博碩士論文 111327023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:52.15.53.236
姓名 王仁和(Ren-He-Wang)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 一種應用於鑄造金屬表面瑕疵檢測的AOI系統
相關論文
★ 直下式背光模組最佳化之設計★ 反射式發光二極體光源之近燈頭燈設計
★ 指紋辨識之光學成像系統設計★ 微型投影機之LED光源設計
★ 具積體型稜鏡體之指紋辨識光學模組的光學特性分析研究★ 應用田口穩健設計法於特殊函數調變變化規範下的絕熱式光方向完全耦合器波導結構設計優化
★ 雙反射面鏡型太陽能集光模組設計★ 使用光線追跡法設計軸對稱太陽能集光器
★ 應用於直下式背光模組之邊射型發光二極體設計與其模組研究★ 高功率LED二次光學透鏡模組設計
★ 微型雷射投影機光學設計★ LED陣列用於室內照明之設計與驗證
★ 應用於聚光型太陽光電系統之二次光學元件設計與分析★ 一種色溫及色彩可控制的多光源燈具設計
★ 運用光場程式化技巧快速設計LED直下式背光模組之研究★ 應用於彩色共焦顯微術之繞射元件設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-2-19以後開放)
摘要(中) 本研究開發了一套自動光學瑕疵檢測(AOI)系統,針對鑄造金屬表面進行檢測,並以鑄造金屬製成的高爾夫球桿頭作為研究對象。首先,設計了一套光源配置,其中包括主光源與被動補光結構,本研究利用一個具有指向性的光源照射至檢測物上進行取像,並找出最佳的取像條件以實現最佳成像品質。影像處理採用Vision Assistant作為工具,結合形態學操作、拉普拉斯濾波、二值化分割、粒子濾波與瑕疵分析技術,以處理大量影像數據。此外,使用LabVIEW開發虛擬儀器 (VI),打造快速且詳細的即時檢測介面,為鑄造廠提供精確的瑕疵資訊。 而硬體的部分,本研究構建了一套完整的取像系統及光型量測裝置。取像系統由九顆CMOS排列組成,各自滿足對應區域的拍攝條件,分析桿頭定位容許誤差範圍後,設計了配備快速夾治具的桿頭定位平台,簡化操作並確保定位的準確性。針對光源需求,透過實驗分析出鑄造桿頭表面瑕疵檢測的良好光照角度區間,同時,詳細量測與記錄光型、散射性、照射角度及照度,確保後續檢測中光照條件的得以重現。在檢測面積僅為 0.022mm2 的微小瑕疵時,系統達到漏篩率為零,也就是無出現漏篩的前提下得出九成左右的檢測成功率。為滿足鑄造廠的實際需求,系統整合了多種功能模組,如瑕疵數量分析、瑕疵分佈分析與大型瑕疵檢測,並建立分類系統,便於後續瑕疵處理或者人員複檢。檢測全程僅需約五秒,無需進行角度或光源調整,大幅降低操作人員手動失誤的風險。本系統有效降低光學瑕疵檢測成本,同時兼具高便捷性與功能性,為傳統鑄造廠提供高效的 AOI 檢測解決方案。
摘要(英) This study developed an automated optical defect detection system aimed at inspecting the surface of cast metal objects, specifically focusing on golf club heads made from cast metal as the research subject. Initially, a light source configuration was designed, comprising a primary light source and a passive auxiliary lighting structure. The study utilized a directional light source to illuminate the target object for image capture, identifying the optimal imaging conditions to achieve the best image quality. Vision Assistant was employed as the primary tool for image processing, incorporating morphological operations, Laplacian filtering, binary segmentation, particle filtering, and defect analysis techniques to handle large volumes of image data.Additionally, LabVIEW was used to develop a virtual instrument (VI) to create a fast and detailed real-time inspection interface, providing precise defect information for foundries. On the hardware side, the study constructed a complete imaging system and a light pattern measurement device. The imaging system consisted of nine CMOS sensors arranged to capture different regions and was equipped with a golf club head clamping and positioning platform, along with a Python-developed positioning verification program to simplify operation and ensure positioning accuracy. To meet the requirements for lighting conditions, the system meticulously measured and recorded the light pattern, scattering, illumination angle, and intensity to ensure the consistency of lighting conditions during subsequent inspections.When inspecting micro-defects with an area as small as 0.022mm2, the system achieved a zero omission rate, maintaining a detection success rate of over 90% without any undetected defects. To meet the practical needs of foundries, the system integrated various functional modules, including defect count analysis, defect distribution analysis, and large defect detection, along with a classification system to facilitate subsequent defect handling or manual review. The entire inspection process takes approximately five seconds, requiring no adjustments to angles or light sources, significantly reducing the risk of human error during operation. This system effectively reduces the cost of optical defect detection while maintaining high convenience and functionality, providing an efficient AOI inspection solution for traditional foundries.
