參考文獻 |
[1] D. G. Lowe, "Object recognition from local scale-invariant features," in Proceedings of the Seventh IEEE International Conference on Computer Vision, 20-27 Sept. 1999 1999, vol. 2, pp. 1150-1157 vol.2, doi: 10.1109/ICCV.1999.790410.
[2] E. Rosten and T. Drummond, "Fusing points and lines for high performance tracking," in Tenth IEEE International Conference on Computer Vision (ICCV′05) Volume 1, 17-21 Oct. 2005 2005, vol. 2, pp. 1508-1515 Vol. 2, doi: 10.1109/ICCV.2005.104.
[3] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, "Speeded-Up Robust Features (SURF)," Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346-359, 2008/06/01/ 2008, doi: https://doi.org/10.1016/j.cviu.2007.09.014.
[4] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, "ORB: An efficient alternative to SIFT or SURF," in 2011 International Conference on Computer Vision, 6-13 Nov. 2011 2011, pp. 2564-2571, doi: 10.1109/ICCV.2011.6126544.
[5] A. Krizhevsky, I. Sutskever, and G. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks," Neural Information Processing Systems, vol. 25, 01/01 2012, doi: 10.1145/3065386.
[6] R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation," in 2014 IEEE Conference on Computer Vision and Pattern Recognition, 23-28 June 2014 2014, pp. 580-587, doi: 10.1109/CVPR.2014.81.
[7] J. Uijlings, K. Sande, T. Gevers, and A. W. M. Smeulders, "Selective Search for Object Recognition," International Journal of Computer Vision, vol. 104, pp. 154-171, 09/01 2013, doi: 10.1007/s11263-013-0620-5.
[8] R. Girshick, "Fast R-CNN," in 2015 IEEE International Conference on Computer Vision (ICCV), 7-13 Dec. 2015 2015, pp. 1440-1448, doi: 10.1109/ICCV.2015.169.
[9] S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137-1149, 2017, doi: 10.1109/TPAMI.2016.2577031.
[10] J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation," in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 7-12 June 2015 2015, pp. 3431-3440, doi: 10.1109/CVPR.2015.7298965.
[11] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You Only Look Once: Unified, Real-Time Object Detection," in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 27-30 June 2016 2016, pp. 779-788, doi: 10.1109/CVPR.2016.91.
[12] C. Guo, X.-l. Lv, Y. Zhang, and M.-l. Zhang, "Improved YOLOv4-tiny network for real-time electronic component detection," Scientific Reports, vol. 11, 11/23 2021, doi: 10.1038/s41598-021-02225-y.
[13] G. Oh and S. Lim, "One-Stage Brake Light Status Detection Based on YOLOv8," Sensors, vol. 23, p. 7436, 08/25 2023, doi: 10.3390/s23177436.
[14] S. Yang, W.-T. Xiao, M. Zhang, S. Guo, J. Zhao, and S. Furao, "Image Data Augmentation for Deep Learning: A Survey," ArXiv, vol. abs/2204.08610, 2022.
[15] I. M. Chen and J. W. Burdick, "Finding antipodal point grasps on irregularly shaped objects," IEEE Transactions on Robotics and Automation, vol. 9, no. 4, pp. 507-512, 1993, doi: 10.1109/70.246063.
[16] J. Yun, S. Moseson, and A. Saxena, "Efficient grasping from RGBD images: Learning using a new rectangle representation," in 2011 IEEE International Conference on Robotics and Automation, 9-13 May 2011 2011, pp. 3304-3311, doi: 10.1109/ICRA.2011.5980145.
[17] I. Lenz, H. Lee, and A. Saxena, "Deep learning for detecting robotic grasps," The International Journal of Robotics Research, vol. 34, pp. 705 - 724, 2013.
[18] Y.-J. Chiu, Y.-Y. Yuan, and S.-R. Jian, "Design of and research on the robot arm recovery grasping system based on machine vision," Journal of King Saud University - Computer and Information Sciences, vol. 36, no. 4, p. 102014, 2024/04/01/ 2024, doi: https://doi.org/10.1016/j.jksuci.2024.102014.
[19] J. Terven, D.-M. Cordova-Esparza, and J.-A. Romero-Gonzalez, "A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS," Machine Learning and Knowledge Extraction, vol. 5, no. 4, pp. 1680-1716, 2023. [Online]. Available: https://www.mdpi.com/2504-4990/5/4/83.
[20] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, "Path Aggregation Network for Instance Segmentation," in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 18-23 June 2018 2018, pp. 8759-8768, doi: 10.1109/CVPR.2018.00913.
[21] T. Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie, "Feature Pyramid Networks for Object Detection," in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 21-26 July 2017, pp. 936-944, doi: 10.1109/CVPR.2017.106.
[22] X. Wang and J. Song, "ICIoU: Improved Loss Based on Complete Intersection Over Union for Bounding Box Regression," IEEE Access, vol. 9, pp. 105686-105695, 2021, doi: 10.1109/ACCESS.2021.3100414.
[23] X. Li et al., "Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection," ArXiv, vol. abs/2006.04388, 2020.
[24] H. V. Koay, J. H. Chuah, C. O. Chow, Y.-L. Chang, and K. Yong, "YOLO-RTUAV: Towards Real-Time Vehicle Detection through Aerial Images with Low-Cost Edge Devices," Remote Sensing, vol. 13, 10/20 2021, doi: 10.3390/rs13214196.
[25] 陳尚宏,「整合光源控制與深度學習辨識之平放散料夾取系統開發」。碩士論文,機械工程學系,國立中央大學,2023。
[26] TM5-900產品型錄
https://www.tm-robot.com/zh-hant/tm5-900/,2023年7月
[27] TM-github
https://github.com/TechmanRobotInc/tmr_ros1/tree/noetic,2023年7月
[28] Robotiq
https://robotiq.com/,2023年7月
[29] ROS
http://wiki.ros.org/ROS/Tutorials,2023年6月
[30] Moveit
https://moveit.github.io/moveit_tutorials/,2023年6月
[31] Roboflow
https://roboflow.com/,2023年10月
[32] Camera Calibration and 3D Reconstruction, OpenCV
https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html,2017年9月
[33] Ultralytics
https://github.com/ultralytics/ultralytics,2023年12月
[34] [Object detection] YOLOv8詳解
https://henry870603.medium.com/object-detection-yolov8%E8%A9%B3%E8%A7%A3-fdf8874e5e99,2024年1月
[35] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2 ed. Cambridge: Cambridge University Press, 2004.
[36] W. K. Pratt and J. E. Adams, "Digital Image Processing, 4th Edition," J. Electronic Imaging, vol. 16, p. 029901, 2007. |