博碩士論文 109286602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:122 、訪客IP:3.144.91.115
姓名 黎秋玉(Le Thi Thu Ngoc)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 UVC-LED光學模型及其應用於採後水果保鮮的研究
(Study of an optical model of UVC-LEDs and its application in postharvest fruit preservation)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ 結合柱狀透鏡陣列之非成像車頭燈光型設計★ CCD 量測儀器之研究與探討
★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用★ 多光束繞射光學元件應用在DVD光學讀取頭之設計
★ 高位移敏感度之全像多工光學儲存之研究★ 利用亂相編碼與體積全像之全光學式光纖感測系統
★ 體積光柵應用於微物3D掃描之研究★ 具有偏極及光強分佈之孔徑的繞射極限的研究
★ 三維亂相編碼之體積全像及其應用★ 透鏡像差的量測與MTF的驗證
★ 二位元隨機編碼之全像光學鎖之研究★ 亂相編碼於體積全像之全光學分佈式光纖感測系統之研究
★ 自發式相位共軛鏡之相位穩定與應用於自由空間光通訊之研究★ 體積全像空間濾波器應用於物體 三度空間微米級位移之量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-12-30以後開放)
摘要(中) 本論文展示了 UVC LED 技術在延長採後水果保質期方面的一些進展。首先,我們開發了一種新型的 UVC LED 光學模型,利用螢光膜捕捉二維輻照度分佈模式,在 5 毫米時達到 99.8% 的歸一化互相關(NCC)值,在 8 毫米和 10 毫米時達到 99.9% 的值,達到高精度的效果。其次,我們設計了一個 尺寸為30 × 30 × 30公分的UVC LED 腔體,以減少香蕉上的黑斑,並仔細監測輻照度分佈(6-9 W/m2)。最佳 UVC 劑量估計在 0.030 × 103 到 0.045 × 103 W?s/m2之間,能有效防止黑斑,且不會明顯損害香蕉皮。第三,我們製作了一個 由4 × 4 LED矩陣排列組成的UVC LED 陣列系統,以控制茂谷橘子的綠黴,達到高輻照度均勻性,並在 0.9 × 103 到 4.5 × 103 W?s/m2 的最佳劑量下維持茂谷的品質長達四週。最後,我們調查了 UVC 處理對芒果的有效性。結果顯示,UVC 處理能有效延長初始感染症狀較少的芒果的保質期,但對於那些在處理前已存在病症的芒果則無效。根據結果,我們研究了 UVC 光穿透芒果黑斑的情況,並開發了芒果黑斑的光學模型,以準確預測光在這些斑點中的透射。研究結果表明,UVC 光穿透芒果黑斑的能力不足以滅活已經侵入芒果的真菌。我們建議,選擇外觀良好且初始可見感染症狀最少的芒果,對於實現有效的 UVC 處理至關重要。總體而言,這項研究提出了有效的 UVC LED 系統,並為優化 UVC LED 處理提供了重要指南,以提高採後水果的品質和保質期,旨在提升水果產業的經濟效率。
摘要(英) This study presents several advancements in UVC LED technology for prolonging the shelf life of postharvest fruits. First, we developed a novel optical model for UVC LEDs using fluorescent film to capture 2-D irradiance patterns, achieving high precision with normalized cross-correlation (NCC) values of 99.8% at 5 mm and 99.9% at 8 mm and 10 mm distances. Second, a UVC LED cavity with dimensions of 30 × 30 × 30 cm was designed to reduce black spots on bananas, with careful monitoring of irradiance distribution (6-9 W/m2). The optimal UVC doses, estimated between 0.030 × 103 and 0.045 × 103 W?s/m2, effectively prevent black spots without visible harming the peel. Third, we fabricated a UVC LED array system with a 4 × 4 LED matrix arrangement to control green mold in murcotts, achieving high irradiance uniformity and maintaining murcott quality for up to four weeks at an appropriate dose ranging between 0.9 × 103 to 4.5 × 103 W?s/m2. Finally, we investigate the effectiveness of UVC treatment for mangoes. The results demonstrated that UVC treatment effectively prolong the shelf life for mangoes with minimal initial infection symptoms but is ineffective for those with exhibiting disease symptoms pre-treatment. According to the results, we investigated the UVC light penetration through mango black spots and developed optical model for mango black spot to effectively estimate light transmittance through them. Our finding indicated that UVC light penetration through mango black spots is insufficient to inhibit fungi that has already invaded the mango. We suggest that selecting mangoes with a healthy appearance and minimal infection symptoms is essential for obtaining effective UVC treatment. Overall, this research proposed effective UVC LED systems and provides essential guidelines for optimizing UVC LED treatments to enhance the quality and shelf life of postharvest fruits, with the aim of improving the economic efficiency of fruit industry.
