博碩士論文 112226048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.117.80.241
姓名 黃柏翔(Po-Hsiang Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 在週期性晶疇極化反轉絕緣體上鈮酸鋰薄膜實現電光偏振轉換器之研究
(Realization of Electro-Optic Polarization Mode Converters on Periodically Poled Thin-Film Lithium Niobate on Insulator)
相關論文
★ Continuous-wave narrow-line yellow laser generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings★ 半導體雷射泵浦內建式Q-調制Nd:MgO:PPLN雷射之研究
★ 主動式多通道窄頻寬通Ti:PPLN波導濾波及模態轉換器之研究★ 以鎂掺雜鈮酸鋰製作二倍頻藍光雷射波導元件之製程研究
★ 非週期性晶格極化反轉鈮酸鋰作為主動式窄頻寬通多波長濾波器及倍頻多波長濾波器★ 非週期性晶格極化反轉鈮酸鋰作為有效率的二倍頻和模態轉換器之研究
★ 積體式週期與非週期極性反轉鈮酸鋰光電與雷射元件★ 退火式質子交換波導PPLN電光調制TM模態轉輻射偏振態之研究
★ 高效率雙Nd:YVO4 雷射和頻黃光產生系統★ 以串級式電光週期性晶格極化反轉鈮酸鋰達成三波長主動式Q-調制Nd:YVO4雷射
★ 以單塊二維週期性晶格極化反轉鈮酸鋰同時作為Nd:YVO4雷射之電光Q調制器和腔內光參量振盪器★ 綠光準相位匹配二倍頻質子交換鎂摻雜鈮酸鋰波導的製程研究
★ 以單晶片串級式週期性準相位匹配波長轉換器與非週期性準相位匹配電光偏振模態轉換器達成主動式調制窄頻輸出光參量振盪器之研究★ 單片非週期性晶疇極化反轉鈮酸鋰同時作為Nd:YVO4雷射Q-調制和腔內光參量產生之研究
★ 準相位匹配二倍頻軟質子交換鎂摻雜鈮酸鋰波導研究★ 以雙體積全像布拉格光柵及二維週期性晶疇極化反轉鈮酸鋰於Nd:YVO4雷射內達成脈衝式窄頻光參量振盪器之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-11-30以後開放)
摘要(中) 近年來,鈮酸鋰薄膜問世,各國積極透入在鈮酸鋰薄膜上光學或光電元件的研究與開發,在本論文中,我們首先比較鈮酸鋰薄膜與傳統鈮酸鋰基板的不同與其優勢之處,並且探討鈮酸鋰薄膜製程的困難點,接著我們將在薄膜上開發電光偏振轉換器元件,因此我們會先以理論介紹何謂波導、電光效應以及索爾克濾波器,並且結合這三者的概念組成電光偏振轉換器。
模擬方面,首先模擬波導結構,包含波導寬度、蝕刻深度、側壁角度,此三個參數會影響到單模條件以及等效折射率,再利用模擬得到的等效折射率計算出所需的Poling週期,電光效應方面,我們模擬實際所需要的工作電壓以達到相對應的需求電場。
製程方面,我們比較不同蝕刻方法所製作出來的波導平整度,再以最終決定的蝕刻方法所製作出來的波導結構去模擬單模條件、等效折射率及所需的Poling週期,接著是Poling的參數測試以及結果量測,找到最適合的Poling參數,再將其與波導結合,形成週期性極化反轉波導,最後透過半導體製程將電極製作在波導上方及兩側以利在量測時施加電壓。
量測方面,首先是波導的損耗量測,本論文所製作出來的波導損耗為3.62dB/cm(TE)、2.41dB/cm(TM),是相較於本實驗室以往做出來的波導裡損耗最小的,接著是EOPMC量測,我們在80℃時量到94%的轉換效率,而最高轉換效率在92℃,約為99%,並且量測其不同溫度時中心波長的位移。
不同於傳統被動元件,本論文所製作出來的電光偏振轉換器作為主動元件,有體積小且可以主動調節TE和TM之間的轉換等優勢,此元件在鈮酸鋰薄膜的光學研究與發展上會是很重要的一大進步。
摘要(英) In recent years, lithium niobate thin film has emerged, and countries are actively engaging in research and development of optical or optoelectronic devices based on these lithium niobate thin film. In this thesis, we first compare the differences and advantages of lithium niobate thin films with traditional lithium niobate substrates, and discuss the challenges of the thin film fabrication process. We will then develop an electro-optic polarization mode converter device on the thin film. To start, we will introduce the concepts of waveguides, electro-optic effects, and solc filters, integrating these three concepts to form the electro-optic polarization converter.
