博碩士論文 111240001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:52.14.125.232
姓名 吳宛真(Wan-Jhen Wu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 擴增實境眼鏡之角頻譜傳遞理論模型
(Theoretical Model of Angular Spectrum Propagation in Augmented-Reality Glasses)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-1-13以後開放)
摘要(中) 本文提出一套用於擴增實境眼鏡(Augmented-Reality Glasses)之體積全像光學元件(Volume Holographic Optical Element, VHOE)擴瞳光導系統的角頻譜傳遞(Angular Spectrum Propagation, ASP)理論模型。該模型整合體積全像理論與角頻譜傳遞法,實現對VHOE的大角度繞射和光導內多次全反射的數值模擬。
研究中使用MATLAB撰寫程式碼,採用模組化設計,包含體積光學元件模組、正向頻譜傳遞法模組及斜向角頻譜傳遞法模組。以九個步驟建立完整的光傳遞流程:從輸入之耦合元件(VHOE1),經過光導內多次全反射,再到輸出之耦合元件(VHOE2),並分析VHOE厚度、讀取波長、VHOE頻域尺寸等關鍵參數。本論文之研究成果可作為高性能AR眼鏡設計與優化的參考依據。
摘要(英) This thesis proposes an Angular Spectrum Propagation theoretical model for an Exit Pupil Expansion lightguide system based on Volume Holographic Optical Elements for Augmented Reality glasses. The model integrates volume holographic theory with the angular spectrum propagation method to numerically simulate the wide-angle diffraction of VHOEs and the multiple total internal reflections within the lightguide.
The research uses MATLAB to write code, adopting a modular design that includes a volume optical element module, a forward spectrum propagation module, and a tilted angular spectrum propagation module. A complete light propagation process is established in nine steps: from the in-coupling element (VHOE1), through multiple total internal reflections within the lightguide, to the out-coupling element (VHOE2). Key parameters such as VHOE thickness, readout wavelength, and VHOE frequency domain size are analyzed. The research results of this thesis can serve as a reference for the design and optimization of high-performance AR glasses.
關鍵字(中) ★ 擴增實境
★ 角頻譜傳遞
★ 體積全像
★ 光導
★ 擴瞳
★ 全像術
★ 相位疊加
關鍵字(英) ★ Augmented-Reality
★ Angular Spectrum Propagation
★ Lightguide
★ Volume Hologram
★ Exit Pupil Expansion
★ Holography
★ VOHIL
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 IX
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 2
1-3 研究方法 3
第二章 AR眼鏡光導的基礎與技術 5
2-1 波動光學傳遞理論 5
2-1-1 惠更斯原理 5
2-1-2 傅氏轉換與反傅氏轉換 7
2-1-3 角頻譜傳遞法 9
2-2 現有擴瞳光導技術 14
2-2-1 表面起伏光柵 15
2-2-2 超穎表面 16
2-2-3 偏振體積光柵 17
2-3 基於體積全像元件的擴瞳光導 19
2-3-1 全像術基礎 20
2-3-2 耦合波理論與布拉格條件 22
2-3-3 相位疊加法 (VOHIL) 24
2-3-4 VHOE 作為AR眼鏡光導之優勢 30
第三章 傳遞模型之建立 32
3-1 模型概述 32
3-1-1 AR眼鏡之光導架構圖 33
3-1-2 等效架構圖 34
3-1-3 傳遞流程圖 35
3-1-4 座標系轉換 36
3-2 步驟一:輸入影像與參數設定 37
3-2-1 系統參數設定 37
3-2-2 取樣與混疊 38
3-3 步驟二:經VHOE1 40
3-4 步驟三:反傅氏轉換 42
3-5 步驟四:正向角譜傳遞至光導 42
3-6 步驟五:中間檢查之正傅氏轉換 44
3-7 步驟六:光導中斜向角譜傳遞 44
3-8 步驟七:正傅氏轉換 49
3-9 步驟八:經VHOE2 52
3-10步驟九:電場疊加 55
第四章 模擬結果與分析 56
4-1 全像片厚度比較 56
4-1-1 1 μm厚全像之模擬 56
4-1-2 16 μm厚全像之模擬 57
4-1-3 小結 57
4-2 不同讀取波長比較 58
4-2-1讀取波長512 nm 之模擬 58
4-2-2讀取波長522 nm 之模擬 59
4-2-3 讀取波長532 nm 之模擬 59
4-2-4 讀取波長542 nm 之模擬 60
4-2-5 讀取波長552 nm 之模擬 61
4-2-6 小結 62
4-3 VHOE不同頻域尺寸比較 62
4-3-1 頻域尺寸7000*7000 μm之模擬 63
4-3-2 頻域尺寸1000*7000 μm之模擬 63
4-3-3 頻域尺寸1000*1000 μm之模擬 64
4-3-4 頻域尺寸 350*3500 μm之模擬 65
4-3-4 小結 66
第五章 結論 67
參考資料 69
中英文名詞對照表 73
參考文獻 [1] R. T. Azuma, "A survey of augmented reality," Presence: Teleoperators & Virtual Environments 6, 355-385 (1997).