關鍵字(中) ★ One keyword per line
★ 光學模型
★ UVC處理
★ UVC LED 系統
★ 水果保鮮
★ UVC技術
關鍵字(英) ★ One keyword per line
★ Optical model
★ UVC treatment
★ UVC LED system
★ Fruit preservation
★ UVC technology
論文目次 摘要 I
Abstract II
Acknowledgment III
Table of Contents IV
List of Figures VII
List of Tables XV
Explanation of Abbreviations XVI
Chapter 1 Introduction 1
1.1 Introduction to Ultraviolet C light 1
1.2 Brief history of UV LEDs Development 2
1.3 Motivation and dissertation overview 5
Chapter 2 UVC LED Technology in Postharvest Preservation
9
2.1 Mechanism of UVC treatment for postharvest
fruit preservation 9
2.1.1 Microorganism inactivation mechanisms
9
2.1.2 Effect of UVC radiation on fruit
properties 12
2.2 UVC LED devices 12
2.2.1 LED chip 12
2.2.2 LED chip fabrication 14
2.3 UVC dose 15
2.4 UVC safety considerations 15
Chapter 3 Optical Modeling for UVC LED using Fluorescent
Film 17
3.1 Introduction 17
3.2 Methods 20
3.2.1 Materials and analysis 20
3.2.2 Assessing the proportionality of
irradiance and radiance on fluorescent film
22
3.2.3 Gray level calibration equation 23
3.3 Results 25
3.4 Application of light source model for dome lens
design 27
Chapter 4 UVC LED Cavity with Precisely Monitored
Irradiation for Extending the Shelf Life of
Bananas 29
4.1 Design and fabricating a UVC LED cavity 29
4.1.1 Design and fabrication of the UVC cavity
29
4.1.2 Monitoring the irradiance distribution
inside the cavity 31
4.2 Effect of UVC treatment on bananas 34
4.2.1 Sampling and analysis 34
4.2.2 Results 35
4.3 UVC treatment under in vitro conditions 37
4.3.1 Effect of UVC treatment on mycelial
growth of C. musae 38
4.3.2 Effect of UVC treatment on conidial
germination of C. musae 39
4.4 Summaries 40
Chapter 5 UVC LED Array for Extending the Shelf Life of
murcotts 42
5.1 Optical system 42
5.2 Irradiance monitoring 46
5.2.1 Irradiance distribution 46
5.2.2 Irradiance distribution in advanced
application 47
5.3 UVC treatment under in vitro conditions 49
5.3.1 Methodology 49
5.3.2 Results 49
5.4 UVC effect in reducing green mold on murcotts
50
5.4.1 Sampling and assessment methods 50
5.4.2 Results and discussion 51
5.5 Summaries 57
Chapter 6 Is UVC Radiation Effective in Extending the
Mango Shelf Life? Optical Model of Mango Black
Spot 59
6.1 Optical system and irradiance distribution 60
6.1.1 UVC LED cavity 60
6.1.2 Irradiance distribution 60
6.2 UVC treatment for mangoes 62
6.2.1 Disease assessment 62
6.2.2 Materials and sampling 62
6.2.3 Effects of UVC treatment on reducing
diseases in mangoes 63
6.3 UVC treatment under in vitro conditions 67
6.3.1 Sampling and statistical analysis 67
6.3.2 UVC treatment effects on the fungal
development 68
6.4 Optical model of mango disease 68
6.4.1 UVC light transmittance measurement
through mango black spots 69
6.4.2 Optical model of mango black spot 70
6.5 Summaries 74
Chapter 7 Conclusions and Future Outlooks 76
7.1 Conclusions 76
7.2 Future outlooks 78
References 79
參考文獻 1. World Health Organization, Ultraviolet radiation (Environmental Health Criteria 160, 1994).
2. S. K. Sastry, A. K. Datta, R. W. Worobo, “Ultraviolet light,” J. Food Sci. 65, 90–92 (2000).
3. A?. C. Giese, Ultraviolet radiation. in Encyclopedia of Physical Science and Technology. (McGraw-Hill, New York, 1992).
4. L. Urban, F. Charles, M. R. de Miranda, and J. Aarrouf, “Understanding the physiological effects of UV-C light and exploiting its agronomic potential before and after harvest,” Plant Physiol. Biochem. 105, 1–11 (2016).
