博碩士論文 111852005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.222.24.23
姓名 王娟瑜(Chuan Yu Wang)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 模擬與真實微重力下小鼠骨細胞基因表現的生物資訊研究
(Bioinformatics Analysis of Gene Expression in Mouse Bone Cells Under Simulated and Real Microgravity Conditions)
相關論文
★ 整合深度學習方法預測年齡以及衰老基因之研究★ 運用深度學習方法預測阿茲海默症惡化與腦中風手術存活
★ 運用深度學習方法預測癌症種類及存活死亡與治癒復發★ 基於檢驗數值的糖尿病腎病變預測模型
★ 機械循環拉伸對肺癌細胞功能的影響之研究★ 整合多種基因組型態資料預測肺腺癌患者存活之研究
★ 以系統生物學策略探討臍帶血來源之造血幹細胞分子調控網路★ TP53突變對具有EGFR突變的非小細胞肺癌患者帶來的影響
★ 以系統生物學方法探討肺腺癌抗藥性成因★ 機械循環拉伸力對3D培養肺癌細胞之影響
★ PM2.5對人類心肺細胞的影響★ 尼曼匹克症轉錄體學研究
★ 體外仿生肺肝纖維化3D模型研究★ 肝纖維化細胞與動物模型以轉錄體資料分析比較
★ 基於深度學習之皮膚病兆切割之研究★ 體外仿生心臟衰竭三維模型研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-7-31以後開放)
摘要(中) 研究旨在探討模擬與真實太空環境下,小鼠骨相關細胞基因表現的差異及其對骨質代謝的影響。透過分析公開數據庫GEO及NASA OSDR的基因表現數據,並結合顯著差異基因分析、KEGG通路分析及GSEA分析,我們確認多條與骨質代謝、細胞增殖及環境應激相關的信號傳導路徑,如Ribosome、PI3K-Akt、HIF-1及細胞週期調控途徑等等。結果顯示微重力下顯著影響細胞環境,調控細胞氧化壓力、代謝途徑表現,進而骨質流失及相關生理變化。這些發現有助於理解長期太空飛行對骨骼健康的影響,並為未來骨質疏鬆症的預防及治療提供潛在價值。
摘要(英) This study aims to investigate the differential gene expression and metabolism of bone-related cells in mice under simulated microgravity or spaceflight. By analyzing gene expression data from publicly available databases such as GEO and NASA OSDR, and incorporating differential gene analysis, KEGG pathway analysis, and GSEA analysis, we identified multiple signaling pathways associated with bone metabolism, cell proliferation, and environmental stress responses, including the PI3K-Akt, HIF-1, Ribosome and cell cycle regulation pathways. The results demonstrate that microgravity significantly affects the cellular environment, regulating oxidative stress and metabolic pathways, ultimately contributing to bone loss and related physiological changes. These findings enhance our understanding of the effects of long-term spaceflight on skeletal health and provide potential value for the prevention and treatment of osteoporosis in the future.
關鍵字(中) ★ 微重力
★ 骨細胞
★ 基因表現
關鍵字(英) ★ microgravity
★ bone cell
★ gene expression
論文目次 中文摘要 i
Abstract ii
致謝 iii
一、緒論 1
1-1 研究動機 1
1-2 背景 1
1-3 骨頭的重塑 6
二、研究材料與方法 8
2-1 研究材料 8
2-1-1 基因表達資料庫(Gene Expression Omnibus , GEO) 8
2-1-2 NASA Open Science Data Repository (OSDR) 8
2-1-3 KEGG 9
2-2 研究方法 10
2-2-1 資料前處理 10
2-2-2 表現量計算 11
2-2-3 分析方法 12
三、結果與討論 14
3-1 顯著差異基因分析 14
3-1-1 顯著上調基因的重疊 19
3-1-2 顯著下調基因的重疊 20
3-1-3 全部顯著基因的重疊 24
3-2 KEGG pathway分析 24
3-3 GSEA分析 39
四、討論 44
五、結論 47
六、參考文獻 48
七、附錄 53
7-1 程式碼1 53
7-2 程式碼2 54
7-3 程式碼3 54
7-4 程式碼4 56
7-5 程式碼5 58
參考文獻 1. LeBlanc, A., et al., Bone mineral and lean tissue loss after long duration space flight. J Musculoskelet Neuronal Interact, 2000. 1(2): p. 157-60.
