博碩士論文 110327031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:18.217.142.228
姓名 翁偉成(Wei-Cheng weng)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 瞬時量測波片延遲量和定位快軸方位角
(Instantaneous Measurement of Wave Plate Phase Retardation and Positioning of Wave Plate Fast Axis Azimuth)
相關論文
★ MOCVD晶圓表面溫度即時量測系統之開發★ MOCVD晶圓關鍵參數即時量測系統開發
★ 應用螢光顯微技術強化RDL線路檢測系統★ 基於人工智慧之PCB瑕疵檢測技術開發
★ 基於 YOLO 物件辨識技術之 PCB 多類型瑕疵檢測模型開發★ 全場相位式表面電漿共振技術
★ 波長調制外差式光柵干涉儀之研究★ 攝像模組之影像品質評價系統
★ 雷射修整之高速檢測-於修整TFT-LCD SHORTING BAR電路上之應用★ 光強差動式表面電漿共振感測術之研究
★ 準共光程外差光柵干涉術之研究★ 波長調制外差散斑干涉術之研究
★ 全場相位式表面電漿共振生醫感測器★ 利用Pigtailed Laser Diode 光學讀寫頭在角度與位移量測之研究
★ 複合式長行程精密定位平台之研究★ 紅外波段分光之全像集光器應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-1以後開放)
摘要(中) 本研究提出了一種瞬時量測波片相位延遲量及波片快軸方位角量測技術,用於精確測量波片相位延遲量與快軸方位角。該技術能有效提升相位延遲量的量測精度與速度,以及快軸方位角的量測精度。波片的相位延遲量與快軸方位角是決定波片效能的兩項關鍵參數,因此,精確量測這兩項參數對於光學系統至關重要。
本技術基於偏振元件與偏振相機組成的偏振干涉術,可一次偵測四個偏振方向的光強度訊號。透過偏振干涉解相法,將偏振相機擷取的光強度訊號轉換為相位差曲線,並利用相位差曲線斜率極大值對應旋轉平台的位置,確定波片的快軸方位角。
本研究所使用的量測系統透過偏振相機實現偏振干涉解相法,能同時擷取四個偏振方向的光強度訊號,避免了傳統方法中需要拍攝多張干涉圖像和使用複雜分光架構的問題,大幅減少了系統體積與複雜性。此外,偏振相機能擷取光強度的二維影像,透過對影像進行空間濾波,有效降低電子雜訊干擾,進而獲得受雜訊影響較小的光強度值。本技術藉由一次偵測四個偏振方向的光強度,瞬間計算出相位延遲量,以及透過相位差曲線量測波片的快軸方位角。
實驗結果表明,該系統能在快軸處於任意角度的情況下準確計算波片的相位延遲量Γ,其相位延遲量的量測解析度可達 0.14°,快軸方位角的量測解析度可達0.004"。。最後,本研究評估了各項誤差來源對量測結果的影響,並提出校正方法以進一步提升系統性能。
摘要(英) This study proposes an instantaneous measurement technique for determining the phase retardation and fast-axis orientation of wave plates, aimed at achieving high precision in these measurements. The technique significantly improves the accuracy and speed of phase retardation measurement and enhances the precision of fast-axis orientation determination. Since phase retardation and fast-axis orientation are two critical parameters that define the performance of wave plates, accurately measuring them is crucial for optical systems.
The proposed method is based on polarization interferometry using polarization components and a polarization camera, which simultaneously detects light intensity signals in four polarization directions. By applying a polarization interference phase extraction method, the light intensity signals captured by the polarization camera are transformed into phase difference curves. The fast-axis orientation of the wave plate is then determined by identifying the position of the rotation platform corresponding to the extreme slopes of the phase difference curve.
The measurement system developed in this study utilizes a polarization camera to perform polarization interference phase extraction, enabling simultaneous acquisition of light intensity signals in four polarization directions. This eliminates the need for capturing multiple interference images and employing complex beam-splitting structures, as required by traditional methods, thereby significantly reducing the system′s size and complexity. Moreover, the polarization camera captures two-dimensional light intensity images, which can be processed with spatial filtering to effectively reduce electronic noise interference, resulting in more accurate light intensity values with minimal noise influence. By detecting light intensity in four polarization directions at once, this technique instantaneously calculates the phase retardation and measures the fast-axis orientation of the wave plate through the phase difference curve.