[2] L. Inzerillo, "Augmented reality: past, present, and future," Proc. SPIE 8649, 86490E (2013).
[3] J. Xiong, E. L. Hsiang, Z. He, T. Zhan, and S. T. Wu, "Augmented reality and virtual reality displays: emerging technologies and future perspectives," Light Sci. Appl. 10, 216 (2021).
[4] M. Speicher, B. D. Hall, and M. Nebeling, "What is mixed reality?," in Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (ACM, 2019), pp. 1-15.
[5] B. C. Kress, Optical Architectures for Augmented-, Virtual-, and Mixed-Reality Headsets (SPIE, 2020).
[6] B. C. Kress and T. Starner, "A review of head-mounted displays (HMD) technologies and applications for consumer electronics," Proc. SPIE 8720, 87200A (2013).
[7] D. Lanman and D. Luebke, "Near-eye light field displays," ACM Trans. Graph. 32, 1-10 (2013).
[8] A. A. Cameron, "Optical waveguide technology & its application in head mounted displays," Proc. SPIE 8383, 83830E (2012).
[9] J. W. Goodman, Introduction to Fourier Optics, 4th ed. (Roberts & Company, 2017).
[10] A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 1984).
[11] D. M. Stone and G. Gabor, "Integration of Fourier optics into holographic light guides," Light Adv. Manuf. 1, 101-119 (2018).
[12] B. C. Kress and I. Chatterjee, "Waveguide combiners for mixed reality headsets: a nanophotonics design perspective," Nanophotonics 10, 41-74 (2021).
[13] D. Cheng, Q. Wang, Y. Liu, H. Chen, D. Ni, X. Wang, C. Yao, Q. Hou, W. Hou, G. Luo, and Y. Wang, "Design and manufacture AR head-mounted displays: a review and outlook," Light Adv. Manuf. 2, 350-369 (2021).
[14] T. Levola, "Diffractive optics for virtual reality displays," J. Soc. Inf. Disp. 14, 467-475 (2006).
[15] P. Ayras, P. Saarikko, and T. Levola, "Exit pupil expander with a large field of view based on diffractive optics," J. Soc. Inf. Disp. 17, 659-664 (2009).
[16] Y. Amitai, "P 27: a two dimensional aperture expander for ultra compact, high performance head-worn displays," SID Symp. Dig. Tech. Pap. 36, 360-363 (2005).
[17] Y. Amitai, A. Friesem, and V. Weiss, "Holographic elements with high efficiency and low aberrations for helmet displays," Appl. Opt. 28, 3405-3416 (1989).
[18] G. Li, D. Lee, Y. Jeong, J. Cho, and B. Lee, "Holographic display for see-through augmented reality using mirror-lens holographic optical element," Opt. Lett. 41, 2486-2489 (2016).
[19] S. Lee, B. Lee, J. Cho, C. Jang, J. Kim, and B. Lee, "Analysis and implementation of hologram lenses for see-through head-mounted display," IEEE Photonics Technol. Lett. 29, 82-85 (2017).
[20] H. J. Yeom, H.-J. Kim, S.-B. Kim, H. Zhang, B. Li, Y.-M. Ji, S.-H. Kim, and J.-H. Park, "3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation," Opt. Express 23, 32025-32034 (2015).
[21] I. Kasai, Y. Tanijiri, T. Endo, and H. Ueda, "A practical see-through head mounted display using a holographic optical element," Opt. Rev. 8, 241-244 (2001).
[22] D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948).
[23] D. Gabor, "Microscopy by reconstructed wave-fronts," Proc. R. Soc. Lond. A 197, 454-487 (1949).
[24] H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).
[25] C. C. Sun, "Simplified model for diffraction analysis of volume holograms," Opt. Eng. 42, 1184-1185 (2003).
[26] C. C. Sun and W. C. Su, "Three-dimensional shifting selectivity of random phase encoding in volume holograms," Appl. Opt. 40, 1253-1260 (2001).
[27] P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, 1996).
[28] W. Klein, "Theoretical efficiency of Bragg devices," Proc. IEEE 54, 803-804 (1966).
[29] M. B. Klein, "Photorefractive properties of BaTiO?," in Photorefractive Materials and Their Applications I, P. Gunter and J. P. Huignard, eds. (Springer, 1988), pp. 195-236.