5. J. R. Bolton, and C. A. Cotton, The ultraviolet disinfection handbook. (American Water Works Association, 2011).
6. B. M. Andersen, H. Banrud, E. Boe, O. Bjordal, and F. Drangsholt, “Comparison of UV C light and chemicals for disinfection of surfaces in hospital isolation units,” Infect. Control Hosp. Epidemiol. 27, 729e734 (2006).
7. F. P. Wieringa, “Five Frequently Asked Questions About UV Safety.” IUVA News 8, 29–32 (2006).
8. V. C. Forte, “Understanding ultraviolet LED applications and precautions,” Electron. Compon. News Mag. (2014).
9. T. Koutchma, Ultraviolet LED Technology for Food Applications: From Farms to Kitchens (Academic Press, Canada, 2019).
10. W. Kowalski, UV Surface Disinfection Ultraviolet Germicidal Irradiation Handbook: UVGI for Air and Surface Disinfection (Springer Berlin Heidelberg, Berlin, 2009).
11. S. E. Beck, H. Ryu, L. A. Boczek, J. L. Cashdollar, K. M. Jeanis, J. S. Rosenblum, R. L. Oliver, and G. L. Karl, “Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy,” Water Res. 109, 207-216 (2017).
12. Liteon company website, https://optoelectronics.liteon.com/en-global/Led/led-component/Detail/1117?param4=18?m5=222.
13. T. Nicolau, N. Gomes Filho, J. Padrao, and A. Zille, “A comprehensive analysis of the UVC LEDs’ applications and decontamination capability,” Materials 15, 2854 (2022).
14. T. Koutchma, Ultraviolet light in food technology: Principles and applications, 2nd ed. (CRC Press, 2009).
15. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).
16. WHO, “Fruit and Vegetables for Health: Report of a Joint FAO/WHO Workshop, 1–3 September 2004, Kobe, Japan,” World Health Organization and Food and Agriculture Organization of the UN (2004).
17. C. W. Wardlaw, Banana diseases including plantains and abaca, 1st ed. (Longman, William Clowns & Sons Limited, London, 1961).
18. J. W. Eckert, and I. L. Eaks, Postharvest disorders and diseases of citrus fruits. in The Citrus Industry, vol. 5 (University of California Press, Berkeley, CA, USA, 1989).
19. R. C. Ploetz, Diseases of mango. in Diseases of Tropical Fruit Crops (CAB International, Wallingford, 2003).
20. Morning Ag Clips website, https://www.morningagclips.com/a-path-to-defeating-crop-killing-gray-mold-without-toxic-chemicals/
21. W. F. Wilcox, and R. C. Seem, “Relationship between strawberry gray mold incidence, environmental variables, and fungicide applications during different periods of the fruiting season,” Phytopathology 84, 264?270 (1994).
22. L. R. Beuchat, “Surface decontamination of fruits and vegetables eaten raw: A review,” World Health Organization (1998).
23. B. Yaun, S. Sumner, J. Eifert, J. Marcy, “Inhibition of pathogens on fresh produce by ultraviolet energy,” Int. J. Food Microbiol. 90, 1?8 (2004).
24. C. N. Berger, S. V. Sodha, R. K. Shaw, P. M. Griffin, D. Pink, P. Hand, and G. Frankel, “Fresh fruit and vegetables as vehicles for the transmission of human pathogens,” Environ. Microbiol. 12, 2385?2397 (2010).
25. D. Martinez-Romero, G. Bailen, M. Serrano, F. Guillen, J. M. Valverde, P. Zapata, S. Castillo, and D. Valero, “Tools to maintain postharvest fruit and vegetable quality through the inhibition of ethylene action: a review,” Crit. Rev. Food Sci. Nutr. 47, 543?560 (2007).
26. A. Spadoni, F. Neri, and M. Mari, Physical and chemical control of postharvest diseases. in Advances in Postharvest Fruit and Vegetable Technology (CRC Press, 2016).
27. J. W. Eckert, and J. M. Ogawa, “The chemical control of postharvest diseases: subtropical and tropical fruits,” Annu. Rev. Phytopathol. 23, 421–454 (1985).
28. M. Sisquella, P. Picouet, I. Vinas, N. Teixido, J. Segarra, J. Usall, “Improvement of microwave treatment with immersion of fruit in water to control brown rot in stone fruit,” Innov. Food Sci. Emerg. Technol. 26, 168–175 (2014).
