博碩士論文 111226603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.119.248.54
姓名 金亞煇(Kim Nhat Huy)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以機器學習搭配表面增益拉曼光譜診斷癌症
(Applying Machine Learning in Surface-Enhanced Raman Spectroscopy for Cancer Diagnosis)
相關論文
★ 氮化物表面電漿生醫感測器之穩定化★ 以氮化銦鎵檢測循環腫瘤DNA
★ 以氮化物量子井製備的表面增益拉曼光譜檢測核鹼基★ 氮化物表面增益拉曼光譜於 肝纖維化判定的應用
★ CANCER DIAGNOSIS WITH HUMAN BLOOD PLASMA USING NITRIDE SURFACE-ENHANCED RAMAN SPECTROSCOPY★ 以氮化銦鎵量子井研製表面增益拉曼光譜
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-1以後開放)
摘要(中) 本研究分析四種癌症(乳癌、子宮內膜癌、肺癌、胰腺癌)的人體血漿,利用表面增強拉曼光譜(Surface-Enhanced Raman Spectroscopy, SERS)結合機器學習,目的是要開發高速、精準的血液感測晶片。我們採用的SERS結構含有多層InGaN量子井,根據69例血漿檢體(乳癌10例、子宮內膜癌10例、肺癌29例、胰臟癌10例、健康對照組10例)的分析結果,本技術能有效檢測出這四種癌,準確率可達96%。
摘要(英) This research focuses on analyzing human plasma associated with four cancers (breast, endometria, lung, pancreas), using the surface-enhanced Raman spectroscopy (SERS) integrated with machine learning for prediction and classification. The SERS structure comprises multiple InGaN quantum wells. According to the test results of 69 clinical cases (10 cases of breast cancer, 10 cases of endometrial cancer, 29 cases of lung cancer, 10 cases of pancreatic cancer, and 10 cases of health control), our technique can quickly identify the types of cancer with the average prediction accuracy of 96%.
關鍵字(中) ★ 臨床診斷
★ 癌症
★ 氮化物半導體
★ 量子阱
★ 表面增強拉曼光譜
★ 機器學習
關鍵字(英) ★ clinical diagnosis
★ cancer
★ nitride semiconductor
★ quantum well
★ surface-enhanced Raman spectroscopy
★ machine learning
論文目次 中文摘要 i
Abstract ii
Acknowledgements iii
List of Figures v
List of Tables vi
List of Abbreviations vii
Chapter 1. INTRODUCTION 1
1.1. Overview and thesis motivation 1
1.2. Theory of surface-enhanced Raman spectroscopy 2
1.3. Machine learning integrated with SERS 5
1.4. Thesis objective 9
Chapter 2. EXPERIMENT 10
2.1. Clinical samples preparation 10
2.2. SERS chips properties 11
2.3. SERS measurement protocol 12
2.4. Data treatment and statistical analysis 12
Chapter 3. RESULTS AND DISCUSSION 16
3.1. SERS signatures 16
3.2. Model evaluation 21
Chapter 4. CONCLUSION AND FUTURE WORKS 32
4.1. Conclusion 32
4.2. Future works 32
References 33
參考文獻 [1] H Gilbert Welch, Lisa M Schwartz, and Steven Woloshin. Ramifications of screening for breast cancer: 1 in 4 cancers detected by mammography are pseudocancers. BMJ 332.7543, 727 (2006).
[2] Jia Lei et al. Label-free surface-enhanced Raman spectroscopy for diagnosis and analysis of serum samples with different types lung cancer. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 261, 120021 (2021).
[3] Xiaozhou Li et al. Surface Enhanced Raman Spectroscopy (SERS) for the Multiplex Detection of Braf, Kras, and Pik3ca Mutations in Plasma of Colorectal Cancer Patients. Theranostics 8, 1678-1689 (2018).
[4] Kim Kwang Gi. Book Review: Deep Learning. Healthc Inform Res, 351-354 (2016).
[5] Hyunku Shin et al. Single test-based diagnosis of multiple cancer types using Exosome-SERS-AI for early stage cancers. Nature Communications (Dec. 2023).
[6] Dechan Lu et al. Machine learning-assisted global DNA methylation fingerprint analysis for differentiating early-stage lung cancer from benign lung diseases. Biosensors and Bioelectronics 235, 115235 (2023).
[7] Shilian Dong et al. Early cancer detection by serum biomolecular fingerprinting spectroscopy with machine learning. eLight 3 (July 2023).
[8] Gilbert S. Omenn et al. Risk Factors for Lung Cancer and for Intervention Effects in CARET, the Beta-Carotene and Retinol Efficacy Trial. JNCI: Journal of the National Cancer Institute, 1550-1559 (Nov. 1996).
[9] Pooja Middha et al. β-carotene Supplementation and Lung Cancer Incidence in the ATBC Study: the Role of Tar and Nicotine. Nicotine tobacco research: official journal of the Society for Research on Nicotine and Tobacco 21 (June 2018).
[10] Yulin Zhang et al. Association between β-carotene supplementation and risk of cancer: a meta-analysis of randomized controlled trials. Nutrition Reviews (Jan. 2023).
[11] Shuming Nie and Steven Emory. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science (New York, N.Y.) 275, 1102 (Mar. 1997).
[12] Katrin Kneipp et al. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Phys. Rev. Lett. 78, 1667-1670 (9 1997).
[13] Yuling Wang and Joseph Irudayaraj. Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 368, 20120026 (Feb. 2013).
[14] Eric Le Ru and Pablo Etchegoin. Principles of Surface-Enhanced Raman Spectroscopy and related plasmonic effects. Elsevier (2008).
[15] George C Schatz. Theoretical studies of surface enhanced Raman scattering. Accounts of Chemical Research, 370-376 (1984).
