參考文獻 |
[1] Klitzing, K.v., G. Dorda, and M. Pepper, New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance, Phys. Rev. Lett. 45, 494 (1980).
[2] Thouless, D.J., et al., Quantized Hall Conductance in a Two-Dimensional Periodic Potential, Phys. Rev. Lett. 49, 405 (1982).
[3] DAI Xi, Topological phases and transitions in condensed matter systems, 物理 · 45卷 (2016 年) 12 期。
[4] 蔡雅雯、吳杰倫、欒丕綱, 從量子霍爾效應到拓樸光子學與拓樸聲子學, 科儀新知 211 期, 68 (2017)。
[5] Haldane, F.D.M., Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the" parity anomaly", Phys. Rev. Lett. 61,
2015 (1988).
[6] C.L. Kane, and E.J. Mele, Quantum Spin Hall Effect in Graphene, Phys. Rev. Lett. 95, 226801 (2005).
[7] C. L. Kane and E. J. Mele, Z2 Topological Order and the Quantum Spin Hall Effect, Phys. Rev. Lett. 95, 146802 (2005).
[8] P. M. Perez-Piskunow, Gonzalo Usaj, C. A. Balseiro, and L. E. F. Foa Torres, Floquet chiral edge states in graphene, Phys. Rev. B 89, 121401(R) (2014).
[9] Gonzalo Usaj, P. M. Perez-Piskunow, L. E. F. Foa Torres, and C. A. Balseiro, Irradiated graphene as a tunable Floquet topological insulator, Phys. Rev. B 90, 115423 (2014).
[10] Konrad Viebahn, Introduction to Floquet theory, Institute for Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland (2020).
[11] Takashi Oka, and Sota Kitamura, Floquet Engineering of Quantum Materials, Annu. Rev. Condens. Matter Phys. 10, 387-408 (2019).
[12] Mark S. Rudner, Netanel H. Lindner, The Floquet Engineer′s Handbook, arXiv:2003.08252v2.
[13] Mark S. Rudner, Netanel H. Lindner, Erez Berg, and Michael Levin, Anomalous Edge States and the Bulk-Edge Correspondence for Periodically Driven Two-Dimensional Systems, Phys. Rev. X 3, 031005 (2013).
[14] Longwen Zhou and Jiangbin Gong, Recipe for creating an arbitrary number of Floquet chiral edge states, Phys. Rev. B 97, 245430 (2018).
[15] Yang, Z., Lustig, E., Lumer, Y. et al. Photonic Floquet topological insulators in a fractal lattice. Light Sci Appl 9, 128 (2020).
[16] Kitamura, S., Aoki, H. Floquet topological superconductivity induced by chiral many-body interaction. Commun Phys 5, 174 (2022).
[17] M. V. Berry, Quantal Phase Factors Accompanying Adiabatic Changes, Proc. R. Soc. Lond. A 392, 45-57 (1984).
[18] Hai-Xiao Wang, Guang-Yu Guo and Jian-Hua Jiang, Band topology in classical waves: Wilson-loop approach to topological numbers and fragile topology, New J. Phys. 21 (2019) 093029.
[19] R. Bott and R. Seeley, Some remarks on the paper of callias, Commun. Math. Phys. 62, 235 (1978).
[20] Muhammad Umer, Raditya Weda Bomantara, and Jiangbin Gong, Counterpropagating edge states in Floquet topological insulating phases, Phys. Rev. B 101, 235438 (2020).
[21] Takuya Kitagawa, Erez Berg, Mark Rudner, and Eugene Demler, Topological characterization of periodically driven quantum systems, Phys. Rev. B 82, 235114 (2010).
[22] I. C. Fulga and M. Maksymenko, Scattering matrix invariants of Floquet topological insulators, Phys. Rev. B 93, 075405 (2016).
[23] Mahito Kohmoto1 and Yasumasa Hasegawa, Zero modes and edge states of the honeycomb lattice, Phys. Rev. B 76, 205402 (2007).
[24] Bashab Dey and Tarun Kanti Ghosh, Floquet topological phase transition in the lattice, Phys. Rev. B 99, 205429 (2019). |