29. A. K. Thompson, R. K. Prange, R. Bancroft, T. Puttongsiri, Controlled Atmosphere Storage of Fruits and Vegetables (CABI, 2018).
30. A. K. Thompson, Fruit and vegetable storage: hypobaric, hyperbaric and controlled atmosphere (Springer, 2015).
31. E. Fallik, “Prestorage hot water treatments (immersion: rinsing and brushing),” Postharvest Biol. Technol. 32, 125–134 (2004).
32. S. Ben-Yehoshua, R. Porat, Heat treatments to reduce decay. In Environmentally Friendly Technologies for Agricultural Produce Quality (CRC Press, Boca Raton, 2005).
33. J. Usall, A. Ippolito, M. Sisquella, F. Neri, “Physical treatments to control postharvest diseases of fresh fruits and vegetables,” Postharvest Biol. Technol. 122, 30-40 (2016)
34. D. K. Liu, C. C. Xu, C. X. Guo, X. X. Zhang, “Sub-zero temperature preservation of fruits and vegetables,” A review. J. Food Eng. 275, 109881 (2020).
35. R. Barkai-Golan, Postharvest Diseases of Fruits and Vegetables: Development and Control (Elsevier, 2001).
36. P. M. Nair, A. Sharma, “Food Irradiation,” Innov. Food Process. Technol. 19–29 (2016).
37. B. Pathak, P. K. Omre, B. Bisht, and D. Saini, “Effect of thermal and non-thermal processing methods on food allergens,” Progressive Res. Int. 13, 314–319 (2018).
38. B. Bisht, P. Bhatnagar, P. Gururani, V. Kumar, M. S. Tomar, R. Sinhmar, N. Rathi, and S. Kumar, “Food irradiation: Effect of ionizing and non-ionizing radiations on preservation of fruits and vegetables–a review,” Trends Food Sci. Technol. 114, 372?385 (2021).
39. R. R. Kalaiselvan, A. Sugumar, and M. Radhakrishnan, Gamma irradiation usage in fruit juice extraction. in Fruit juices (Academic Press, 2018).
40. J. Farkas, “Irradiation for better foods,” Trends Food Sci. Tech., 17, 148?152 (2006).
41. C. Liao, X. Liu, A. Gao, A. Zhao, J. Hu, and B. Li, “Maintaining postharvest qualities of three leaf vegetables to enhance their shelf lives by multiple ultraviolet-C treatment,” LWT 73, 1?5 (2016).
42. M. Morales-de la Pena, J. Welti-Chanes, and O. Martin-Belloso, “Novel technologies to improve food safety and quality,” Curr. Opin. Food Sci. 30, 1–7 (2019).
43. C. Jermann, T. Koutchma, E. Margas, C. Leadley, and V. Ros-Polski, Mapping trends in novel and emerging food processing technologies around the world,” Innov. Food Sci. Emerg. Technol. 31, 14–27 (2015).
44. M. Turtoi, “Ultraviolet light treatment of fresh fruits and vegetables surface: A review,” J. Agroaliment. Processes Technol. 19, 325–337 (2013).
45. G. A Gonzalez-Aguilar, C. Y. Wang, J. G. Buta, and D. T. Krizek, “Use of UV-C irradiation to prevent decay and maintain postharvest quality of ripe “Tommy Atkins” mangoes,” Int. J. Food Sci. Technol. 36, 767–773 (2001).
46. D. Terao, J. S. de Carvalho Campos, E. A. Benato, and J. M. Hashimoto, “Alternative strategy on control of postharvest diseases of mango (Mangifera indica L.) by use of low dose of ultraviolet-C irradiation,” Food Eng. Rev. 7, 171–175 (2015).
47. C. Stevens, C. L. Wilson, J. Y. Lu, V. A. Khan, E. Chalutz, S. Droby, M. K. Kabwe, Z. Haung, O. Adeyeye, L. P. Pusey, M. E. Wisniewski, and M. West, “Plant hormesis induced by ultraviolet light-C for controlling postharvest diseases of tree fruits,” Crop Prot. 15, 129–134 (1996).
48. M. A. Pombo, H. G. Rosli, G. A. Martinez, and P. M. Civello, “UV-C treatment affects the expression and activity of defense genes in strawberry fruit (Fragaria ananassa, Duch.),” Postharvest Biol. Technol. 59, 94–102 (2011).
49. G. A. Gonzalez-Aguilar, J. A. Villa-Rodriguez, J. F. Ayala-Zavala, and E. M. Yahia, “Improvement of the antioxidant status of tropical fruits as a secondary response to some postharvest treatments,” Trends Food Sci. Technol. 21, 475–482 (2010).
