博碩士論文 111226083 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.145.124.186
姓名 林頌榮(Sung-Jung Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 高分子光電倍增二極體與偏極子元件之設計與開發
(Design and Development of Polymer Photomultiplication Photodiode and Polariton Device)
相關論文
★ 以膠體微影技術應用於開孔電極垂直式有機電晶體之研究★ 有機高分子電化學發光元件
★ 開孔電極結構對於垂直式有機電晶體電性影響之研究★ 微米光柵壓印有機太陽能電池主動層之研究
★ 有機波導結構的ASE現象研究以及共振腔結構的模擬★ 利用金屬微共振腔研究光與有機激發態強耦合現象
★ 多層式雙極有機場效電晶體之研究★ 電光非週期性晶疇極化反轉鈮酸鋰波導定向耦合元件之研究
★ 全氟己基四聯?吩共軛分子奈米結構成長與其對薄膜電晶體電性影響之研究★ 有機染料分子薄膜之光電特性研究
★ 多層結構有機電晶體之研究★ 利用氧流量調整改善短通道氧化物半導體在高電場下的電流崩潰現象
★ 有機強耦合共振腔元件設計與發光量測系統架設之研究★ 強耦合有機微共振腔之設計與研究
★ 光激發有機極化子元件之製作與量測★ 即時多角度量測光譜儀系統應用於有機發光二極體空間頻譜之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-1-20以後開放)
摘要(中) 本論文主旨為利用Poly[2-methoxy-5-(3,7-dimethyoctyoxyl)-1,4-phenylenevi- nylene](MDMO-PPV)搭配 [6,6]-phenyl-C61-butyric acid methyl est er (PC_61 BM)作為主動層材料,開發光電倍增二極體(Photomultiplication Organic Photodiode,PM-OPD)。本研究分為兩部分,第一部分著重於標準型光電倍增二極體的優化,透過調整不同PC_61 BM摻雜比例以提升元件的外部量子效率(External Quantum Efficiency, EQE)與光響應度(Responsivity,R);而第二部分將主動層放置於雙銀共振腔當中。理論上,在共振腔中光子如果與材料激發態(激子)之間能量接近時會產生能量耦合,產生半光半物質之混成態,即偏極子(polariton)共振態。而偏極子能有效改變光吸收的機制,使元件的光響應不再拘限於材料本身的吸收範圍。
在優化標準型光電倍增二極體的過程中,透過不同PC_61 BM摻雜比成功在4 wt%下達到最好的效率,其外部量子效率在521 nm入射光條件照射下達到4668 %。不過後續通過模擬激子產生率瞭解內部機制並與實驗對比,最後表明此類型元件強烈依賴於主動層中主體材料的吸收。
後續透過引進偏極子的物理機制,將元件設計為共振腔結構,以實現光響應的紅移,透過光譜測量證明偏極子元件確實能有效改變光吸收機制,使元件的光響應不再拘限於材料本身的吸收範圍。後續進一步利用角度解析光譜技術和Hopfield Hamiltonian色散模型,研究偏極子元件在多角度下的吸收特性,結果表明偏極子元件具有弱角度色散且窄帶吸收的優勢。最終,所製作的偏極子元件在628 nm入射光條件下的外部量子效率從43 %提升至311 %,拉比分裂為890 meV,耦合強度為激子能量的35 %,證明此時元件屬於超強耦合的狀態
摘要(英) The purpose of this thesis is to develop photomultiplication organic photodiodes (PM-OPDs) using Poly[2-methoxy-5-(3,7-dimethyloctyoxyl)-1,4-phenylenevinylene] (MDMO-PPV) combined with [6,6]-phenyl-C61-butyric acid methyl ester (PC_61 BM) as the active layer material. This research is divided into two main parts. The first part focuses on optimizing standard PM-OPD by adjusting the PC_61 BM doping ratio to improve the external quantum efficiency and responsivity of the devices. The second part incorporates the active layer into a double-silver microcavity. Theoretically, when the photon energy within the cavity closely matches the exciton energy of the material’s excited state, energy coupling occurs, forming a hybrid state of half-light and half-matter known as the polariton resonance state. Polariton coupling can effectively modify the light absorption mechanism, enabling the device’s optical response to extend beyond the intrinsic absorption range of the material.