In terms of simulation, we will first simulate the waveguide structure, including waveguide width, etching depth, and sidewall angle. These three parameters will affect single-mode conditions and the effective refractive index. We will then calculate the required poling period using the effective refractive index obtained from the simulation. Regarding the electro-optic effect, we will simulate the actual working voltage needed to achieve the corresponding electric field.
In the fabrication process, we will compare the waveguide smoothness produced by different etching methods. We will then use the final chosen etching method to simulate the single-mode conditions, effective refractive index, and required poling period. Following this, we will test the poling parameters and measure the results to find the most suitable poling parameters, which will then be combined with the waveguide to form a periodically poled inverted waveguide. Finally, we will use semiconductor processing to fabricate electrodes on the top and sides of the waveguide to facilitate voltage application during measurements.
In terms of measurement, we will first measure the waveguide loss. The waveguide loss produced in this thesis is 3.62 dB/cm (TE) and 2.41 dB/cm (TM), which is the lowest loss recorded in our laboratory to date. Next, we will measure the electro-optic polarization mode converter (EOPMC). At 80°C, we achieved a conversion efficiency of 94%, and the highest efficiency, approximately 99%, was observed at 92°C. We will also measure the shift in the central wavelength at different temperatures.
Unlike traditional passive devices, the electro-optic polarization mode converter developed in this thesis serves as an active device, offering advantages such as a compact size and the ability to actively adjust the conversion between TE and TM modes. This device represents a significant advancement in the optical research and development of lithium niobate thin films.
關鍵字(中) ★ 薄膜鈮酸鋰
★ 電光
★ 偏振轉換
關鍵字(英) ★ Thin Film Lithium Niobate
★ Electro-Optic
★ Polarization Conversion
論文目次 中文摘要 i
英文摘要 ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 xiii
第一章 緒論 1
1.1積體光學發展簡介 1
1.2電光偏振模態轉換器 1
1.3基材介紹 2
1.3.1LN 2
1.3.2LNOI 3
1.4研究動機 4
1.5內容摘要 5
1.6文獻回顧 5
第二章 實驗原理 8
2.1波導 8
2.2電光效應 9
2.3索爾克濾波器 13
2.4準相位匹配 20
第三章 晶片設計及模擬結果 22
3.1LNOI基板 22
3.2元件設計及模擬結果 23
3.2.1傳輸模態、等效折射率及Poling週期 23
3.2.2EOPMC電壓模擬及重疊積分計算 33
第四章 晶片製程 37
4.1實驗相關儀器與原理 37
4.1.1晶圓切割與清潔 37
4.1.2黃光微影 38
4.1.3薄膜沉積 40
4.1.4蝕刻 44
4.2波導製程與設計 46
4.2.1蝕刻參數測試 46
4.2.2正式結構模擬 52
4.3週期性極化反轉 54
4.3.1Poling電極製作 54
4.3.2Poling參數測試 55
4.4EOPMC電極製作及端面拋光 60
4.4.1EOPMC電極 60
4.4.2晶片端面拋光 65
第五章 量測結果與分析 67
5.1量測架構 67
5.1.1波導量測架構 67
5.1.2EOPMC量測架構 70
5.2實驗量測結果及分析 71
5.2.1波導量測結果及分析 71
5.2.2EOPMC量測結果及分析 73
第六章 結論與未來展望 79
6.1結論 79
6.2未來展望 79
第七章 參考文獻 81
參考文獻 第一章 緒論
[1.1] Rong Haisheng, Jones Richard, Liu Ansheng, Cohen Oded, Hak Dani, Fang Alexander, Paniccia Mario, “A continuous-wave Raman silicon laser.”, Nature, 433(7027), p.725–728, 2005
[1.2] Chen, Roger, et al. "Nanophotonic integrated circuits from nanoresonators grown on silicon." Nature communications, 50, p.4325, 2014
[1.3] W. H. Zachariasen, “Skr. Norske Vid-Ada.”, Oslo, Mat. Naturv, No.4, 1928