[30] B. R. David, Understanding Diffraction in Volume Gratings and Holograms (InTech, 2013).
[31] K. Matsushima, H. Schimmel, and F. Wyrowski, "Fast calculation method for optical diffraction on tilted planes by use of the angular spectrum of plane waves," J. Opt. Soc. Am. A 20, 1755-1762 (2003).
[32] K. Matsushima and T. Shimobaba, "Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields," Opt. Express 17, 19662-19673 (2009).
[33] K. Matsushima, "Shifted angular spectrum method for off-axis numerical propagation," Opt. Express 18, 18453-18463 (2010).
[34] R. Heintzmann, L. Loetgering, and F. Wechsler, "Scalable angular spectrum propagation," Optica 10, 1407-1416 (2023).11-14
[35] H. Tamura and T. Yoshida, "Optimization of angular spectrum transfer in waveguide displays," J. Soc. Inf. Disp. 27, 201-212 (2020).
[36] H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, "A full color eyewear display using planar waveguides with reflection volume holograms," J. Soc. Inf. Disp. 17, 185-193 (2009).
[37] T. Yoshida, K. Tokuyama, Y. Takai, D. Tsukuda, T. Kaneko, N. Suzuki, T. Anzai, A. Yoshikaie, K. Akutsu, and K. Machida, "A plastic holographic waveguide combiner for light-weight and highly-transparent augmented reality glasses," J. Soc. Inf. Disp. 26, 280-286 (2018).
[38] J. Kollin, A. Georgiu, and A. Maimone, "Holographic near-eye displays for virtual and augmented reality," ACM Trans. Graph. 36, 1-16 (2017).
[39] C. Chang, K. Bang, G. Wetzstein, B. Lee, and L. Gao, "Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective," Optica 7, 1563-1578 (2020).
[40] J. Xiong, K. Yin, K. Li, and S. T. Wu, "Holographic optical elements for augmented reality: principles, present status, and future perspectives," Adv. Photonics Res. 2, 2000049 (2021).
[41] S. Sriram and P. L. Choong, "Efficient multiplexing techniques for polarization volume gratings in AR glasses," Appl. Opt. 59, 1345-1353 (2021).
[42] G. Evans, J. Miller, M. I. Pena, A. MacAllister, and E. Winer, "Evaluating the Microsoft HoloLens through an augmented reality assembly application," Proc. SPIE 10197, 101970V (2017).
[43] C. C. Sun, Y. W. Yu, S. K. Zhou, C. Y. Cheng, W. C. Su, W. K. Lin, T. H. Yang, Z. F. Chen, C. Sun, T. X. Lee, and S. H. Lin, "Investigation of -1st-order diffraction in conditions between thin and thick holograms," Opt. Express 32, 31130-31141 (2024).
[44] C. C. Sun, W. K. Lin, T. H. Yang, Z. F. Chen, C. Sun, W. C. Su, S. K. Zhou, Y. W. Yu, T. X. Lee, C. Y. Cheng, and S. H. Lin, "Color gamut characteristics of diffractive-light guides of near-eye augmented reality glasses," iScience 27, 110023 (2024).
[45] J. S. Lee, S. H. Cho, W. J. Choi, and Y. W. Choi, "Enhancing the color gamut of waveguide displays for augmented reality head-mounted displays through spatially modulated diffraction grating," Sci. Rep. 14, 8821 (2024).
[46] W.-S. Sun, Y.-S. Hsu, C.-L. Tien, W.-K. Lin, Y.-L. Su, J.-Y. Yu, S.-K. Zhou, Y.-Y. Liang, W.-P. Tsai, and C. Sun, "Design and manufacture of 30-degree projection lens for augmented reality waveguide," Micromachines 15, 1198 (2024).
[47] Y. Yu, C. Lin, C. Sun, W. Lin, W. Su, C. Chang, W. Lai, C. Chen, T. Lee, S. Lin, C. Cheng, C. Chen, W. Sun, T. Yang, and C. Sun, "Achieving over 500% improvement in optical efficiency for VHOE-lightguide near-eye glasses with exit pupil expansion," Opt. Express 30, 44059-44072 (2022).
[48] B. C. Kress and W. J. Cummings, "11-1: Invited paper: towards the ultimate mixed reality experience: HoloLens display architecture choices," SID Symp. Dig. Tech. Pap. 48, 127-131 (2017).
[49] B. C. Kress and M. Pace, "Holographic optics in planar optical systems for next generation small form factor mixed reality headsets," Light Adv. Manuf. 3, 42 (2022).
[50] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 4th ed. (Pearson, 2018)
指導教授 余 業 緯(Yeh-Wei Yu) 審核日期 2025-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明