2. Shen, M. and W.H. Frishman, Effects of spaceflight on cardiovascular physiology and health. Cardiology in review, 2019. 27(3): p. 122-126.
3. Rambaut, P.C. and R.S. Johnston, Prolonged weightlessness and calcium loss in man. Acta astronautica, 1979. 6(9): p. 1113-1122.
4. Spatz, J., et al., Serum sclerostin increases in healthy adult men during bed rest. The Journal of Clinical Endocrinology & Metabolism, 2012. 97(9): p. E1736-E1740.
5. Monticone, M., et al., Activation of nervous system development genes in bone marrow derived mesenchymal stem cells following spaceflight exposure. Journal of cellular biochemistry, 2010. 111(2): p. 442-452.
6. Uda, Y., et al., Global transcriptomic analysis of a murine osteocytic cell line subjected to spaceflight. The FASEB Journal, 2021. 35(5): p. e21578.
7. Zhang, S., et al., Disparity in the effect of partial gravity simulated using a new apparatus on different rat hindlimb muscles. Life Sciences in Space Research, 2024. 43: p. 54-67.
8. Kraft, T.F., J.J. van Loon, and J.Z. Kiss, Plastid position in Arabidopsis columella cells is similar in microgravity and on a random-positioning machine. Planta, 2000. 211: p. 415-422.
9. Rucci, N., et al., Characterization of the osteoblast?like cell phenotype under microgravity conditions in the NASA?approved rotating wall vessel bioreactor (RWV). Journal of cellular biochemistry, 2002. 85(1): p. 167-179.
10. Pardo, S.J., et al., Simulated microgravity using the Random Positioning Machine inhibits differentiation and alters gene expression profiles of 2T3 preosteoblasts. American Journal of Physiology-Cell Physiology, 2005. 288(6): p. C1211-C1221.
11. Patel, M.J., et al., Identification of mechanosensitive genes in osteoblasts by comparative microarray studies using the rotating wall vessel and the random positioning machine. Journal of cellular biochemistry, 2007. 101(3): p. 587-599.
12. Zhang, X., et al., Bioinformatic analysis of the RNA expression patterns in microgravity-induced bone loss. Frontiers in Genetics, 2022. 13: p. 985025.
13. Rochefort, G.Y. and C.L. Benhamou, Osteocytes are not only mechanoreceptive cells. International journal for numerical methods in biomedical engineering, 2013. 29(10): p. 1082-1088.
14. Krane, S.M., Identifying genes that regulate bone remodeling as potential therapeutic targets. The Journal of experimental medicine, 2005. 201(6): p. 841-843.
15. Liu, Z., et al., The mechanotransduction signaling pathways in the regulation of osteogenesis. International Journal of Molecular Sciences, 2023. 24(18): p. 14326.
16. Camirand, A., et al., The role of parathyroid hormone-related protein (PTHrP) in osteoblast response to microgravity: mechanistic implications for osteoporosis development. PLoS One, 2016. 11(7): p. e0160034.
17. Cabibbo, A., et al., ERO1-L, a human protein that favors disulfide bond formation in the endoplasmic reticulum. Journal of Biological Chemistry, 2000. 275(7): p. 4827-4833.
18. Gess, B., et al., The cellular oxygen tension regulates expression of the endoplasmic oxidoreductase ERO1?Lα. European journal of biochemistry, 2003. 270(10): p. 2228-2235.
19. Jackson, B., et al., Update on the aldehyde dehydrogenase gene (ALDH) superfamily. Human genomics, 2011. 5: p. 1-21.
20. Garrido, C., et al., HSP27 and HSP70: potentially oncogenic apoptosis inhibitors. Cell cycle, 2003. 2(6): p. 578-583.
