博碩士論文 111327021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.218.232.140
姓名 李家銘(Jia-Ming Li)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 整合視覺、力量感測與模糊控制技術之新穎機械手臂組裝系統
(A Novel Robotic Assembly System Integrating Vision, Force Sensing, and Fuzzy Control Technologies)
相關論文
★ 光學遮斷式晶圓定位系統與半導體製程設備之整合★ 應用於太陽能聚光器之等光路型與金字塔型二次光學元件的分析與比較
★ 口徑550 mm反射鏡減重與撓性支撐結構最佳化設計★ 光機整合分析應用於620mm反射鏡變形分析與八吋反射鏡彈性膠緊固設計
★ 具線性齒頂修整之螺旋齒輪接觸特性研究★ 應用投射疊紋技術於齒輪精度量測
★ 反射鏡減重與撓性支撐結構最佳化★ 曲面反射鏡減重與背向支撐撓性機構最佳化
★ 建構拉焊機感測系統之人機介面與機器學習★ 考量成像品質之最佳化塑膠透鏡結構設計
★ 離軸矩形反射鏡輕量化與撓性支撐結構最佳化★ 電路板拉焊製程參數優化與 烙鐵頭剩餘使用壽命預測之研究
★ ZK型雙包絡蝸桿蝸輪組接觸分析★ 整合深度學習與立體視覺之六軸機械手臂夾取系統開發
★ 整合光源控制與深度學習辨識之平放膠體散料夾取系統開發★ 整合視覺及力量控制之六軸機械手臂系統開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究在Linux系統的Ubuntu 20.04版本上,利用機器人作業系統(Robot Operating System, ROS)開發控制軟體。透過ROS的點對點網路和分散式架構,整合了所有的資訊,並實現了工業電腦(Industrial PC)、六軸工業機械手臂、立體相機、六軸力量/力矩感測器以及自適應夾爪等硬體設備與軟體系統的協同運作。
本研究針對機械手臂在齒輪箱組裝任務中的挑戰,提出了一種結合視覺與力量控制的模糊控制系統。傳統的順應性控制方法往往需要手動調整多個參數,以應對手臂初始校正、視覺定位誤差以及每次零件夾取時的變異,這導致了自動化組裝過程繁瑣且效率不高。為了解決這些問題,本研究設計並實現了一套多輸入多輸出(Multiple-Input Multiple-Output, MIMO)的模糊力量控制系統,使機械手臂能夠根據即時的組裝情況、力量反饋和視覺定位等感測資訊進行動態調整控制參數,從而提高手臂控制系統的自適應性。經過一系列的實驗驗證結果顯示,所提出之新系統在機車齒輪箱組裝過程,相較於先前本研究室所開發之前系統,減少34%的組裝時間,平均降低30%的最大組裝力量及27%的組裝力量標準差,顯著提升組裝效率和組裝穩定度。此外,也再以行星齒輪系統進行組裝驗證實驗,再次證明了模糊控制在此類複雜干涉與定位的自動化齒輪系統組裝任務中的創新性和實務應用性。
摘要(英) This research developed control software on the Ubuntu 20.04 version of the Linux system, using the Robot Operating System (ROS). Through ROS′s peer-to-peer network and distributed architecture, all information was integrated, facilitating the coordinated operation of industrial PC, a six-axis industrial robot arm, a stereo camera, a six-axis force/torque sensor, and adaptive grippers.
Addressing the challenges in gearbox assembly tasks for robotic arms, this research proposed a fuzzy control system that combined vision and force control. Traditional compliance control methods often required manual adjustment of multiple parameters to accommodate initial arm calibration, visual positioning errors, and variations in each part-grabbing process, leading to a tedious and inefficient automated assembly process. To overcome these limitations, this study designed and implemented a Multiple-Input Multiple-Output (MIMO) fuzzy control system that dynamically adjusted control parameters based on real-time assembly conditions, force feedback, and visual positioning sensor data, thus enhancing the adaptability of the robotic arm control system.
A series of experimental results demonstrated that the proposed new system significantly improved assembly efficiency and stability in motorcycle gearbox assembly tasks compared to the previously developed system, showing a 34% reduction in assembly time, an average 30% decrease in maximum assembly force, and a 27% reduction in force standard deviation. Furthermore, additional validation through planetary gear system assembly experiments confirmed the innovative and practical application of fuzzy control in complex, interference-sensitive, and precision-demanding automated gear system assembly tasks.