During the optimization of standard PM-OPD, the optimal doping ratio of 4 wt% PC_61 BM was determined, achieving the highest efficiency with an EQE of 4668% under 521 nm incident light. However, subsequent simulations of exciton generation rates combined with experimental verification revealed that the performance of this type of device is strongly dependent on the absorption of the host material in the active layer.
In the second part, by introducing the physical mechanism of polariton, the device was designed as a microcavity structure to achieve a redshift in optical response. Spectral measurements demonstrated that polariton device can effectively alter the light absorption mechanism, extending the optical response beyond the material’s intrinsic absorption range. Furthermore, angle-resolved spectroscopy and the Hopfield Hamiltonian dispersion model were employed to study the absorption properties of polariton device under various angles of incidence. The results showed that polariton devices exhibit weak angular dispersion and narrowband absorption advantages. Ultimately, the fabricated polariton device achieved an EQE enhancement from 43% to 311% under 628 nm incident light, with a Rabi splitting of 890 meV and a coupling strength of 35% of the exciton energy, confirming that the device operates in the ultrastrong coupling regime.
關鍵字(中) ★ 光電倍增二極體
★ 提升元件的外部量子效率
★ 雙銀共振腔
★ 偏極子共振態
★ 光響應的紅移
★ 多角度下的吸收特性
關鍵字(英) ★ photomultiplication organic photodiodes
★ improve the external quantum efficiency
★ double-silver microcavity
★ polariton resonance state
★ redshift in optical response
★ the absorption properties of polariton device under various angles of incidence
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 x
第一章、緒論 1
1-1前言 1
1-2有機光偵測器與有機太陽能電池 2
1-3有機光電倍增二極體 4
1-4有機偏極子元件 6
1-5研究動機 10
第二章、基本原理 11
2-1有機光偵測器理論 11
2-1-1有機光偵測器結構及工作原理 11
2-1-2有機光電倍增二極體工作原理 13
2-1-3特性參數 15
2-2光學模擬理論 17
2-2-1膜矩陣與光學導納值 17
2-2-2電場分布 19
2-2-3功率損耗(Power Dissipation) 20
2-2-4 激子產生率(Exciton generation rate) 20
2-2-5克拉莫-克若尼關係式(Kramers-Kronig relation) 20
2-3 共振腔耦合理論 23
2-3-1法布里-珀羅共振腔 23
2-3-2共振腔模態 24
2-3-3偏極子共振態 27
2-3-4量子耦合模型 28
第三章、實驗方法 31
3-1 實驗材料 31
3-2製程儀器 33
3-2-1熱阻式蒸鍍系統(Thermal Evaporation Coater) 33
3-2-2手套箱(Glove Box) 34
3-2-3原子層沉積(Atomic Layer Deposition) 35
3-2-4旋轉塗佈機(Spin Coater) 36
3-2-5紫外光臭氧清潔機(UV-Ozone Cleaner) 37
3-3量測儀器 38
3-3-1半導體參數分析儀(Semiconductor Device Parameter Analyzer) 38
3-3-2發光二極體(Light-Emitting Diode) 39
3-3-3數位示波器(Digital Oscilloscope) 39
3-3-4表面輪廓儀(Alpha-step) 40
3-3-5紫外/可見/紅外光光譜儀 41
3-3-6積分球量測系統 41
3-3-7可攜式光譜儀 42
3-4元件製程步驟 43
3-4-1溶液配置 43
3-4-2標準高分子有機光電倍增二極體製程步驟 43
3-4-3偏極子元件製程步驟 44
第四章、實驗結果與討論 45
4-1 主動層材料分析 45
4-1-1 MDMO-PPV 45
4-1-2 PCBM 46
4-2 MDMO-PPV 光學常數提取 47
4-2-1線性擬合吸收光譜 47
4-2-2克拉莫-克若尼轉換(Kramers–Kronig transformation) 47
4-3標準元件 50
4-3-1電極選擇 50
4-3-2主動層優化 50
4-3-3元件模擬 58
4-4偏極子元件 59
4-4-1光響應調控 59
4-4-2角度解析光譜量測 61
4-4-3電性表現 63
4-4-4 實驗討論與改善 67
第五章、結論與未來展望 69
參考文獻 70
參考文獻 [1] J. Liu, Y. Wang, H. Wen, Q. Bao, L. Shen, and L. Ding, "Organic photodetectors: materials, structures, and challenges," Solar Rrl, vol. 4, no. 7, p. 2000139, 2020.