50. W. Janisiewicz, F. Takeda, B. Evans, and M. Camp, “Potential of far ultraviolet (UV) 222 nm light for management of strawberry fungal pathogens,” Crop Prot. 150, 105791 (2021).
51. O. Phonyiam, H. Ohara, S. Kondo, M. Naradisorn, and S. Setha,“Postharvest UV-C Irradiation Influenced Cellular Structure, Jasmonic Acid Accumulation, and Resistance Against Green Mold Decay in Satsuma Mandarin Fruit (Citrus unshiu),” Front. Sustain. Food Syst. 5, 684434 (2021).
52. G. D’hallewin, M. Schirra, E. Manueddu, A. Piga, S. Ben-Yehoshua, “Scoparone and Scopoletin accumulation and ultraviolet-C induced resistance to postharvest decay in oranges as influenced by harvest date,” J. Am. Soc. Hortic. Sci. 124, 702–707 (1999).
53. L. K. Sari, S. Setha, and M. Naradisorn, “Effect of UV-C irradiation on postharvest quality of ‘Phulae’pineapple,” Sci. Hortic. 213, 314?320 (2016).
54. J. Yao, W. Chen, and K. Fan, “Recent advances in light irradiation for improving the preservation of fruits and vegetables: A review,” Food Biosci. 103206 (2023).
55. M. Darre, A. R. Vicente, L. Cisneros-Zevallos, and F. Artes-Hernandez, “Postharvest ultraviolet radiation in fruit and vegetables: Applications and factors modulating its efficacy on bioactive compounds and microbial growth,” Foods 11, 653 (2022).
56. A. M. Rauth, “The physical state of viral nucleic acid and the sensitivity of viruses to ultraviolet light,” Biophys. J. 5, 257–273 (1965).
57. K. Oguma, H. Katayama, and S. Ohgaki, “Photoreactivation of Escherichia coli After Lowor Medium-Pressure UV Disinfection Determined by an Endonuclease Sensitive Site Assay,” Appl. Environ. Microbiol. 68, 6029–6035 (2002).
58. M. A. Pombo, M. C. Dotto, G. A. Martinez, and P. M. Civello, “UV-C irradiation delays strawberry fruit softening and modifies the expression of genes involved in cell wall degradation. Postharvest,” Biol. Technol. 51, 141–148 (2009).
59. F. Nigro, A. Ippolito, V. Lattanzio, and M. Salerno, “Effect of ultraviolet-C light on postharvest decay of strawberry,” J. Plant Pathol. 82, 29–37 (2000).
60. K. Sheng, S. S. Shui, L. Yan, C. Liu, and L. Zheng, “Effect of postharvest UV-B or UV-C irradiation on phenolic compounds and their transcription of phenolic biosynthetic genes of table grapes,” J. Food Sci. Technol. 55, 3292–3302 (2018).
61. R. H. Haitz, M. G. Craford, and R. H. Weissman, Light emitting diodes. in Handbook of optics 2nd ed. (McGraw Hill, New York, 1995).
62. H. Ehrenreich, and F. Spaepen, Solid state physics (Academic Press, San Diego, CA, U.S.A., 2001).
63. N. Shuji, M. Takashi, and S. Masayuki, “High-Power GaN P-N Junction Blue-Light-Emitting Diodes,” Jpn. J. Appl. Phys. 30, L1998 (1991).
64. R. H. Bishop, The Mechatronics Handbook-2 Volume Set (CRC Press, Boca Raton, FL, U.S.A., 2002).
65. J. Chen, S. Loeb, and J. H. Kim, “LED revolution: fundamentals and prospects for UV disinfection applications,” Environ. Sci. Water Res. Technol. 3, 188?202 (2017).
66. E. F. Schubert, T. Gessmann, and J. K. Kim, Light Emitting Diodes (Wiley, 2005).
67. M. Schiler, Simplified design of building lighting (John Wiley & Sons, New York, U.S.A., 1997).
68. H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, “Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys. 53, 100209 (2014).
69. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett. 48, 353–355 (1986).
70. H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys. 28, L2112 (1989).
71. H. Amano, T. Asahi, and I. Akasaki, “Stimulated emission near ultraviolet at room temperature from a GaN film grown on sapphire by MOVPE using an AlN buffer layer,” Jpn. J. Appl. Phys. 29, L205 (1990).