關鍵字(中) ★ 自動光學檢測 (AOI)
★ 鑄造金屬
★ 即時檢測
★ 光型量測
關鍵字(英) ★ Automated Optical Inspection (AOI)
★ Cast Metal
★ Real-Time Inspection
★ Light Pattern Measurement
論文目次 1 摘要 i
ABSTRACT ii
致謝 iii
目錄 iv
表目錄 vii
圖目錄 ix
1 第一章、緒論 1
1-1 研究背景 1
1-2 研究動機與目的 5
1-3 文獻回顧 6
1-3-1 鑄造表面瑕疵AOI系統 6
1-3-2 光型量測 10
1-3-3 影像處理技術 11
1-3-4 圖像二值化 14
1-4 研究方法 16
1-5 論文架構 17
2 第二章、基礎理論 18
2-1 鑄造金屬桿頭 18
2-1-1 桿頭表面曲率分布 19
2-1-2 桿頭瑕疵種類 22
2-1-3 瑕疵尺寸與像素值比例驗證 25
2-2 鑄造金屬檢測光源 26
2-3 補光技術 27
2-3-1 主動補光 27
2-3-2 被動補光 27
2-4 影像灰階化 [17] 28
2-5 數學形態學 28
2-5-1 結構元素 29
2-5-2 侵蝕(Erosion) 29
2-5-3 膨脹(Dilation) 30
2-5-4 開放(Open) 31
2-5-5 閉合(Close) 32
2-6 空間域影像濾波 [20] 33
2-6-1 拉普拉斯濾波器 33
2-7 二值化分割 [21] 34
3 第三章、AOI系統硬體架構設計 35
3-1 取像平台架構 36
3-1-1 取像設備 37
3-1-2 取像平台 38
3-2 桿頭定位系統 40
3-2-1 定位容許誤差分析 40
3-2-2 定位平台結構 43
3-3 光源配置 47
3-3-1 良好光照角度區間 48
3-3-2 光源架構設計 52
3-3-3 光型量測 60
4 第四章、AOI瑕疵檢測流程與系統整合 68
4-1 瑕疵檢測流程 68
4-1-1 影像處理工具簡介 68
4-1-2 影像前處理 69
4-1-3 影像分割與修補 73
4-2 虛擬儀器(VI)整合系統設計與應用 77
4-2-1 瑕疵檢測流程的系統整合概述 77
4-2-2 虛擬儀器(VI)介紹 78
4-2-3 即時瑕疵檢測功能實現 80
4-3 桿頭分類功能 85
4-3-1 大型瑕疵判定 87
4-3-2 瑕疵分布與數量判定 91
4-4 AOI檢測結果與分析 92
5 第五章、結論與未來展望 97
5-1 結論 97
5-2 未來展望 98
6 第六章、參考文獻 99
參考文獻 [1] 「全球高爾夫裝備市場規模預測」,檢自:
https://uanalyze.com.tw/articles/418064965
[2] 「一文了解半導體檢測-AOI自動光學檢測」,檢自:https://uanalyze.com.tw/articles/851395328
[3] 「高爾夫鐵桿頭選鍛造與鑄造CASTING有什麼差別呢?高爾夫知識系列~鐵桿桿頭的工法(中)篇:鑄造的原理,鐵桿鑄造流程解析。」檢自: https://goodshot.org/casting/
[4]鄭日威(2022)。一種應用於鑄造金屬表面瑕疵的自動光學檢測技術探討(碩士論文)。國立中央大學,桃園市。
[5] Melali, P., Boutorabi, S. M. A., & Divandari, M. (2023). The effect of casting revert-virgin alloy with different portions on the microstructure and mechanical properties of 1.4930 heat-resistant stainless-steel alloy in investment casting process. International Journal of Metalcasting, 18, 2119–2132. https://doi.org/10.1007/s40962-023-01144-0
[6] Melali, P., Boutorabi, S. M. A., & Divandari, M. (2023). Applications of investment casting as a manufacturing process for injection mold tooling. International Journal of Metalcasting, 18, 2119–2132. https://doi.org/10.1007/s40962-023-01144-0
[7] Sahoo, S. K., & Goswami, S. S. (2023). Investigating the causes and remedies for porosity defects in the casting process: A review. BOHR International Journal of Engineering, 2023(2), 15–29. https://doi.org/10.54646/bije.2023.13
[8] Galan, U., Ahuett-Garza, H., Orta, P., & Kurfess, T. (2019). Shadow identification and height estimation of defects by direct processing of grayscale images. The International Journal of Advanced Manufacturing Technology, 101(1-4), 317–328. https://doi.org/10.1007/s00170-018-2933-6
[9]Mansano, M., Pavesi, L., Oliveira, L. S., Britto Jr., A., & Koerich, A. (2011). Inspection of metallic surfaces using Local Binary Patterns. Proceedings of the IEEE International Conference on Industrial Informatics, 2227–2231.
