博碩士論文 111226003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.129.22.159
姓名 廖偉捷(Wei-Jie Liao)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 結合氧化鋅與鈣鈦礦之光偵測器與光敏電晶體元件開發
(Development of photodetectors and phototransistors combining zinc oxide and perovskite)
相關論文
★ 以膠體微影技術應用於開孔電極垂直式有機電晶體之研究★ 有機高分子電化學發光元件
★ 開孔電極結構對於垂直式有機電晶體電性影響之研究★ 微米光柵壓印有機太陽能電池主動層之研究
★ 有機波導結構的ASE現象研究以及共振腔結構的模擬★ 利用金屬微共振腔研究光與有機激發態強耦合現象
★ 多層式雙極有機場效電晶體之研究★ 電光非週期性晶疇極化反轉鈮酸鋰波導定向耦合元件之研究
★ 全氟己基四聯?吩共軛分子奈米結構成長與其對薄膜電晶體電性影響之研究★ 有機染料分子薄膜之光電特性研究
★ 多層結構有機電晶體之研究★ 利用氧流量調整改善短通道氧化物半導體在高電場下的電流崩潰現象
★ 有機強耦合共振腔元件設計與發光量測系統架設之研究★ 強耦合有機微共振腔之設計與研究
★ 光激發有機極化子元件之製作與量測★ 即時多角度量測光譜儀系統應用於有機發光二極體空間頻譜之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-1-30以後開放)
摘要(中) 本研究使用甲基胺碘化物鈣鈦礦(Methylammonium lead iodide, MAPbI3),結合不同功函數的ZnO奈米顆粒(Zinc oxide nanoparticles, ZnO.NPs)作為電子傳輸層,並加入聚乙烯亞胺(Polyethyleneimine, PEI)緩衝層以改善界面穩定性。
研究光偵測器元件過程中,首先會分析標準元件特性,並與添加不同功函數ZnO的光偵測器進行性能比較。結果顯示,透過不同功函數ZnO和PEI緩衝層的引入,元件的外部量子效率(External Quantum Efficiency, EQE)從4 %提升至65 %,響應度(Responsivity, R)從0.016 A/W提升至0.297 A/W。此外,本研究優化了元件的通道尺寸,進一步提升元件性能。
本研究後續將光偵測器與電晶體結合,並探討ZnO功函數對光敏電晶體工作機制及性能的影響。藉由光閘效應,元件的開關比從255提升至8642,外部量子效率提升至125 %,響應度達到0.573 A/W。最終實現了元件的開關控制與性能優化,完成了鈣鈦礦光敏電晶體的開發。
摘要(英) This study develops perovskite photodetectors and phototransistors based on zinc oxide (ZnO). Methylammonium lead iodide perovskite (MAPbI3) served as the active layer, combined with ZnO nanoparticles (ZnO.NPs) with tunable work functions as the electron transport layer. A polyethyleneimine (PEI) buffer layer was introduced to improve interface stability.
Photodetector performance was analyzed by comparing standard devices with those incorporating ZnO with different work functions. Results showed that work function tuning and the PEI buffer layer increased the external quantum efficiency (EQE) from 4% to 65% and responsivity from 0.016 A/W to 0.297 A/W. Channel dimension optimization further enhanced device performance.
The photodetectors were integrated with transistors to explore the effects of ZnO work functions on phototransistor mechanisms and performance. Through the photogating effect, the on/off ratio increased from 255 to 8642, EQE reached 125%, and responsivity improved to 0.573 A/W. This study achieved device switching control and performance optimization, completing the development of perovskite phototransistors.