[2] H. Ren, J. D. Chen, Y. Q. Li, and J. X. Tang, "Recent progress in organic photodetectors and their applications," Advanced Science, vol. 8, no. 1, p. 2002418, 2021.
[3] M. Kielar, O. Dhez, G. Pecastaings, A. Curutchet, and L. Hirsch, "Long-term stable organic photodetectors with ultra low dark currents for high detectivity applications," Scientific reports, vol. 6, no. 1, p. 39201, 2016.
[4] R. D. Jansen?van Vuuren, A. Armin, A. K. Pandey, P. L. Burn, and P. Meredith, "Organic photodiodes: the future of full color detection and image sensing," Advanced Materials, vol. 28, no. 24, pp. 4766-4802, 2016.
[5] P. C. Chow and T. Someya, "Organic photodetectors for next?generation wearable electronics," Advanced Materials, vol. 32, no. 15, p. 1902045, 2020.
[6] J. Huang et al., "A high?performance solution?processed organic photodetector for near?infrared sensing," Advanced Materials, vol. 32, no. 1, p. 1906027, 2020.
[7] Q. Li, Y. Guo, and Y. Liu, "Exploration of near-infrared organic photodetectors," Chemistry of Materials, vol. 31, no. 17, pp. 6359-6379, 2019.
[8] K. Kudo and T. Moriizumi, "Spectrum?controllable color sensors using organic dyes," Applied Physics Letters, vol. 39, no. 8, pp. 609-611, 1981.
[9] C. W. Tang, "Two?layer organic photovoltaic cell," Applied physics letters, vol. 48, no. 2, pp. 183-185, 1986.
[10] G. Yu, K. Pakbaz, and A. Heeger, "Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible?ultraviolet sensitivity," Applied Physics Letters, vol. 64, no. 25, pp. 3422-3424, 1994.
[11] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, "Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions," Science, vol. 270, no. 5243, pp. 1789-1791, 1995.
[12] C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, "Plastic solar cells," Advanced functional materials, vol. 11, no. 1, pp. 15-26, 2001.
[13] H.-Y. Chen, M. K. Lo, G. Yang, H. G. Monbouquette, and Y. Yang, "Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene," Nature nanotechnology, vol. 3, no. 9, pp. 543-547, 2008.
[14] M. Hiramoto, T. Imahigashi, and M. Yokoyama, "Photocurrent multiplication in organic pigment films," Applied physics letters, vol. 64, no. 2, pp. 187-189, 1994.
[15] L. Li et al., "Trap-assisted photomultiplication polymer photodetectors obtaining an external quantum efficiency of 37 500%," ACS applied materials & interfaces, vol. 7, no. 10, pp. 5890-5897, 2015.
[16] H. Deng, H. Haug, and Y. Yamamoto, "Exciton-polariton bose-einstein condensation," Reviews of modern physics, vol. 82, no. 2, p. 1489, 2010.
[17] G. G. Rozenman, K. Akulov, A. Golombek, and T. Schwartz, "Long-range transport of organic exciton-polaritons revealed by ultrafast microscopy," ACS photonics, vol. 5, no. 1, pp. 105-110, 2018.
[18] M. Wang, M. Hertzog, and K. Borjesson, "Polariton-assisted excitation energy channeling in organic heterojunctions," Nature communications, vol. 12, no. 1, p. 1874, 2021.
[19] K. Georgiou, R. Jayaprakash, A. Othonos, and D. G. Lidzey, "Ultralong?range polariton?assisted energy transfer in organic microcavities," Angewandte Chemie, vol. 133, no. 30, pp. 16797-16803, 2021.