[10]Lin, J., Wen, K., Liu, Y., & Zhang, X. (2021). Recognition and classification of surface defects of aluminum castings based on machine vision. 2021 International Conference on Machine Learning and Intelligent Systems Engineering (MUSE), 10–15.
[11] Zhang, Q., Feng, W., Wan, L., Tian, F.-P., Wang, X., & Tan, P. (2020). Active lighting recurrence by parallel lighting analogy for fine-grained change detection. arXiv. https://doi.org/10.48550/arXiv.2002.09663
[12] Hecht, E. (2016). Optics (5th ed.). Pearson. ISBN: 978-1292096933.
[13] Haralick, R. M., Sternberg, S. R., & Zhuang, X. (1987). Image analysis using mathematical morphology. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(4), 532–550. https://doi.org/10.1109/TPAMI.1987.4767941
[14] Anuradha, M. (1992). Advances in digital image processing. IETE Journal of Education, 33(3), 197–208. https://doi.org/10.1080/09747338.1992.11436379
[15] 陳建宏(2006)。用於適應環境光亮度的影像處理方法(碩士論文)。國立台灣科技大學,台北市。
[16] 王偉仁(2018),自動化光學檢測於梭織物瑕疵辨識分類與應用(碩士論文)。國立台灣科技大學,台北市。
[17] Gatos, B., Pratikakis, I., & Perantonis, S. J. (2006). Adaptive degraded document image binarization. Pattern Recognition, 39(3), 317–327. https://doi.org/10.1016/j.patcog.2005.09.010
[18] Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66. https://doi.org/10.1109/TSMC.1979.4310076
[19]施其安(2020)。應用機器視覺與深度學習於鋼珠表面之瑕疵檢測(碩士論文)。國立臺北科技大學,台北市。
[20] akura Membership Services Limited. (2020年12月23日). 各種高爾夫球杆的介紹。Sakura Membership Services Limited. 節自 https://www.sakura-membership.com/archives/58048
[21]Dawang Casting. (n.d.). 金屬鑄造缺陷的成因與解決方法。Dawang Metals. 取自 https://dawangmetals.com/zh-TW/resources/metal-casting-defects/
[22]蔡介峰(2006)。常見人工光源測試研究(研究報告編號:095301070000G2030)。內政部建築研究所。
[23]Gonzalez, R. C., & Woods, R. E. (2018). Digital Image Processing (4th ed.). Pearson.
[24] Mardiris, V., & Chatzis, V. (2016). A Configurable Design for Morphological Erosion and Dilation Operations in Image Processing Using Quantum-dot Cellular Automata. Journal of Engineering Science and Technology Review, 9(1), 25-30.
[25]Nellutla, A., Chittajallu, G. S. G., & Feroz, S. (2020). Leaf disease detection using LabVIEW IMAQ vision. International Journal of Recent Technology and Engineering (IJRTE), 9(3), September 2020.
[26]Sonka, M., Hlavac, V., & Boyle, R. (2014). Image processing, analysis, and machine vision (4th ed.). Cengage Learning.
[27]許志豪(2009)。影像二值化演算處理器之軟/硬整合設計與實現(碩士論文)。國立臺灣科技大學,臺北市。檢自:https://etheses.lib.ntust.edu.tw/detail/0b52c07ce4a117adc997b844967e9a01/
[28]Wikipedia contributors. (n.d.). Pinhole camera: Selection of pinhole size. Wikipedia. Retrieved December 21, 2024, from https://en.wikipedia.org/wiki/Pinhole_camera#Selection_of_pinhole_size
[29] 劉彥錚(2013),應用多重特徵於提升材質辨識的準確性,國立交通大學電控工程系碩士學位論文。
[30] 曾炫皓(2013),空間變異之適應性參數的gamma校正運用於高曝光與低曝光影像之研究 ,國立勤益科技大學資訊工程系碩士學位論文。
[31]黃繼震(編著),村日富(審稿)(2001)。微電腦控制能力本位訓練教材:操作LabVIEW語言(編號:PEN-MCC0906)。行政院勞工委員會職業訓練局。
[32]Lunetto, V., Basile, D., Razza, V., & Russo Spena, P. (2024). Active and Passive Filling Stir Repairing of AISI 304 Alloy. Metals, 14(911). https://doi.org/10.3390/met14080911
[33] MetaLine. (n.d.). Casting Porosities and Pinholes. Retrieved October 7, 2024,
https://metaline.com/en/applications/general-manufacturing/casting-porosities-pinholes.html
指導教授 陳奇夆(Chi-Feng-Chen) 審核日期 2025-2-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明