[16] Alan Campion and Patanjali Kambhampati. Surface-enhanced Raman scattering. Chemical society reviews, 241-250 (1998).
[17] A Otto et al. The “adatom model” of SERS (surface enhanced Raman scattering): the present status. In: Surface Science, 319-338 (1984).
[18] Juan Francisco Arenas et al. Charge-transfer processes in surface-enhanced Raman scattering. Franck- condon active vibrations of pyrazine. The Journal of Physical Chemistry, 3199-3206 (1996).
[19] Shuming Nie and Steven R Emory. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. science, 1102-1106 (1997).
[20] Katrin Kneipp et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Physical review letters, 1667 (1997).
[21] Cheng Zong et al. Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges. Chemical reviews 118, 4946-4980 (2018).
[22] Beata Wrzosek, Yasutaka Kitahama, and Yukihiro Ozaki. SERS Blinking on Anisotropic Nanoparticles. The Journal of Physical Chemistry, 20328-20339 (2020).
[23] Zuhui Zheng et al. Semiconductor SERS enhancement enabled by oxygen incorporation. Nature Communications 8 (Dec. 2017).
[24] Fan-Ching Chien et al. Nanostructured InGaN Quantum Wells as a SurfaceEnhanced Raman Scattering Substrate with Expanded Hot Spots. ACS Applied Nano Materials 8, 2614-2620 (2021).
[25] Thi Anh Nguyet Nguyen et al. Controlling the Electron Concentration for Surface-Enhanced Raman Spectroscopy. ACS Photonics, 2410-2416 (2021).
[26] Le Yen Nhi Phan et al. Detecting glucose in a cell culture medium by surfaceenhanced Raman scattering on InGaN quantum wells. Opt. Continuum, 2509-2515 (2023).
[27] Giyaullah Habibullah, Jitka Viktorova, and Tomas Ruml. Current Strategies for Noble Metal Nanoparticle Synthesis. Nanoscale Research Letters 16 (Dec. 2021).
[28] Michael B. Fenn et al. Raman Spectroscopy for Clinical Oncology. Advances in Optical Technologies, 213783 (2011).
[29] Lihao Zhang et al. Raman spectroscopy and machine learning for the classification of breast cancers. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 264, 120300 (2022).
[30] Janina Kneipp et al. Characterization of breast duct epithelia: A Raman spectroscopic study. Vibrational Spectroscopy - VIB SPECTROSC 32, 67-74 (Aug. 2003).
[31] Arkadiusz Matwijczuk et al. Use of FTIR Spectroscopy and Chemometrics with Respect to Storage Conditions of Moldavian Dragonhead Oil. Sustainability (2019).
[32] Manuel David Peris-Diaz, Barbara ?ydzba Kopczy’nska, and Enrique Sentan˙dreu. Raman spectroscopy coupled to chemometrics to discriminate provenance and geological age of amber. Journal of Raman Spectroscopy, 842-851 (2018).
[33] O.A. Maslova et al. Raman imaging and principal component analysis-based data processing on uranium oxide ceramics. Materials Characterization 129, 260-269 (2017).
[34] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning. Springer Series in Statistics. New York, NY, USA: Springer New York Inc. (2001).
[35] Yi Long et al. PSO-SVM-Based Online Locomotion Mode Identification for Rehabilitation Robotic Exoskeletons. Sensors (2016).
[36] Santosh Kumar et al. Classification of Diabetes using Deep Learning. 2020 International Conference on Communication and Signal Processing (ICCSP), 0651-0655 (2020).
[37] R. Vijayarajeswari et al. Classification of mammogram for early detection of breast cancer using SVM classifier and Hough transform. Measurement 146, 800-805 (2019).
[38] Pankaj Nanglia et al. A hybrid algorithm for lung cancer classification using SVM and Neural Networks. ICT Express 7.3, 335-341 (2021).
[39] Kottke BA, Zinsmeister AR, Holmes DR Jr, Kneller RW, Hallaway BJ, Mao SIT. Apolipoproteins and coronary artery disease. Mayo Clinic Proc 61 (1986).
[40] Sara Mostafapour et al. Investigating the effect of different pre-treatment methods on Raman spectra recorded with different excitation wavelengths. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 302, 123100 (2023).
[41] Luyao Lu et al. Resonance Raman scattering of β-carotene solution excited by visible laser beams into second singlet state. Journal of Photochemistry and Photobiology B: Biology 179, 18-22 (2018).
[42] Tom Howley et al. The effect of principal component analysis on machine learning accuracy with high-dimensional spectral data. Knowledge-Based Systems, 363-370 (2006).
[43] Lucretia Avram et al. SERS-Based Liquid Biopsy of Gastrointestinal Tumors Using a Portable Raman Device Operating in a Clinical Environment. Journal of Clinical Medicine (2020).
[44] Marshall, C. P., & Olcott Marshall, A.. The potential of Raman spectroscopy for the analysis of diagenetically transformed carotenoids. Philosophical Transactions of the Royal Society A: Mathematical, 3137-3144 (1922).
[45] Wu, Qiong & Qiu, Sufang & Yu, Yun & Chen, Weiwei & Lin, Huijing & Lin, Duo & Feng, Shangyuan & Chen, Rong. (2018). Assessment of the radiotherapy effect for nasopharyngeal cancer using plasma surface-enhanced Raman spectroscopy technology. Biomedical Optics Express (2018).
[46] Hsin Feng, S., & Yang, S.-T.. The new 8th TNM staging system of lung cancer and its potential imaging interpretation pitfalls and limitations with CT image demonstrations. Diagnostic and Interventional Radiology 25, 270–279 (2019).
指導教授 賴昆佑 簡汎清(Kun-Yu Lai Fan-Ching Chien) 審核日期 2024-12-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明