[20] Y. Tang, A. N. Stuart, T. van der Laan, and G. Lakhwani, "Strong Light–Matter Coupling Leads to a Longer Charge Carrier Lifetime in Cavity Organic Solar Cells," ACS Photonics, vol. 11, no. 4, pp. 1627-1637, 2024.
[21] C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, "Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity," Physical review letters, vol. 69, no. 23, p. 3314, 1992.
[22] D. G. Lidzey, D. Bradley, M. Skolnick, T. Virgili, S. Walker, and D. Whittaker, "Strong exciton–photon coupling in an organic semiconductor microcavity," Nature, vol. 395, no. 6697, pp. 53-55, 1998.
[23] D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, "Room temperature polariton emission from strongly coupled organic semiconductor microcavities," Physical review letters, vol. 82, no. 16, p. 3316, 1999.
[24] E. Eizner, J. Brodeur, F. Barachati, A. Sridharan, and S. Kena-Cohen, "Organic photodiodes with an extended responsivity using ultrastrong light–matter coupling," ACS Photonics, vol. 5, no. 7, pp. 2921-2927, 2018.
[25] V. C. Nikolis et al., "Strong light-matter coupling for reduced photon energy losses in organic photovoltaics," Nature communications, vol. 10, no. 1, p. 3706, 2019.
[26] L. M. A. de Jong et al., "Enhancement of the internal quantum efficiency in strongly coupled P3HT-C(60) organic photovoltaic cells using Fabry-Perot cavities with varied cavity confinement," (in eng), Nanophotonics, vol. 13, no. 14, pp. 2531-2540, Jun 2024, doi: 10.1515/nanoph-2023-0613.
[27] Z. Zhao, C. Xu, L. Niu, X. Zhang, and F. Zhang, "Recent progress on broadband organic photodetectors and their applications," Laser & Photonics Reviews, vol. 14, no. 11, p. 2000262, 2020.
[28] O. V. Mikhnenko, P. W. Blom, and T.-Q. Nguyen, "Exciton diffusion in organic semiconductors," Energy & Environmental Science, vol. 8, no. 7, pp. 1867-1888, 2015.
[29] L. Shi et al., "Research progress in organic photomultiplication photodetectors," Nanomaterials, vol. 8, no. 9, p. 713, 2018.
[30] 李正中, "薄膜光學與鍍膜技術," ed: 第四版, 藝軒圖書出版社, 2004.
[31] J. T. Krug, E. J. Sanchez, and X. S. Xie, "Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation," The Journal of chemical physics, vol. 116, no. 24, pp. 10895-10901, 2002.
[32] R. d. L. Kronig, "On the theory of dispersion of x-rays," Josa, vol. 12, no. 6, pp. 547-557, 1926.
[33] J. E. Bertie and S. L. Zhang, "Infrared intensities of liquids. IX. The Kramers–Kronig transform, and its approximation by the finite Hilbert transform via fast Fourier transforms," Canadian Journal of Chemistry, vol. 70, no. 2, pp. 520-531, 1992.
[34] C. F. Bohren, "What did Kramers and Kronig do and how did they do it?," European Journal of Physics, vol. 31, no. 3, p. 573, 2010.
[35] V. Lucarini, J. J. Saarinen, K.-E. Peiponen, and E. M. Vartiainen, Kramers-Kronig relations in optical materials research. Springer Science & Business Media, 2005.
[36] K.-E. Peiponen, V. Lucarini, E. Vartiainen, and J. Saarinen, "Kramers-Kronig relations and sum rules of negative refractive index media," The European Physical Journal B-Condensed Matter and Complex Systems, vol. 41, pp. 61-65, 2004.
[37] R. Nitsche and T. Fritz, "Determination of model-free Kramers-Kronig consistent optical constants of thin absorbing films from just one spectral measurement: application to organic semiconductors," Physical Review B—Condensed Matter and Materials Physics, vol. 70, no. 19, p. 195432, 2004.