關鍵字(中) ★ 模糊控制
★ 力量控制
★ 機器視覺
★ 機械手臂組裝
★ 伺服運動控制
★ Robot Operating System (ROS)
關鍵字(英) ★ Fuzzy Control
★ Force Control
★ Machine Vision
★ Robotic Assembly
★ Servo Motion Control
★ Robot Operating System (ROS)
論文目次 摘要 2
Abstract 4
誌謝 5
目錄 6
圖目錄 9
表目錄 13
一、緒論 1
1-1 研究背景 1
1-2 文獻回顧 1
1-2-1 力量控制 1
1-2-2 模糊控制 5
1-3 研究動機和目的 7
1-4 論文架構 8
二、系統架構 9
2-1 硬體架構 9
2-1-1 六軸工業機械手臂 9
2-1-2 相機 11
2-1-3 力量感測器 12
2-1-4 自適應夾爪與指夾設計 14
2-1-5 工業電腦 16
2-2 軟體架構 17
2-2-1 機器人作業系統(Robot Operating System, ROS) 17
2-2-2 Moveit套件介紹 20
2-2-3 ABB EGM系統介紹 21
2-2-4 Scikit-Fuzzy模組 22
三、研究方法 23
3-1 機械手臂運動學與運動控制 23
3-1-1 D-H法 23
3-1-2 正向運動學 24
3-1-3 逆向運動學 26
3-1-4 點到點運動控制 27
3-1-5 伺服運動控制 28
3-2 機器視覺及影像處理 29
3-2-1 OpenCV環境介紹 29
3-2-2 灰階化 30
3-2-3 高斯濾波與二次高斯濾波 31
3-2-4 二值化與自適應二值化 31
3-2-5 邊緣檢測 33
3-2-6 輪廓提取 34
3-3 機械手臂手眼校正 35
3-3-1 由世界座標系到相機座標系 37
3-3-2 從相機座標系到圖像座標系 37
3-3-3 從圖像座標系到像素座標系 38
3-4 順應性控制 40
3-4-1 阻抗控制 41
3-4-2 位置順應性控制 44
3-5 模糊控制 46
3-5-1 模糊控制理論 46
3-5-2 歸屬度函數 47
3-5-3 模糊規則 47
3-5-4 模糊推理 48
3-5-5 解模糊化 49
3-6 機器人作業系統整合應用 50
3-6-1 機械手臂控制節點 51
3-6-2 力量感測器節點 52
3-6-3 影像辨識節點 52
3-6-4 模糊控制節點 53
四、實驗結果 54
4-1 實驗工作環境及優化齒輪裝配 54
4-2 模糊控制器設計 55
4-2-1 定義系統的輸入輸出變數 55
4-2-2 模糊化 56
4-2-3 定義模糊規則 61
4-2-4 模糊推理和解模糊化 62
4-3 機車齒輪箱裝配實驗 63
4-4 機車齒輪箱裝配實驗結果分析與模糊控制系統評估 68
4-4-1 副齒輪裝配實驗 69
4-4-2 驅動齒輪裝配實驗 75
4-4-3 驅動軸裝配實驗 81
4-5 組裝系統驗證-行星齒輪裝配實驗 87
五、結論及未來展望 93
5-1 論文結論 93
5-2 未來展望 94
參考文獻 95
參考文獻 [1] J. K. Salisbury, "Active stiffness control of a manipulator in cartesian coordinates," 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes, pp. 95-100, 10-12 Dec. 1980.
[2] S. Hirose and Y. Umetani, "The development of soft gripper for the versatile robot hand," Mechanism and Machine Theory, vol. 13, no. 3, pp. 351-359, 1978.
[3] R. Schiavi, A. Bicchi, and F. Flacco, "Integration of active and passive compliance control for safe human-robot coexistence," 2009 IEEE International Conference on Robotics and Automation, pp. 259-264, 12-17 May. 2009.
[4] N. Hogan, "Impedance Control: An Approach to Manipulation," 1984 American Control Conference, pp. 304-313, 6-8 Jun. 1984.
