, 2015. 193(5): p. 1545-53.
4. Patnaik, S.S., et al., Etiology, pathophysiology and biomarkers of interstitial cystitis/painful bladder syndrome. Archives of gynecology and obstetrics, 2017. 295: p. 1341-1359.
5. Clemens, J.Q., et al., Diagnosis and Treatment of Interstitial Cystitis/Bladder Pain Syndrome. J Urol, 2022. 208(1): p. 34-42.
6. Chancellor, M.B. and N. Yoshimura, Treatment of interstitial cystitis. Urology, 2004. 63(3): p. 85-92.
7. Nickel, J.C., Managing interstitial cystitis/bladder pain syndrome in female patients: Clinical recipes for success. Can Urol Assoc J, 2022. 16(12): p. 393-398.
8. Lee, M.H., K.M. Chang, and W.C. Tsai, Morbidity rate and medical utilization in interstitial cystitis/painful bladder syndrome. Int Urogynecol J, 2018. 29(7): p. 1045-1050.
9. Berry, S.H., et al., Prevalence of symptoms of bladder pain syndrome/interstitial cystitis among adult females in the United States. J Urol, 2011. 186(2): p. 540-4.
10. Masterson, J.M., P.R. Castaneda, and J. Kim, Pathophysiology and Clinical Biomarkers in Interstitial Cystitis. Urol Clin North Am, 2023. 50(1): p. 39-52.
11. Abdal Dayem, A., et al., Application of Adult and Pluripotent Stem Cells in Interstitial Cystitis/Bladder Pain Syndrome Therapy: Methods and Perspectives. Journal of Clinical Medicine, 2020. 9(3): p. 766.
12. Akiyama, Y., Biomarkers in Interstitial Cystitis/Bladder Pain Syndrome with and without Hunner Lesion: A Review and Future Perspectives. Diagnostics (Basel), 2021. 11(12).
13. Kuret, T., et al., A Systematic Review of Therapeutic Approaches Used in Experimental Models of Interstitial Cystitis/Bladder Pain Syndrome. Biomedicines, 2021. 9(8).
14. Meng, E., Y.C. Hsu, and Y.C. Chuang, Advances in intravesical therapy for bladder pain syndrome (BPS)/interstitial cystitis (IC). Low Urin Tract Symptoms, 2018. 10(1): p. 3-11.
15. Riedl, C.R., et al., Hyaluronan treatment of interstitial cystitis/painful bladder syndrome. Int Urogynecol J Pelvic Floor Dysfunct, 2008. 19(5): p. 717-21.
16. Manning, J., et al., A multicentre, prospective, randomised, double-blind study to measure the treatment effectiveness of abobotulinum A (AboBTXA) among women with refractory interstitial cystitis/bladder pain syndrome. Int Urogynecol J, 2014. 25(5): p. 593-9.
17. Chen, C.-L., et al., A Novel Intravesical Dextrose Injection Improves Lower Urinary Tract Symptoms on Interstitial Cystitis/Bladder Pain Syndrome. Frontiers in pharmacology, 2021. 12: p. 755615-755615.
18. Parsons, C.L., et al., Alkalinized lidocaine and heparin provide immediate relief of pain and urgency in patients with interstitial cystitis. J Sex Med, 2012. 9(1): p. 207-12.
19. Nasta, L., The Prevalence of Bladder Pain Syndrome/Interstitial Cystitis in Italy: The importance of a National Registry, in Bladder Pain Syndrome – An Evolution, P.M. Hanno, et al., Editors. 2018, Springer International Publishing: Cham. p. 27-32.
20. Nickel, J.C., et al., The Interstitial Cystitis/Bladder Pain Syndrome Clinical Picture: A Perspective from Patient Life Experience. Urology Practice, 2018. 5(4): p. 286-292.
21. Tripp, D.A., et al., Depression and catastrophizing predict suicidal ideation in tertiary care patients with interstitial cystitis/bladder pain syndrome. Can Urol Assoc J, 2016. 10(11-12): p. 383-388.
22. Sutherland, S., et al., Compensatory coping and depression in women with interstitial cystitis/bladder pain syndrome. Neurourology and Urodynamics, 2023. 42(1): p. 322-329.
23. Crawford, A., et al., Depression and helplessness impact interstitial cystitis/bladder pain syndrome pain over time. Canadian Urological Association Journal, 2019. 13(10): p. 328.
24. Alexander, K.L., S.R. Targan, and C.O. Elson, 3rd, Microbiota activation and regulation of innate and adaptive immunity. Immunol Rev, 2014. 260(1): p. 206-20.
25. Hou, K., et al., Microbiota in health and diseases. Signal transduction and targeted therapy, 2022. 7(1): p. 135.
26. Keay, S., et al., A prospective study of microorganisms in urine and bladder biopsies from interstitial cystitis patients and controls. Urology, 1995. 45(2): p. 223-229.