72. S. Srivastava, S. M. Hwang, M. Islam, K. Balakrishnan, V. Adivarahan, and A. Khan, “Ohmic contact to high-aluminum-content AlGaN epilayers,” J. Electron. Mater. 38, 2348?2352 (2009).
73. R. France, T. Xu, P. Chen, R. Chandrasekaran, and T. D. Moustakas, “Vanadium-based Ohmic contacts to n-AlGaN in the entire alloy composition,” Appl. Phys. Lett. 90, 062115 (2007).
74. R. E. Nahory, M. A. Pollack, E. D. Beebe, and J. C. DeWinter, “Efficient GaAs1? xSbx/AlyGa1? yAs1? xSbx double heterostructure LED′s in the 1?μm wavelength region,” Appl. Phys. Lett. 27, 356–357 (1975).
75. P. Schlotter, J. Baur, C. Hielscher, M. Kunzer, H. Obloh, R. Schmidt and J. Schneider, “Fabrication and characterization of GaN/InGaN/AlGaN double heterostructure LEDs and their application in luminescence conversion LEDs,” Mater. Sci. Eng. B 59, 390–394 (1999).
76. T. Mukai, D. Morita, and S. Nakamura, “High-power UV InGaN/AlGaN double-heterostructure LEDs,” J. Cryst. Growth 189, 778–781 (1998).
77. C. A. Tran, A. Osinski, R. F. Karlicek, and I. Berishev, “Growth of InGaN/GaN multiple-quantum-well blue light-emitting diodes on silicon by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 75, 1494–1496 (1999).
78. A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2, 77–84 (2008).
79. J. J. Xu, Y. F. Wu, S. Keller, S. Heikman, B. J. Thibeault, U. K. Mishra, and R. A. York, “1-8-GHz GaN-based power amplifier using flip-chip bonding,” IEEE Microw. Guided Wave Lett. 9, 277–279 (1999).
80. J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O′Shea, M. J. Ludowise, G. Christenson, Y.-C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Gotz, N. F. Gardner, R. S. Kern, and S. A. Stockman, “High-power AlGaInN flip-chip light-emitting diodes,” Appl. Phys. Lett. 78, 3379–3381 (2001).
81. A. Ryer, The Light Measurement Handbook (International Light Technologies, 1997).
82. J. D’Orazio, S. Jarrett, A. Amaro-Ortiz, and T. Scott, “UV Radiation and the Skin,” Int. J. Mol. Sci. 14, 12222?12248 (2013).
83. F. J. van Kuijk, “Effects of Ultraviolet Light on the Eye: Role of Protective Glasses,” Environ. Health Perspect. 96, 177?184 (1991).
84. Ultraviolet Radiation Guide, Technical Manual NEHC-TM92-5 (Bureau of Medicine and Surgery, Navy Environmental Health Center, 1992).
85. M. Raeiszadeh, and B. Adeli, “A critical review on ultraviolet disinfection systems against COVID-19 outbreak: applicability, validation, and safety considerations,” ACS Photonics 7, 2941?2951 (2020).
86. IEC 62471, Photobiological safety of lamps and lamp systems (IEC Geneva, 2006).
87. CNS 15592, 光源及光源系統之光生物安全性 (經濟部標準檢驗,2012).
88. M. S. Kaminski, K. J. Garcia, M. A. Stevenson, M. Frate, and R. J. Koshel, Advanced topics in source modeling. in Modeling and Characterization of Light Sources (SPIE, 2002).
89. H. Zerhau-Dreihoefer, U. Haack, T. Weber, and D. Wendt, Light source modeling for automotive lighting devices. in Modeling and Characterization of Light Sources (SPIE, 2002).
90. T. T. N. Le, S. K. Lin, C. C. Sun, Q. K. Nguyen, C. S. Wu, T. H. Yang, and Y. W. Yu, “Precise mid-field modeling for UVC LEDs by using a fluorescent film,” OSA Contin. 4, 3117–28 (2021).
91. C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193?2195 (2006).
92. C. C. Sun, W. T. Chien, I. Moreno, C. C. Hsieh, and Y. C. Lo, “Analysis of the far-field region of LEDs,” Opt. Express 17, 13918?13927 (2009).
93. ASAP Program, Breault Research Organization (BRO), Inc., /http://www.bro.com/S.
94. J. P. Lewis, “Fast template matching,” Proc. Canad. Imag. Proc. 19, 120–123 (1995).
95. C. C. Sun, Y. C. Lo, C. C. Tsai, X. H. Lee, and W. T. Chien, “Anti-glare LED projection lamp based on an optical design with a confocal double-reflector,” Opt. Commun. 285, 4207?4210 (2012).