[5] M. H. Raibert and J. J. Craig, "Hybrid Position/Force Control of Manipulators," Journal of Dynamic Systems, Measurement, and Control, vol. 103, no. 2, pp. 126-133, 1981.
[6] T. Yoshikawa, "Dynamic hybrid position/force control of robot manipulators--Description of hand constraints and calculation of joint driving force," IEEE Journal on Robotics and Automation, vol. 3, no. 5, pp. 386-392, 1987.
[7] R. J. Anderson and M. W. Spong, "Hybrid impedance control of robotic manipulators," IEEE Journal on Robotics and Automation, vol. 4, no. 5, pp. 549-556, 1988.
[8] J. Seul, T. C. Hsia, and R. G. Bonitz, "Force tracking impedance control of robot manipulators under unknown environment," IEEE Transactions on Control Systems Technology, vol. 12, no. 3, pp. 474-483, 2004.
[9] H. Geering, L. Guzzella, S. Hepner, and C. Onder, "Time-optimal motions of robots in assembly tasks," IEEE Transactions on Automatic Control, vol. 31, no. 6, pp. 512-518, 1986.
[10] J. Luo et al., "Reinforcement Learning on Variable Impedance Controller for High-Precision Robotic Assembly," 2019 International Conference on Robotics and Automation (ICRA), pp. 3080-3087, 20-24 May. 2019.
[11] F. Ficuciello, L. Villani, and B. Siciliano, "Variable Impedance Control of Redundant Manipulators for Intuitive Human–Robot Physical Interaction," IEEE Transactions on Robotics, vol. 31, no. 4, pp. 850-863, 2015.
[12] Z. Li, B. Huang, A. Ajoudani, C. Yang, C. Y. Su, and A. Bicchi, "Asymmetric Bimanual Control of Dual-Arm Exoskeletons for Human-Cooperative Manipulations," IEEE Transactions on Robotics, vol. 34, no. 1, pp. 264-271, 2018.
[13] Q. Zhou, S. Zhao, H. Li, R. Lu, and C. Wu, "Adaptive Neural Network Tracking Control for Robotic Manipulators With Dead Zone," IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 12, pp. 3611-3620, 2019.
[14] L. A. Zadeh, "Fuzzy sets," Information and Control, vol. 8, no. 3, pp. 338-353, 01 Jun. 1965.
[15] L. X. Wang and J. M. Mendel, "Fuzzy basis functions, universal approximation, and orthogonal least-squares learning," IEEE Transactions on Neural Networks, vol. 3, no. 5, pp. 807-814, 1992.
[16] Z. Xiao-Jun and M. G. Singh, "Approximation theory of fuzzy systems-MIMO case," IEEE Transactions on Fuzzy Systems, vol. 3, no. 2, pp. 219-235, 1995.
[17] C. J. Fallaha, M. Saad, H. Y. Kanaan, and K. Al-Haddad, "Sliding-Mode Robot Control With Exponential Reaching Law," IEEE Transactions on Industrial Electronics, vol. 58, no. 2, pp. 600-610, 2011.
[18] H. Bilal, W. Yao, Y. Guo, Y. Wu, and J. Guo, "Experimental validation of fuzzy PID control of flexible joint system in presence of uncertainties," 2017 36th Chinese Control Conference (CCC), pp. 4192-4197, 26-28 Jul. 2017.
[19] L. Teng, M. A. Gull, and S. Bai, "PD-Based Fuzzy Sliding Mode Control of a Wheelchair Exoskeleton Robot," IEEE/ASME Transactions on Mechatronics, vol. 25, no. 5, pp. 2546-2555, 2020.
[20] Y. K. Liu and Y. M. Zhang, "Supervised Learning of Human Welder Behaviors for Intelligent Robotic Welding," IEEE Transactions on Automation Science and Engineering, vol. 14, no. 3, pp. 1532-1541, 2017.
[21] S. Mukherjee, D. Paramkusam, and S. K. Dwivedy, "Inverse kinematics of a NAO humanoid robot using kinect to track and imitate human motion," 2015 International Conference on Robotics, Automation, Control and Embedded Systems (RACE), pp. 1-7, 18-20 Feb. 2015.
[22] 洪浩文, "整合視覺及力量控制之六軸機械手臂系統開發," 碩士, 光機電工程研究所, 國立中央大學, 桃園縣, 2023.