[1.4] B. T. Matthias and J. P. Remeika , “Ferroelectricity in the Ilmenite Structure.”, Phys. Rev. 76, 1886 , December 1949
[1.5] R. L. Byer, J. F. Young, F. S. Feigelson, “Growth of High-Quality LiNbO3 Crystals from the Congruent Melt”, J. Appl. Phys., 41, 2320, 1970
[1.6] Volk Tatyana, Wohlecke Manfred, “Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching.”, Springer., 2008
[1.7] Hu X. P. , Xu P., Zhu S. N., “Engineered quasi-phase-matching for laser techniques.”, Photonics, Photonics Res. 1, 171–185, 2013
[1.8] Wang T. X., et al., “Periodically poled LiNbO3 crystals from 1D and 2D to 3D.”, Sci. China Technol, Sci. 63, 1110–1126, 2020
[1.9] G. Poberaj, H. Hu, W. Sohler, P. Gunter, “Lithium niobate on insulator (LNOI) for micro-photonic devices.”, Laser & Photonics Reviews, Volume 6, Issue 4, p. 488-503, 2012
[1.10] Zhang M. , Wang C., Cheng R., Shams-Ansari A., Lon?ar, M., “Monolithic ultra high-Q lithium niobate microring resonator.”, Optica, 4, 1536-1537, 2017
[1.11] LIN CHANG, YIFEI LI, NICOLAS VOLET, LEIRAN WANG, JON PETERS, JOHN E. BOWERS1, “Thin film wavelength converters for photonic integrated circuits”,Optica, 3(5), p.531-535, 2016
[1.12] Mohammadreza Younesi, Reinhard Geiss, Frank Setzpfandt, Yen-Hung Chen, Thomas Pertsch, “Micrometer-range periodic poling of thin-film lithium niobate on insulator”, IEEE NANO, p.85-86, 2020
[1.13] Xintong Li, Jinming Tao, Jinye Li, Yiru Zhao, Shuangxing Dai, Wenyu Wang, Jianguo Liu, “Ultra-compact, Broadband Polarization Beam Splitter Based on x-cut Lithium-Niobate-on-Insulator Platform Using Hybrid Plasmonic Waveguide”, Optical Communications, 545(15), 2023
[1.14] Guang Yang, Alexander V. Sergienko, Abdoulaye Ndao, “Tunable polarization mode conversion using thin-film lithium niobate ridge waveguide”, Optics Express, 29(12), 2021
[1.15] FREDERIK THIELE,1, FELIX VOM BRUCH, VICTOR QUIRING, RAIMUND RICKEN, HARALD HERRMANN, CHRISTOF EIGNER, CHRISTINE SILBERHORN, ANDTIM J. BARTLEY, “Cryogenic electro-optic polarisation conversion in titanium in-diffused lithium niobate waveguides”, Optics Express, 28(20), 2020
[1.16] Liu Liu, Yunhong Ding, Kresten Yvind, Jorn M. Hvam, “Efficient and compact TE–TM polarization converter built on silicon-on-insulator platform with a simple fabrication process”, OPTICS LETTERS, 36(7), 2011
第二章 實驗原理
[2.1]Amnon Yariv, Pochi Yeh, “Optical Waves in Crystals”, 2002
第三章 晶片設計及模擬結果
[3.1] G. Poberaj, H. Hu, W. Sohler, P. Gunter, “Lithium niobate on insulator (LNOI) for micro-photonic devices.”, Laser & Photonics Reviews, Volume 6, Issue 4, p. 488-503, 2012
[3.2] Yiwen Wang, Zhihua Chen, Hui Hu, “Analysis of Waveguides on Lithium Niobate Thin Films”,crysrals, 8(191), 2018
[3.3] Xintong Li, Jinming Tao, Jinye Li, Yiru Zhao, Shuangxing Dai, Wenyu Wang, Jianguo Liu, “Ultra-compact, Broadband Polarization Beam Splitter Based on x-cut Lithium-Niobate-on-Insulator Platform Using Hybrid Plasmonic Waveguide”, Optical Communications, 545(15), 2023
第四章 晶片製程
[4.1] LUTONG CAI, ASHRAF MAHMOUD, GIANLUCA PIAZZA, “Low-loss waveguides on Y-cut thin film lithium niobate: towards acousto-optic applications”, Optics Express, 27(7), 2019