21. Cassandri, M., et al., Zinc-finger proteins in health and disease. Cell death discovery, 2017. 3(1): p. 1-12.
22. Yang, W., et al., The emerging role of Hippo signaling pathway in regulating osteoclast formation. Journal of cellular physiology, 2018. 233(6): p. 4606-4617.
23. Tanaka, K.-i., et al., Role of osteoglycin in the linkage between muscle and bone. Journal of Biological Chemistry, 2012. 287(15): p. 11616-11628.
24. Alfaro, M.P., et al., sFRP2 suppression of bone morphogenic protein (BMP) and Wnt signaling mediates mesenchymal stem cell (MSC) self-renewal promoting engraftment and myocardial repair. Journal of Biological Chemistry, 2010. 285(46): p. 35645-35653.
25. Robinson, J.A., et al., Wnt/β-catenin signaling is a normal physiological response to mechanical loading in bone. Journal of Biological Chemistry, 2006. 281(42): p. 31720-31728.
26. Ying, J., et al., The stress-responsive gene GADD45G is a functional tumor suppressor, with its response to environmental stresses frequently disrupted epigenetically in multiple tumors. Clinical cancer research, 2005. 11(18): p. 6442-6449.
27. Shinde, V., et al., Simulated microgravity modulates differentiation processes of embryonic stem cells. Cellular Physiology and Biochemistry, 2016. 38(4): p. 1483-1499.
28. Takahashi, M., et al., Roles of the mesenchymal stromal/stem cell marker Meflin/Islr in cancer fibrosis. Frontiers in Cell and Developmental Biology, 2021. 9: p. 749924.
29. Binlateh, T., C. Leethanakul, and P. Thammanichanon, Involvement of RAMP1/p38MAPK signaling pathway in osteoblast differentiation in response to mechanical stimulation: a preliminary study. Journal of Orthopaedic Surgery and Research, 2024. 19(1): p. 330.
30. Jin, J., et al., Reticulocalbin 3 deficiency in alveolar epithelium exacerbated bleomycin-induced pulmonary fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2018. 59(3): p. 320-333.
31. Rucci, N., et al., The glycosaminoglycan-binding domain of PRELP acts as a cell type–specific NF-κB inhibitor that impairs osteoclastogenesis. Journal of Cell Biology, 2009. 187(5): p. 669-683.
32. Li, H., et al., PRELP (proline/arginine-rich end leucine-rich repeat protein) promotes osteoblastic differentiation of preosteoblastic MC3T3-E1 cells by regulating the β-catenin pathway. Biochemical and biophysical research communications, 2016. 470(3): p. 558-562.
33. Efeyan, A., et al., RagA, but not RagB, is essential for embryonic development and adult mice. Developmental cell, 2014. 29(3): p. 321-329.
34. Chen, J. and F. Long, mTORC1 signaling promotes osteoblast differentiation from preosteoblasts. PloS one, 2015. 10(6): p. e0130627.
35. Huang, K. and D.C. Fingar. Growing knowledge of the mTOR signaling network. in Seminars in cell & developmental biology. 2014. Elsevier.
36. Xu, Y., et al., PAMM: a redox regulatory protein that modulates osteoclast differentiation. Antioxidants & redox signaling, 2010. 13(1): p. 27-37.
37. Sandhu, S., et al., AOP Report: Development of an adverse outcome pathway for deposition of energy leading to bone loss. Environmental and Molecular Mutagenesis, 2023.
38. Priyanka, P.P. and S. Yenugu, Coiled-coil domain-containing (CCDC) proteins: functional roles in general and male reproductive physiology. Reproductive Sciences, 2021. 28(10): p. 2725-2734.
39. Stein, T., et al., Energy metabolism pathways in rat muscle under conditions of simulated microgravity. The Journal of nutritional biochemistry, 2002. 13(8): p. 471-478.