[23] "ABB IRB 120." https://new.abb.com/products/3HAC031431-001/irb-120 (accessed 28 Aug., 2024).
[24] "Ensenso N Series." https://en.ids-imaging.com/ensenso-3d-camera-n-series.html (accessed 28 Aug., 2024).
[25] "Robotiq FT 300." https://robotiq.com/products/ft-300-force-torque-sensor (accessed 28 Aug., 2024).
[26] "Robotiq 2F-85." https://robotiq.com/products/2f85-140-adaptive-robot-gripper (accessed 28 Aug., 2024).
[27] "Solidworks." https://www.solidworks.com/ (accessed 28 Aug., 2024).
[28] "Form3+ 3D printer." https://www.taiwanteama.com.tw/form-3-low-force-stereolithography-3d-printer (accessed 28 Aug., 2024).
[29] M. Quigley, "ROS: an open-source Robot Operating System," in IEEE International Conference on Robotics and Automation, 2009.
[30] "Moveit." http://moveit.ros.org/ (accessed 28 Aug., 2024).
[31] "abb_experimental." https://github.com/ros-industrial/abb_experimental (accessed 29 Aug., 2024).
[32] "ABB EGM." https://github.com/lsurobotics/egm-for-abb-robots (accessed 29 Aug., 2024).
[33] "Scikit-Fuzzy." https://github.com/scikit-fuzzy/scikit-fuzzy (accessed 29 Aug., 2024).
[34] J. Denavit and R. S. Hartenberg, "A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices," Journal of Applied Mechanics, vol. 22, pp. 215-221, 01 Jun. 1955.
[35] D. L. Pieper, "The inematics of Manipulators Under Computer Control," Ph.D., Stanford University, United States -- California, 6914038, 1969.
[36] P. Hyeonjun, B. Ji-Hun, P. Jae-Han, B. Moon-Hong, and P. Jaeheung, "Intuitive peg-in-hole assembly strategy with a compliant manipulator," IEEE ISR 2013, pp. 1-5, 24-26 Oct. 2013.
[37] J. M. Kleinberg, "The localization problem for mobile robots," Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 521-531, 20-22 Nov. 1994.
[38] "OpenCV." https://opencv.org/ (accessed 29 Aug, 2024).
[39] C. Saravanan, "Color Image to Grayscale Image Conversion," 2010 Second International Conference on Computer Engineering and Applications, vol. 2, pp. 196-199, 19-21 Mar. 2010.
[40] D. Marr and E. Hildreth, "Theory of edge detection," (in eng), Proc R Soc Lond B Biol Sci, vol. 207, no. 1167, pp. 187-217, 29 Feb. 1980.
[41] J. Sauvola and M. Pietikainen, "Adaptive document image binarization," Pattern Recognition, vol. 33, no. 2, pp. 225-236, 01 Feb. 2000.
[42] J. Canny, "A Computational Approach to Edge Detection," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6, pp. 679-698, 1986.
[43] E. Welzl, "Smallest enclosing disks (balls and ellipsoids)," New Results and New Trends in Computer Science, pp. 359-370, 1991.
[44] J. O′Rourke, "Finding minimal enclosing boxes," International Journal of Computer & Information Sciences, vol. 14, no. 3, pp. 183-199, 01 Jun. 1985.
[45] R. Y. Tsai and R. K. Lenz, "A new technique for fully autonomous and efficient 3D robotics hand/eye calibration," IEEE Transactions on Robotics and Automation, vol. 5, no. 3, pp. 345-358, 1989.
[46] L. A. Zadeh, "Outline of a New Approach to the Analysis of Complex Systems and Decision Processes," IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-3, no. 1, pp. 28-44, 1973.
[47] E. H. Mamdani and S. Assilian, "An experiment in linguistic synthesis with a fuzzy logic controller," International Journal of Man-Machine Studies, vol. 7, no. 1, pp. 1-13, 01 Jun. 1975.
[48] T. Takagi and M. Sugeno, "Fuzzy identification of systems and its applications to modeling and control," IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-15, no. 1, pp. 116-132, 1985.
指導教授 陳怡呈(Yi-Cheng Chen) 審核日期 2024-11-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明