[4.2] Arjun Aryal, Isaac Stricklin, Mahmoud Behzadirad, Darren W. Branch, Aleem Siddiqui, Tito Busani, “High-Quality Dry Etching of LiNbO3 Assisted by Proton Substitution through H2-Plasma Surface Treatment”, nanomaterials, 12(2836), 2022
[4.3] LIN CHANG, YIFEI LI, NICOLAS VOLET, LEIRAN WANG, JON PETERS, JOHN E. BOWERS1, “Thin film wavelength converters for photonic integrated circuits”,Optica, 3(5), p.531-535, 2016
[4.4] Mohammadreza Younesi, Reinhard Geiss, Frank Setzpfandt, Yen-Hung Chen, Thomas Pertsch, “Micrometer-range periodic poling of thin-film lithium niobate on insulator”, IEEE NANO, p.85-86, 2020
[4.5] Sven Reitzig, Michael Rusing, Jie Zhao, Benjamin Kirbus, Shayan Mookherjea, Lukas M. Eng1, ““Seeing Is Believing”—In-Depth Analysis by Co-Imaging of Periodically-Poled X-Cut Lithium Niobate Thin Films”, crystals, 11(288), 2021
[4.6] Xintong Li, Jinming Tao, Jinye Li, Yiru Zhao, Shuangxing Dai, Wenyu Wang, Jianguo Liu, “Ultra-compact, Broadband Polarization Beam Splitter Based on x-cut Lithium-Niobate-on-Insulator Platform Using Hybrid Plasmonic Waveguide”, Optical Communications, 545(15), 2023
[4.7] JONATHAN TYLER NAGY AND RONALD M. REANO, “Reducing leakage current during periodic poling of ion-sliced x-cut MgO doped lithium niobate thin films”, Optical Materials Express, Vol. 9, No. 7, 2019
[4.8] P. Mackwitz, M. Rusing, G. Berth, A. Widhalm, K. Muller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film”, APPLIED PHYSICS LETTERS, 108, 152902, 2016
[4.9] Honghu Zhang, Houbin Zhu, Qingyun Li, Hui Hu, “Reversed domains in x-cut lithium niobate thin films”, Optical Materials, 109(110364), 2020
[4.10] ASHUTOSH RAO, KAMAL ABDELSALAM, TRACY SJAARDEMA, AMIRMAHDI HONARDOOST, GUILLERMO F. CAMACHO-GONZALEZ, AND SASAN FATHPOUR, “Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600%W-1cm-2
”, Optics Express, Vol. 27, No. 18, 2019
[4.11] Yawen Su, Xinyu Zhang, Haiwei Chen, Shifeng Li, Jianan Ma, Wei Li, Yunfei Niu, Qi Qin, Shaoguang Yang, Yu Deng, Yong Zhang, Xiaopeng Hu and Shining Zhu, “High-efficiency nonlinear frequency conversion enabled by optimizing the ferroelectric domain structure in x-cut LNOI ridge waveguide”, Nanophotonics, 168, 2024
[4.12] Sipan Yang , Yaqian Li , Jinbin Xu , Min Wang , Liying Wu , Xueling Quan , Min Liu , Liucheng Fu , Xiulan Cheng , “Low loss ridge-waveguide grating couplers in lithium niobate on insulator” , Optical Materials Express , Vol. 11 , Issue 5 , pp. 1366-1376 , (2021)
第五章 量測結果與分析
[5.1] Regener, R., & Sohler, W. , “Loss in low-finesse Ti: LiNbO 3 optical waveguide resonators.” , Applied physics B, 36(3), 143-147, 1985
[5.2] Hu, H., Ricken, R., & Sohler, W. , “Lithium niobate photonic wires.” , Optics express, 17(26), 24261-24268, 2009
[5.3] Krasnokutska, I., Tambasco, J. L. J., Li, X., & Peruzzo, A. , “Ultra-low loss photonic circuits in lithium niobate on insulator.” , Optics express, 26(2), 897-904, 2018
[5.4] Volk, M. F., Suntsov, S., Ruter, C. E., & Kip, D. , “Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing.” , Optics express, 24(2), 1386- 1391, 2016
指導教授 陳彥宏(Yen-Hung Chen) 審核日期 2024-11-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明