27. Domingue, G.J., et al., Dormant microbes in interstitial cystitis. The Journal of urology, 1995. 153(4): p. 1321-1326.
28. Wolfe, A.J., et al., Evidence of uncultivated bacteria in the adult female bladder. J Clin Microbiol, 2012. 50(4): p. 1376-83.
29. Hilt, E.E., et al., Urine is not sterile: use of enhanced urine culture techniques to detect resident bacterial flora in the adult female bladder. J Clin Microbiol, 2014. 52(3): p. 871-6.
30. Whiteside, S.A., et al., The microbiome of the urinary tract--a role beyond infection. Nat Rev Urol, 2015. 12(2): p. 81-90.
31. Aragon, I.M., et al., The Urinary Tract Microbiome in Health and Disease. Eur Urol Focus, 2018. 4(1): p. 128-138.
32. Xu, H., et al., Combined Signature of the Urinary Microbiome and Metabolome in Patients With Interstitial Cystitis. Front Cell Infect Microbiol, 2021. 11: p. 711746.
33. Zheng, Z., et al., Integrated microbiome and metabolome analysis reveals novel urinary microenvironmental signatures in interstitial cystitis/bladder pain syndrome patients. J Transl Med, 2023. 21(1): p. 266.
34. Choi, H.W., K.W. Lee, and Y.H. Kim, Microbiome in urological diseases: Axis crosstalk and bladder disorders. Investig Clin Urol, 2023. 64(2): p. 126-139.
35. Saha, S.K., et al., Bioinformatics Approach for Identifying Novel Biomarkers and Their Signaling Pathways Involved in Interstitial Cystitis/Bladder Pain Syndrome with Hunner Lesion. J Clin Med, 2020. 9(6).
36. Bolyen, E., et al., Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol, 2019. 37(8): p. 852-857.
37. Quast, C., et al., The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic acids research, 2013. 41(Database issue): p. D590-D596.
38. Caporaso, J.G., et al., QIIME allows analysis of high-throughput community sequencing data. Nature methods, 2010. 7(5): p. 335-336.
39. Oksanen, J., et al., Vegan: community ecology package http://CRAN. R-project. org/package= vegan, 2013.
40. Warnes, G.R., et al., gplots: Various R programming tools for plotting data. R package version, 2009. 2(4): p. 1.
41. Parks, D.H., et al., STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics, 2014. 30(21): p. 3123-3124.
42. Jonsson, V., et al., Statistical evaluation of methods for identification of differentially abundant genes in comparative metagenomics. BMC genomics, 2016. 17(1): p. 1-14.
43. Love, M.I., W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology, 2014. 15(12): p. 1-21.
44. Langille, M.G., et al., Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature biotechnology, 2013. 31(9): p. 814-821.
45. Wolfe, A.J., et al., Detection of Bacteria in Bladder Mucosa of Adult Females. J Urol, 2023: p. 101097ju0000000000003189.
46. Bresler, L., et al., Female lower urinary tract microbiota do not associate with IC/PBS symptoms: a case-controlled study. International Urogynecology Journal, 2019. 30(11): p. 1835-1842.
47. Meriwether, K.V., et al., The Vaginal and Urinary Microbiomes in Premenopausal Women With Interstitial Cystitis/Bladder Pain Syndrome as Compared to Unaffected Controls: A Pilot Cross-Sectional Study. Front Cell Infect Microbiol, 2019. 9: p. 92.
48. Siddiqui, H., et al., Alterations of microbiota in urine from women with interstitial cystitis. BMC Microbiol, 2012. 12: p. 205.
49. Chen, Y.B., et al., The Urethral Microbiota: A Missing Link in the Female Urinary Microbiota. J Urol, 2020. 204(2): p. 303-309.
50. Pearce, M.M., et al., The female urinary microbiome: a comparison of women with and without urgency urinary incontinence. mBio, 2014. 5(4): p. e01283-14.
51. Heritz, D.M., et al., Detection of eubacteria in interstitial cystitis by 16S rDNA amplification. J Urol, 1997. 158(6): p. 2291-5.
52. Au, C.W., et al., Exit site infection and peritonitis due to Serratia species in patients receiving peritoneal dialysis: epidemiology and clinical outcomes. Nephrology, 2021. 26(3): p. 255-261.
53. Bhattarai, D., et al., Infection Due to Serratia sp. in Chronic Granulomatous Disease—Is the Incidence Low in Tropical Countries? Journal of Clinical Immunology, 2021. 41(2): p. 486-490.
54. Hmida, S.B., et al., Pseudomonas Luteola Infection: First Case Report of Urinary Tract Infection and Review of Literature. Electronic Journal of General Medicine, 2021. 18(5).