關鍵字(中) ★ 鈣鈦礦
★ 光偵測器
★ 光敏電晶體
★ 光閘效應
★ 氧化鋅
關鍵字(英) ★ Perovskite
★ Photodetector
★ Phototransistor
★ Photogating effect
★ Zinc oxide
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 緒論 ……………………………………………………………………1
1-1 前言 1
1-2 有機光伏元件與有機光偵測器 2
1-3 鈣鈦礦光偵測器 4
1-4 有機場效應電晶體 6
1-5 有機場效應光敏電晶體 8
1-6 研究動機 9
第二章 基本原理 10
2-1 有機光偵測器 10
2-1-1 有機光偵測器工作原理 10
2-1-2 有機光偵測器特性參數 12
2-2 有機場效應電晶體 14
2-2-1 有機場效應電晶體架構 14
2-2-2 有機場效應電晶體工作原理 17
2-2-3 有機場效應電晶體電流對電壓關係與參數 20
2-3光電流產生機制 23
2-3-1 光電導效應(Photoconductive effect, PCE) 23
2-3-2 光閘效應(Photogating effect, PGE) 23
2-3-3 光伏效應(Photovoltaic effect, PVE) 23
第三章 實驗方法與架構 24
3-1 實驗材料介紹 24
3-1-1主動層材料 25
3-2 實驗儀器 27
3-2-1 手套箱(Glove Box) 27
3-2-2 熱蒸鍍機(Thermal Evaporation Coater) 28
3-2-3 原子層沉積(Atomic Layer Deposition, ALD) 29
3-2-4 紫外光臭氧清潔機(UV-Ozone) 30
3-2-5 阻抗分析儀(Impedance Analyzer) 31
3-2-6 旋轉塗佈機(Spin Coater) 31
3-2-7 半導體參數分析儀(Semiconductor Parameter Analyzer) 32
3-2-8 發光二極體(Light-Emitting Diode) 33
3-2-9 數位式示波器(Digital Oscilloscope) 34
3-2-10 UV-VIS-NIR分光光譜儀 34
3-3 元件製程方法 36
3-3-1 實驗溶液配置 36
3-3-2 鈣鈦礦光偵測器製程 36
3-3-3 鈣鈦礦光敏電晶體製程 39
第四章 結果與討論 42
4-1 元件主動層性質分析 42
4-2光偵測器 44
4-2-1 MAPbI3光偵測器 44
4-2-2 元件性能表現 45
4-2-3 響應時間 47
4-2-4元件性能優化 49
4-3光敏電晶體 52
4-3-1 MAPbI3/3.9 eV ZnO.NPs光敏電晶體之工作機制 53
4-3-2 MAPbI3/3.9 eV ZnO.NPs光敏電晶體之元件表現 54
4-3-3 MAPbI3/4.3 eV ZnO.NPs光敏電晶體之工作機制 57
4-3-4 MAPbI3/4.3 eV ZnO.NPs光敏電晶體之元件表現 58
4-4元件性能比較 61
第五章 結論與未來展望 62
參考文獻…………………………………………………………………………63
參考文獻 Uncategorized References
[1] F. Liu et al., "Highly Efficient and Stable Self?Powered Mixed Tin?Lead Perovskite Photodetector Used in Remote Wearable Health Monitoring Technology," Advanced Science, vol. 10, no. 5, p. 2205879, 2023.
[2] Y. Tang et al., "Enabling low-drift flexible perovskite photodetectors by electrical modulation for wearable health monitoring and weak light imaging," Nature Communications, vol. 14, no. 1, p. 4961, 2023.
[3] T. A. Pham et al., "Nanoarchitectonics for wide bandgap semiconductor nanowires: Toward the next generation of nanoelectromechanical systems for environmental monitoring," Advanced Science, vol. 7, no. 21, p. 2001294, 2020.
[4] A. Pospischil et al., "CMOS-compatible graphene photodetector covering all optical communication bands," Nature Photonics, vol. 7, no. 11, pp. 892-896, 2013.
[5] B. Arredondo et al., "Visible light communication system using an organic bulk heterojunction photodetector," Sensors, vol. 13, no. 9, pp. 12266-12276, 2013.
[6] Y. L. Wu, K. Fukuda, T. Yokota, and T. Someya, "A highly responsive organic image sensor based on a two?terminal organic photodetector with photomultiplication," Advanced Materials, vol. 31, no. 43, p. 1903687, 2019.
[7] G. Simone, M. J. Dyson, S. C. Meskers, R. A. Janssen, and G. H. Gelinck, "Organic photodetectors and their application in large area and flexible image sensors: the role of dark current," Advanced Functional Materials, vol. 30, no. 20, p. 1904205, 2020.
[8] R. H. Dyck and G. P. Weckler, "Integrated arrays of silicon photodetectors for image sensing," IEEE Transactions on Electron Devices, vol. 15, no. 4, pp. 196-201, 1968.
[9] C. Rablau, "LIDAR–A new (self-driving) vehicle for introducing optics to broader engineering and non-engineering audiences," in Education and training in optics and photonics, 2019: Optica Publishing Group, p. 11143_138.
[10] K. Kondo, T. Tatebe, S. Hachuda, H. Abe, F. Koyama, and T. Baba, "Fan-beam steering device using a photonic crystal slow-light waveguide with surface diffraction grating," Optics Letters, vol. 42, no. 23, pp. 4990-4993, 2017.
[11] J.-H. You, S. Oh, J.-E. Park, H. Song, and Y.-K. Kim, "A novel LiDAR sensor alignment inspection system for automobile productions using 1-D photodetector arrays," Measurement, vol. 183, p. 109817, 2021.
[12] S. Royo and M. Ballesta-Garcia, "An overview of lidar imaging systems for autonomous vehicles," Applied sciences, vol. 9, no. 19, p. 4093, 2019.
[13] D. M. Chapin, C. S. Fuller, and G. L. Pearson, "A new silicon p-n junction photocell for converting solar radiation into electrical power," Journal of applied physics, vol. 25, no. 5, p. 676, 1954.