96. H. J. Lin, C. C. Sun, C. S. Wu, X. H. Lee, T. H. Yang, S. K. Lin, Y. J. Lin, and Y. W. Yu, “Design of a Bicycle Head Lamp Using an Atypical White Light-Emitting Diode with Separate Dies,” Cryst. 9, 659 (2019).
97. C. S. Wu, K. Y. Chen, X. H. Lee, S. K. Lin, C. C. Sun, J. Y. Cai, T. H. Yang, and Y. W. Yu, “Design of an LED Spot Light System with a Projection Distance of 10 km,” Cryst. 9, 524 (2019).
98. K. Barnard, Color constancy with fluorescent surfaces. in Color and Imaging Conference (Society of Imaging Science and Technology, 1999)
99. B. Valeur, and M. N. Berberan-Santos, Molecular fluorescence: principles and applications (John Wiley & Sons, 2012).
100. T. Treibitz, Z. Murez, B. G. Mitchell, and D. Kriegman, Shape from fluorescence. in European Conference on Computer Vision (Springer, 2012).
101. Fluorescent Film website, https://hsdtc.com/fluorescent-film/
102. J. C. Robinson, Crop Production Science in Horticulture (5): Bananas & Plantains CAB International (Cambridge University Press, Walling Ford, UK, 1996).
103. P. Jeffries, J. C. Dodd, M. J. Jeger, and R. A. Plumbley, “The biology and control of Colletotrichum species on tropical fruit crops,” Plant Pathol. 39, 343–366 (1990).
104. T. T. N. Le, C. T. Liao, S. K. Lin, C. S. Wu, Q. K. Nguyen, T. H. Yang, Y. W. Yu, and C. C. Sun, “Study of banana preservation extension by UVC radiation in precise monitoring LED irradiation cavity,” Sci. Rep. 12, 21352 (2022).
105. H. W. Lee and B. S. Lin, “Improvement of illumination uniformity for LED flat panel light by using micro-secondary lens array,” Opt. Express 20, 788-98 (2012).
106. T. Komine, J. H. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wirel. Commun. 8, 2892–2900 (2009).
107. B. J. Shih, S. C. Chiou, Y. H. Hsieh, C. C. Sun, T. H. Yang, S. Y. Chen, and T. Y. Chung, “Study of temperature distributions in pc-WLEDs with different phosphor packages,” Opt. Express 23, 33861–33869 (2015).
108. T. H. Yang, H. Y. Huang, C. C. Sun, B. Glorieux, X. H. Lee, Y. W. Yu, and T. Y. Chung, “Noncontact and Instant Detection of Phosphor Temperature in Phosphor-Converted White LEDs,” Sci. Rep. 8, 296 (2018).
109. N. T. Mohamed, P. Ding, J. Kadir, and H. M. Ghazali, “Potential of UVC germicidal irradiation in suppressing crown rot disease, retaining postharvest quality and antioxidant capacity of Musa AAA “Berangan” during fruit ripening,” Food Sci. Nutr. 5, 967–80 (2017).
110. D. M. De Costa, and H. M. D. M. Gunawardhana, “Effects of sodium bicarbonate on pathogenicity of Colletotrichum musae and potential for controlling postharvest diseases of banana,” Postharvest Biol. Technol. 68, 54–63 (2012).
111. S. I. Harlapur, M. S. Kulkarni, M. C. Wali, and H. Srikantkulkarni, “Evaluation of Plant Extracts, Bio-agents and Fungicides against Exserohilum turcicum (Pass.) Leonard and Suggs. Causing Turcicum Leaf Blight of Maize,” Karnataka J. Agric. Sci. 20, 541–544 (2007).
112. T. Tanaka, “Misunderstanding with Regards Citrus Classification and Nomeclature,” Bull. Univ. Osaka Pref. Ser. B Agric. Biol. 21, 139?145 (1969).
113. P. Putnik, F. J. Barba, J. M. Lorenzo, D. Gabri?, A. Shpigelman, G. Cravotto, and D. Bursa? Kova?evi?, “An Integrated Approach to Mandarin Processing: Food Safety and Nutritional Quality, Consumer Preference, and Nutrient Bioaccessibility,” Compr. Rev. Food Sci. Food Saf. 16, 1345?1358 (2017).
114. L. W. Timmer, S. M. Garnsey, and J. H. Graham, Compendium of Citrus Diseases (The American Phytopathological Society, Minnesota, 2000).