40. Baldwin, K.M., R.E. Herrick, and S.A. McCue, Substrate oxidation capacity in rodent skeletal muscle: effects of exposure to zero gravity. Journal of applied physiology, 1993. 75(6): p. 2466-2470.
41. Wang, M., J. Zhang, and N. Gong, Role of the PI3K/Akt signaling pathway in liver ischemia reperfusion injury: A narrative review. Annals of palliative medicine, 2022. 11(2): p. 80617-80817.
42. Shi, F., et al., Effects of simulated microgravity on human umbilical vein endothelial cell angiogenesis and role of the PI3K-Akt-eNOS signal pathway. PloS one, 2012. 7(7): p. e40365.
43. Meyers, V.E., et al., Modeled microgravity disrupts collagen I/integrin signaling during osteoblastic differentiation of human mesenchymal stem cells. Journal of cellular biochemistry, 2004. 93(4): p. 697-707.
44. Zhivodernikov, I., A. Ratushnyy, and L. Buravkova, Simulated microgravity remodels extracellular matrix of osteocommitted mesenchymal stromal cells. International Journal of Molecular Sciences, 2021. 22(11): p. 5428.
45. Fan, C., et al., Activation of Focal Adhesion Kinase Restores Simulated Microgravity-Induced Inhibition of Osteoblast Differentiation via Wnt/Β-Catenin Pathway. International Journal of Molecular Sciences, 2022. 23(10): p. 5593.
46. Strauch, S.M., et al., Current knowledge about the impact of microgravity on the proteome. Expert Review of Proteomics, 2019. 16(1): p. 5-16.
47. Rozhkov, S.V., et al., The Role of Glycogen Synthase Kinase-3 in the Regulation of Ribosome Biogenesis in Rat Soleus Muscle under Disuse Conditions. International Journal of Molecular Sciences, 2022. 23(5): p. 2751.
48. Rozhkov, S.V., et al., Temporal changes in the markers of ribosome biogenesis in rat soleus muscle under simulated microgravity. Acta Astronautica, 2021. 186: p. 252-258.
49. Hughes-Fulford, M. and M.L. Lewis, Effects of microgravity on osteoblast growth activation. Experimental cell research, 1996. 224(1): p. 103-109.
50. Suresh, M.V., et al., Hypoxia-inducible factor 1α and its role in lung injury: adaptive or maladaptive. Inflammation, 2023. 46(2): p. 491-508.
51. Drager, J., E.J. Harvey, and J. Barralet, Hypoxia signalling manipulation for bone regeneration. Expert reviews in molecular medicine, 2015. 17: p. e6.
52. Blaber, E.A., et al., Microgravity induces pelvic bone loss through osteoclastic activity, osteocytic osteolysis, and osteoblastic cell cycle inhibition by CDKN1a/p21. PloS one, 2013. 8(4): p. e61372.
53. Farr, J.N. and S. Khosla, Cellular senescence in bone. Bone, 2019. 121: p. 121-133.
54. Paul, A.M., et al., Neutrophil-to-lymphocyte ratio: a biomarker to monitor the immune status of astronauts. Frontiers in Immunology, 2020. 11: p. 564950.
55. Li, N., et al., Microgravity-induced alterations of inflammation-related mechanotransduction in endothelial cells on board SJ-10 satellite. Frontiers in physiology, 2018. 9: p. 1025.
56. Mundy, G.R., Osteoporosis and inflammation. Nutrition reviews, 2007. 65(suppl_3): p. S147-S151.
57. Bhat, G., H. Yang, and R. Sridaran, Simulated conditions of microgravity suppress progesterone production by luteal cells of the pregnant rat. Journal of gravitational physiology: a journal of the International Society for Gravitational Physiology, 2001. 8(2): p. 57-66.
58. Lang, A., et al., Acute and short-term fluctuations in gravity are associated with changes in circulatory plasma protein levels. npj Microgravity, 2024. 10(1): p. 25.
指導教授 許藝瓊(Yi Chiung Hsu) 審核日期 2025-1-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明