Experimental results demonstrate that the proposed system accurately calculates the phase retardation Γ of wave plates under arbitrary fast-axis angles, achieving a phase retardation measurement resolution of 0.14° and a fast-axis orientation measurement resolution of 0.004 ". Lastly, this study evaluates the impact of various error sources on the measurement results and proposes correction methods to further enhance the system′s performance.
關鍵字(中) ★ 波片相位延遲量測
★ 波片快軸方位角量測
★ 雙折射晶體
★ 偏振干涉解相技術
★ 偏振相機
關鍵字(英) ★ Wave plate phase retardation measurement
★ wave plate fast-axis azimuth
★ birefringent crystals
★ polarization interference
★ polarization camera
論文目次 摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VII
表目錄 IX
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 2
1-3 研究動機、目的與方法 6
1-4 論文架構 7
第二章 實驗原理 8
2-1 光的電場與偏振態 8
2-2 雙折射現象 10
2-3 瓊斯向量(Jones vector)與瓊斯矩陣(Jones matrix) 12
2-4 相位延遲與相位差 13
2-5 偏振干涉解相法 16
2-6 量測方法設計 17
2-7 小結 19
第三章 系統架構 20
3-1 系統設計 20
3-1-1 光學系統架構 20
3-1-2 偏振相機 24
3-2 實驗步驟 26
3-3量測訊號處理 30
3-4 小結 32
第四章 實驗結果與討論 33
4-1 波片延遲量量測和系統精確度量測 33
4-2 波片快軸方位角定位 37
4-2-1不同波片快軸方位角定位量測 37
4-2-2 波片快軸方位角重複性量測 40
4-3 系統性能 41
4-3-1 系統解析度 42
4-3-2 系統範圍 44
4-4 小結 45
第五章 誤差分析 46
5-1 系統誤差 46
5-1-1入射光偏振橢圓度之誤差 47
5-1-2波片入射角偏差對量測準確性的影響分析 53
5-1-3四分之一波片快軸方位角誤差之影響 59
5-3 小結 65
第六章 結論與未來展望 66
6-1 結論 66
6-2 未來展望 67
參考文獻 68
參考文獻 [1] Yang, K., Wang, X.-C., & Bu, Y. (2007). Research progress of ellipsometers. Laser & Optoelectronics Progress, 44(3), 43–49.
[2] 蔡岳哲,「單拍偏振干涉之表面形貌量測技術」,國立中央大學,碩士論文,民國112年。
[3] Zhai, Y. S., Zhang, Z. F., Su, Y. L., Wang, X. J., & Feng, Q. B. (2015). A high-precision roll angle measurement method. Optik , 126(24), 4837–4840.
[4] Psilodimitrakopoulos, S., Amat-Roldan, I., Loza-Alvarez, P., & Artigas, D. (2012). Effect of molecular organization on the image histograms of polarization SHG microscopy. Biomedical Optics Express, 3(10), 2681–2693.
[5] Zhang, X.-B., Li, Y.-Q., Zheng, M., & Li, J.-H. (2015). Error calibration and compensation of imaging Stokes polarimeter using rotating wave plate method. Chinese Journal of Lasers, 42(7), 708007-1.
[6] Abdallah, A. W., & Abdelwahab, M. (2021). A modified method for calibration of polarimetric components using polarizing interferometry. Measurement Science and Technology, 32(11), 115003.
[7] Chen, Q., Liu, B., He, Y., Luo, H., & Lv, W. (2018). Phase retardation measurement of an arbitrary wave plate based on magneto-optical modulating and residue detecting of the base frequency component of the signal. Optics Letters, 43(18), 4514–4517.
[8] Chen, K. H., Tseng, J. T., Yeh, C. H., & Chen, J. H. (2019). Alternative method for measuring the phase retardation and fast axis of a wave plate. Optical Review, 26, 652–658.