[38] S. B. Anantharaman, K. Jo, and D. Jariwala, "Exciton–photonics: from fundamental science to applications," ACS nano, vol. 15, no. 8, pp. 12628-12654, 2021.
[39] M. Fox, Optical properties of solids. Oxford university press, 2010.
[40] H. Kang, J. Ma, J. Li, X. Zhang, and X. Liu, "Exciton polaritons in emergent two-dimensional semiconductors," ACS nano, vol. 17, no. 24, pp. 24449-24467, 2023.
[41] J. P. Murphy, "Novel hybrid perovskite composites and microstructures: Synthesis and characterization," Montana Tech of The University of Montana, 2018.
[42] G.-Y. Oh, D. G. Kim, Y.-T. Moon, D.-G. Kim, and Y.-W. Choi, "Analysis of surface plasmon resonance with Goos-Hanchen shift using FDTD method," in OECC/ACOFT 2008-Joint Conference of the Opto-Electronics and Communications Conference and the Australian Conference on Optical Fibre Technology, 2008: IEEE, pp. 1-2.
[43] S. Kena?Cohen, S. A. Maier, and D. D. Bradley, "Ultrastrongly Coupled Exciton–Polaritons in Metal?Clad Organic Semiconductor Microcavities," Advanced Optical Materials, vol. 1, no. 11, pp. 827-833, 2013.
[44] A. M. Fox, Quantum optics: an introduction. Oxford university press, 2006.
[45] C. F. Klingshirn, Semiconductor optics. Springer Science & Business Media, 2012.
[46] R. Houdre, R. Stanley, and M. Ilegems, "Vacuum-field Rabi splitting in the presence of inhomogeneous broadening: Resolution of a homogeneous linewidth in an inhomogeneously broadened system," Physical Review A, vol. 53, no. 4, p. 2711, 1996.
[47] V. M. Agranovich, M. Litinskaia, and D. G. Lidzey, "Cavity polaritons in microcavities containing disordered organic semiconductors," Physical Review B, vol. 67, no. 8, p. 085311, 2003.
[48] A. A. Anappara et al., "Signatures of the ultrastrong light-matter coupling regime," Physical Review B—Condensed Matter and Materials Physics, vol. 79, no. 20, p. 201303, 2009.
[49] C. Ciuti, G. Bastard, and I. Carusotto, "Quantum vacuum properties of the intersubband cavity polariton field," Physical Review B, vol. 72, no. 11, p. 115303, 2005.
[50] N. M. Peraca, A. Baydin, W. Gao, M. Bamba, and J. Kono, "Ultrastrong light–matter coupling in semiconductors," Semiconductor Quantum Science and Technology, vol. 105, pp. 89-151, 2020.
[51] T. Martens et al., "Morphology of MDMO-PPV: PCBM bulk heterojunction organic solar cells studied by AFM, KFM, and TEM," in Organic Photovoltaics III, 2003, vol. 4801: SPIE, pp. 40-47.
[52] J.-F. Chang, G.-S. Ciou, W.-H. Lin, G.-S. Zeng, S.-H. Chen, and P.-H. Huang, "Highly efficient polariton emission of an ultrastrongly coupled MDMO-PPV OLED," Japanese Journal of Applied Physics, vol. 61, no. 2, p. 020906, 2022.
[53] B. Gunduz, "Optical properties of poly [2-methoxy-5-(3′, 7′-dimethyloctyloxy)-1, 4-phenylenevinylene] light-emitting polymer solutions: effects of molarities and solvents," Polymer Bulletin, vol. 72, pp. 3241-3267, 2015.
[54] C. A. DelPo, S.-U.-Z. Khan, K. H. Park, B. Kudisch, B. P. Rand, and G. D. Scholes, "Polariton decay in donor–acceptor cavity systems," The Journal of Physical Chemistry Letters, vol. 12, no. 40, pp. 9774-9782, 2021.
[55] C.-Y. Chiang, "聚對苯乙烯衍生物之超強耦合光致發光現象與電致發光共振腔元件之研究,"碩士論文, National Central University, 2022.
指導教授 張瑞芬(Jui-Fen Chang) 審核日期 2025-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明