55. Lamas Ferreiro, J.L., et al., Pseudomonas aeruginosa urinary tract infections in hospitalized patients: Mortality and prognostic factors. PloS one, 2017. 12(5): p. e0178178.
56. Villalba, N., et al., Lung infection by Pseudomonas aeruginosa induces neuroinflammation and blood–brain barrier dysfunction in mice. Journal of Neuroinflammation, 2023. 20(1): p. 127.
57. Zafar, H. and M.H. Saier Jr, Gut Bacteroides species in health and disease. Gut Microbes, 2021. 13(1): p. 1848158.
58. Goldstein, E.J., et al., Desulfovibrio desulfuricans bacteremia and review of human Desulfovibrio infections. J Clin Microbiol, 2003. 41(6): p. 2752-4.
59. Murros, K.E., et al., Desulfovibrio bacteria are associated with Parkinson’s disease. Frontiers in Cellular and Infection Microbiology, 2021. 11: p. 652617.
60. de Blackburn, C.W. and P.J. McClure, Pathogenic Bacillus species, in Foodborne Pathogens (second edition). 2009, Woodhead Publishing. p. 844-888.
61. Turnbull, P.C.B., Bacillus, in Medical Microbiology (4th edition). 1996, Galveston (TX): University of Texas Medical Branch at Galveston. Chapter 15.
62. Wan, Z., et al., Lactobacillus johnsonii YH1136 plays a protective role against endogenous pathogenic bacteria induced intestinal dysfunction by reconstructing gut microbiota in mice exposed at high altitude. Frontiers in Immunology, 2022. 13: p. 1007737.
63. Gervasi, T., et al., Application of Lactobacillus johnsonii expressing phage endolysin for control of Clostridium perfringens. Letters in Applied Microbiology, 2014. 59(4): p. 355-361.
64. Davoren, M.J., et al., A novel probiotic, Lactobacillus johnsonii 456, resists acid and can persist in the human gut beyond the initial ingestion period. Gut Microbes, 2019. 10(4): p. 458-480.
65. Huang, C.-H., et al., The probiotic activity of Lactobacillus murinus against food allergy. Journal of Functional Foods, 2016. 25: p. 231-241.
66. Abernethy, M.G. and A. Tsuei, The bladder microbiome and interstitial cystitis: is there a connection? Current Opinion in Obstetrics and Gynecology, 2021. 33(6).
67. Bschleipfer, T. and I. Karl, Bladder Microbiome in the Context of Urological Disorders—Is There a Biomarker Potential for Interstitial Cystitis? Diagnostics, 2022. 12(2): p. 281.
68. Nickel, J.C., et al., A Culture-Independent Analysis of the Microbiota of Female Interstitial Cystitis/Bladder Pain Syndrome Participants in the MAPP Research Network. Journal of Clinical Medicine, 2019. 8(3): p. 415.
69. Kokkayil, P. and B. Dhawan, Ureaplasma: Current perspectives. Indian Journal of Medical Microbiology, 2015. 33(2): p. 205-214.
70. Liu, W., et al., Ureaplasma infections: update on epidemiology, antimicrobial resistance, and pathogenesis. Critical Reviews in Microbiology: p. 1-31.
71. Tantengco, O.A.G., et al., Inflammatory response elicited by Ureaplasma parvum colonization in human cervical epithelial, stromal, and immune cells. Reproduction, 2022. 163(1): p. 1-10.
72. Silwedel, C., et al., More than just inflammation: Ureaplasma species induce apoptosis in human brain microvascular endothelial cells. Journal of Neuroinflammation, 2019. 16(1): p. 38.
73. Akazawa, Y., et al., Inhibition of arginase ameliorates experimental ulcerative colitis in mice. Free Radic Res, 2013. 47(3): p. 137-45.
74. Li, J.-Y., et al., Arginine metabolism regulates the pathogenesis of inflammatory bowel disease. Nutrition Reviews, 2022. 81(5): p. 578-586.
75. Baier, J., et al., Arginase impedes the resolution of colitis by altering the microbiome and metabolome. J Clin Invest, 2020. 130(11): p. 5703-5720.
76. Luerce, T.D., et al., Anti-inflammatory effects of Lactococcus lactis NCDO 2118 during the remission period of chemically induced colitis. Gut Pathog, 2014. 6: p. 33.
77. Ramalho, J.B., et al., In Vitro Probiotic and Antioxidant Potential of Lactococcus lactis subsp. cremoris LL95 and Its Effect in Mice Behaviour. Nutrients, 2019. 11(4): p. 901.
78. Ma, J., et al., 5-HT attenuates chronic stress-induced cognitive impairment in mice through intestinal flora disruption. Journal of Neuroinflammation, 2023. 20(1): p. 23. |