[14] K. Kudo and T. Moriizumi, "Spectrum?controllable color sensors using organic dyes," Applied Physics Letters, vol. 39, no. 8, pp. 609-611, 1981.
[15] C. W. Tang, "Two?layer organic photovoltaic cell," Applied physics letters, vol. 48, no. 2, pp. 183-185, 1986.
[16] M. Hiramoto, H. Fujiwara, and M. Yokoyama, "Three?layered organic solar cell with a photoactive interlayer of codeposited pigments," Applied physics letters, vol. 58, no. 10, pp. 1062-1064, 1991.
[17] N. S. Sariciftci et al., "Semiconducting polymer?buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells," Applied physics letters, vol. 62, no. 6, pp. 585-587, 1993.
[18] G. Yu, K. Pakbaz, and A. Heeger, "Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible?ultraviolet sensitivity," Applied Physics Letters, vol. 64, no. 25, pp. 3422-3424, 1994.
[19] G. Yu and A. J. Heeger, "Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions," Journal of Applied Physics, vol. 78, no. 7, pp. 4510-4515, 1995.
[20] Y. Yao, Y. Liang, V. Shrotriya, S. Xiao, L. Yu, and Y. Yang, "Plastic near?infrared photodetectors utilizing low band gap polymer," Advanced Materials, vol. 19, no. 22, pp. 3979-3983, 2007.
[21] A. Kojima, K. Teshima, T. Miyasaka, and Y. Shirai, "Novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds (2)," in ECS Meeting Abstracts, 2006, no. 7: IOP Publishing, p. 397.
[22] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, "6.5% efficient perovskite quantum-dot-sensitized solar cell," Nanoscale, vol. 3, no. 10, pp. 4088-4093, 2011.
[23] H.-S. Kim et al., "Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%," Scientific reports, vol. 2, no. 1, p. 591, 2012.
[24] X. Yang et al., "Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation," Nature communications, vol. 9, no. 1, p. 570, 2018.
[25] K. Lin et al., "Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent," Nature, vol. 562, no. 7726, pp. 245-248, 2018.
[26] L. Zhang et al., "Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes," Nature communications, vol. 8, no. 1, p. 15640, 2017.
[27] X. Hu et al., "High?performance flexible broadband photodetector based on organolead halide perovskite," Advanced Functional Materials, vol. 24, no. 46, pp. 7373-7380, 2014.
[28] Y. Guo, C. Liu, H. Tanaka, and E. Nakamura, "Air-stable and solution-processable perovskite photodetectors for solar-blind UV and visible light," The journal of physical chemistry letters, vol. 6, no. 3, pp. 535-539, 2015.
[29] F. Li et al., "Ambipolar solution-processed hybrid perovskite phototransistors," Nature communications, vol. 6, no. 1, p. 8238, 2015.
[30] W. Shockley, "The path to the conception of the junction transistor," IEEE Transactions on Electron Devices, vol. 23, no. 7, pp. 597-620, 1976.
[31] J. Bardeen, "Research leading to point-contact transistor," Science, vol. 126, no. 3264, pp. 105-112, 1957.
[32] A. Tsumura, H. Koezuka, and T. Ando, "Macromolecular electronic device: Field?effect transistor with a polythiophene thin film," Applied Physics Letters, vol. 49, no. 18, pp. 1210-1212, 1986.
[33] W. Shockley, M. Sparks, and G. K. Teal, "p? n Junction Transistors," Physical Review, vol. 83, no. 1, p. 151, 1951.
[34] X. Guan, Z. Wang, M. K. Hota, H. N. Alshareef, and T. Wu, "P?type SnO thin film phototransistor with perovskite?mediated photogating," Advanced Electronic Materials, vol. 5, no. 1, p. 1800538, 2019.
[35] J. Yang, B. D. Siempelkamp, E. Mosconi, F. De Angelis, and T. L. Kelly, "Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO," Chemistry of Materials, vol. 27, no. 12, pp. 4229-4236, 2015.
[36] Y. Cheng et al., "Decomposition of organometal halide perovskite films on zinc oxide nanoparticles," ACS applied materials & interfaces, vol. 7, no. 36, pp. 19986-19993, 2015.
[37] Y. Liu et al., "Understanding the enhancement of responsitivity in perovskite/organic semiconductor bilayer-structured photodetectors," Organic Electronics, vol. 75, p. 105372, 2019.
[38] C. Xie, P. You, Z. Liu, L. Li, and F. Yan, "Ultrasensitive broadband phototransistors based on perovskite/organic-semiconductor vertical heterojunctions," Light: Science & Applications, vol. 6, no. 8, pp. e17023-e17023, 2017.
指導教授 張瑞芬 審核日期 2025-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明