[9] Chen, K.-H., Lin, C.-H., & Liu, P.-C. (2020). An interferometric method for simultaneously determining the phase retardation and fast-axis azimuth angle of a wave plate. Journal of Modern Optics, 67(11), 992–997.
[10] Chen, Q., Ding, J., Guan, Y., Han, W., Zhou, S., He, Y., & Wang, F. (2022). Simultaneous measurement of phase retardation and fast axis azimuth of wave plate based on equivalent component and phase detection. Measurement Science and Technology, 33(9), 095005.
[11] del Hoyo, J., Andres-Porras, J., Soria-Garcia, A., Sanchez-Brea, L. M., Pastor-Villarrubia, V., Elshorbagy, M. H., & Alda, J. (2024). Interferometric method for simultaneous characterization of retardance and fast axis of a retarder. Optics and Lasers in Engineering, 179, 108262.
[12] Hecht, E. (2002). Optics (4th ed.). Addison-Wesley. 20–28.
[13] Hecht, E. (2002). Optics (4th ed.). Addison-Wesley. 30–31.
[14] Chen, W. H., Kuo, W. K., Huang, S. L., & Huang, Y. T. (2002). On-wafer 2D electric-field-vector mapping using one-beam electro-optic probing technique. IEEE CLEO, 23(1), 992–997.
[15] Jones, R. C. (1947). A new calculus for the treatment of optical systems, VI. Experimental determination of the matrix. Journal of the Optical Society of America, 37(2), 110–112.
[16] Parke, N. G. (1949). Optical algebra. Journal of Mathematical Physics, 28(1–4), 131–139.
[17] Hecht, E. (2002). Optics (4th ed.). Addison-Wesley. 388–390.
[18] Zou, M. (2008). Analyses of Jones matrix of polarized-light interference. College Physics, 27(10), 10–30.
[19] Chiu, M. H., Chen, W. C., & Tan, C. T. (2015). Small displacement measurements based on an angular-deviation amplifier and interferometric phase detection. Applied Optics, 54(10), 2885–2890.
[20] Lee, J. Y., Chou, T. K., & Shih, H. C. (2008). Polarization-interferometric surface-plasmon resonance imaging system. Optics Letters, 33(5), 434–436.
[21] 偏振相機 BFS-U3-51S5P-C (Edmund Optics).
https://www.edmundoptics.com.tw/p/bfs-u3-51s5p-c-usb3-blackflyreg-s-polarizationcamera/41357/
[22] 線性偏振片 (Edmund Optics).
https://www.edmundoptics.cn/f/linear-glass-polarizing-filters/11758/
[23] 四分之一波片 (Edmund Optics).
https://www.edmundoptics.cn/p/254mm-dia-5320nm-lambda4-quartz-waveplate-zeroorder/5201/
[24] 電控旋轉平台 PRM1-Z7 (Thorlabs).
https://www.thorlabs.com/thorproduct.cfm?partnumber=PRM1-Z7
[25] 旋轉平台控制器 Motor Controller.
https://www.thorlabs.com/thorproduct.cfm?partnumber=KDC101

[26] Thorlabs APT software.
https://www.thorlabs.com/software_pages/ViewSoftwarePage.cfm?Code=Motion_Control&viewtab=1
[27] 偏振相機感光元件 (Polarization Image Sensor-Sony IMX250MYR).
https://www.sony-semicon.co.jp/e/products/IS/industry/product/polarization.html
[28] 偏振相機計算單元組成圖
http://thinklucid.cn/tech-briefs/polarization-explained-sony-polarized-sensor/
[29] LabVIEW (National Instruments).
https://www.ni.com/getting-started/labview-basics/zht/environment/
[30] Python.
https://www.python.org/about/gettingstarted/
[31] Moffat, R. J. (1988). Describing the uncertainties in experimental results. Experimental Thermal and Fluid Science, 1(1), 3–17.
指導教授 李朱育(Ju-Yi Lee) 審核日期 2025-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明