115. C. C. Sun, Y. Y. Chang, T. H. Yang, T. Y. Chung, C. C. Chen, T. X. Lee, D. R. Li, C. Y. Lu, Z. Y. Ting, B. Glorieux, Y. C. Chen, K. Y. Lai, and C. Y. Liu, “Packaging efficiency in phosphor-converted white LEDs and its impact to the limit of luminous efficacy,” J. Solid State Light. 1, 1?17 (2014).
116. J. E. Amadi, M. O. Adebola, and C. S. Eze, “Isolation and identification of a bacterial blotch organism from watermelon (Citrullis lanatus (Thunb.) Matsum. And Nakai),” Afr. J. Agr. Res. 4, 1291–1294 (2009).
117. Z. S. Safari, P. Ding, J. J. Nakasha, and S. F. Yusoff, “Combining chitosan and vanillin to retain postharvest quality of tomato fruit during ambient temperature storage,” Coatings 10, 1222 (2020).
118. A. A. Bakar, M. N. A. Izzati, and Y. Kalsom, “Diversity of Fusarium species associated with postharvest fruit rot disease of tomato,” Sains Malays. 42, 911–920 (2013).
119. D. Yadav, S. P. Singh, “Mango: History origin and distribution,” J. Pharmacogn. Phytochem. 6, 1257–1262 (2017).
120. FAO, Major Tropical Fruits Market Review, Preliminary results 2023, Rome (2024).
121. R. C. Ploetz, Diseases of Tropical Fruit Crops. in Diseases of mango (CAB International, Wallingford, 2003).
122. N. F. Rosman, N. A. Asli, S. Abdullah, and M. Rusop, Some common disease in mango. in AIP conference proceedings (AIP 2019).
123. S. J. Lee, “Analysis of light-emitting diodes by Monte-Carlo photon simulation,” Appl. Opt. 40, 1427?1437 (2001).
124. M. S. Kaminski, K. J. Garcia, M. A. Stevenson, M. Frate, and R. J. Koshel, Advanced Topics in Source Modeling. in Modeling and Characterization of Light Sources (SPIE, 2002).
125. Z. D. Ting, and T. C. McGill Jr, “Monte Carlo simulation of light-emitting diode light-extraction characteristics,” Opt. Eng. 34, 3545?3553 (1995).
126. A. Borbely, and S. G. Johnson, “Performance of phosphor-coated light-emitting diode optics in ray-trace simulations,” Opt. Eng. 44, 111308 (2005).
127. A. Doicu, and T. Wriedt, “Equivalent refractive index of a sphere with multiple spherical inclusions,” J. Opt. A-Pure Appl. Opt. 3, 204 (2001).
128. D. Toublanc, “Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations,” Appl. Opt. 35, 3270?3274 (1996).
129. C. F. Boren, and D. R. Huffmarn, Absorption and scattering of Light by Small Particles (John Wiley & Sons, 1983).
130. T. T. N. Le, C. S. Wu, N. J. Cheng, T. H. Yang, Y. W. Yu, and C. C. Sun, “Can UVC radiation be useful in prolonging the shelf life of mangoes?” Smart Agric. Technol. 9, 100612 (2024).
131. P. S. Wharton, and J. Dieguez-Uribeondo, “The biology of Colletotrichum acutatum,” Anales Jard. Bot. Madrid 61, (2004).
132. Y. Shuai, N. T. Tran, and F. G. Shi, “Nonmonotonic phosphor size dependence of luminous efficacy for typical white LED emitters,” IEEE Photon. Technol. Lett. 23, 552?554 (2011).
133. H. C. van de Hulst, Light scattering by small particles (John Wiley & Sons, New York, 1957).
134. R. N. Tharanathan, H. M. Yashoda, and T. N. Prabha, “Mango (Mangifera indica L.), “The king of fruits” –An overview,” Food Rev. Int. 22, 95–123 (2006).
135. M. Daimon, and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46, 3811–3820 (2007).
136. P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, and M. E. Milham, “Optical properties of Bacillus subtilis spores from 0.2 to 2.5 μm,” Appl. Opt. 36, 2818–2824 (1997).
137. C. E. Alupoaei, J. A. Olivares, and L. H. Garc??a-Rubio, “Quantitative spectroscopy analysis of prokaryotic cells: vegetative cells and spores,” Biosens. Bioelectron. 19, 893–903 (2004).
指導教授 孫慶成(Ching-Cherng Sun) 審核日期 2024-12-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明