博碩士論文 111226070 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:18.119.108.165
姓名 陳明沅(MING-YUAN,CHEN)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以多次隨機位移拍攝增加影像品質之研究
(Study on Image Quality Enhancement by Multiple Imaging with Random Displacements)
相關論文
★ 反射杯式與透鏡式 LED 車前燈之研究★ 具光子回收之雷射多工雙光源照明模組之研究
★ 影像式輝度量測儀之特性量測與校正★ 接觸式影像感測模組之導光棒設計
★ 使用RGB-D掃描點雲進行室內3D幾何重建之自動模型之研究★ 數位光學相位共軛用於立體影像顯示之研究
★ 歐規LED車頭燈反射杯製作材料表現之分析★ 以柱狀透鏡陣列產生高對比度光型之光學設計
★ 超高對比度之歐規LED車頭燈之設計與驗證★ 取像還原真實色彩演算之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-30以後開放)
摘要(中) 在當前科技迅速發展的背景下,數位相機的解析度仍然受限於感測器尺
寸和像素密度,導致在影像解析度方面面臨諸多挑戰。本論文的宗旨在深入
探討如何通過像素位移技術,突破這些傳統技術的侷限,實現數位相機影像
解析度的提升,我們通過模擬相機進行隨機位移來拍攝物體,得到多張低解
析度的照片後,合成一張高解析度的照片,透過一維和二維模擬結果,能夠
明顯看出提升影像解析度,最後將此結果與市面上常見的影像內插法進行
比較,展示像素位移技術在提升解析度方面的優勢,並證明此方法在影像解
析度方面有著顯著的提升。
摘要(英) In the context of rapidly advancing technology, the resolution of digital
cameras remains constrained by sensor size and pixel density, leading to
numerous challenges in image resolution. This paper aims to explore how pixel
shift technology can overcome these traditional limitations and enhance the
resolution of digital camera images. By simulating random camera displacements
to capture an object, multiple low-resolution photos are obtained and then
synthesized into a high-resolution image. Through one-dimensional and two
dimensional simulation results, a significant improvement in image resolution can
be observed. Finally, the results are compared with common interpolation
methods available on the market, demonstrating the advantages of pixel shift
technology in enhancing resolution and proving its effectiveness in significantly
improving image resolution.
關鍵字(中) ★ 像素位移技術
★ 影像處理
★ 影像內插法
關鍵字(英) ★ pixel shift technology
★ image processing
★ image interpolation
論文目次 摘要 ..................................................................................................................... VI
Abstract .............................................................................................................. VII
致謝 .................................................................................................................. VIII
目錄 ..................................................................................................................... IX
圖目錄 ................................................................................................................ XII
表目錄 .............................................................................................................. XVI
第一章 緒論 .................................................................................................. 1
1-1 引言 ..................................................................................................... 1
1-2 研究動機 ............................................................................................. 3
1-3 論文大綱 ............................................................................................. 4
第二章 影像處理基本原理 .......................................................................... 5
2-1 相機感光元件種類 ............................................................................. 6
2-1-1 CCD影像感測器 .......................................................................... 7
2-1-2 CMOS影像感測器 ....................................................................... 7
2-1-3 CCD與CMOS之比較 ................................................................. 8
2-2 影像處理 ........................................................................................... 10
2-2-1歸一化處理 ................................................................................. 10
2-2-2白平衡校正 ................................................................................. 11
X

2-2-3去馬賽克化 ................................................................................. 12
2-3 灰階影像 ........................................................................................... 15
2-4 影像解析度 ....................................................................................... 17
2-5 捲積與反捲積 ................................................................................... 19
2-5-1 捲積............................................................................................. 19
2-5-2 反捲積 ........................................................................................ 20
第三章 像素位移方法建立 ........................................................................ 21
3-1 市面上常見內插法 ........................................................................... 21
3-1-1最鄰近內插法 ............................................................................. 22
3-1-2雙線性內插法 ............................................................................. 24
3-1-3雙三次內插法 ............................................................................. 27
3-2 CMOS影像感測器取樣定理 ............................................................ 31
3-3像素特徵值提取 ................................................................................ 36
3-3-1傅立葉轉換 ................................................................................. 37
3-3-2特徵值提取 ................................................................................. 38
3-4像素位移法提升影像解析度 ............................................................ 39
第四章 模擬結果與比較 ............................................................................ 41
4-1像素位移技術驗證 ............................................................................ 41
4-2 一維CMOS模擬架構建立 .............................................................. 49
XI

4-3 二維CMOS模擬架構建立 .............................................................. 56
4-4 影像解析度定義 ............................................................................... 65
4-5 內插法比較結果與分析 ................................................................... 66
第五章 結論 ................................................................................................ 74
參考文獻 ............................................................................................................. 75
中英名詞對照表 ................................................................................................. 80
參考文獻 1. A. Khazanchi, A. Kanwar, L. Saluja, A. Damara, and V. Damara, “OLED: a new display
technology,” Int. J. Eng. Comput. Sci. 1, 75-84 (2012).
2.CIPA, “Digital Cameras Update History,” https://www.cipa.jp/e/stats/dc-2023.html.
3.A. El Gamal, D. X. Yang, and B. A. Fowler, “Pixel-level processing: why, what, and how,”
presented at Sensors, Cameras, and Applications for Digital Photography, San Jose,
United States, 23-29 January 1999.
4. C. T. Huang, N. S. Shongwe, and C. Y. Weng, “Enhanced Embedding Capacity for Data
Hiding Approach Based on Pixel Value Differencing and Pixel Shifting Technology,”
Electronics 12, 1200 (2023).
5.Sony, “Pixel Shift Multi Shooting,” https://reurl.cc/GpVGaW.
6.M. F. Tompsett, G. F. Amelio, W. Bertram, R. R. Buckley, W. McNamara, J. Mikkelsen,
and D. Sealer, “Charge-coupled imaging devices: Experimental results,” IEEE Trans.
Electron Device 18, 992-996 (1971).
7.D. Litwiller,“CCD vs. COMS:Facts and Fiction,” Photonics Spectra 35, 154-158
(2001).
8.B. K. Gunturk, J. Glotzbach, Y. Altunbasak, R. W. Schafer, and R. M. Mersereau,
“Demosaicking: color filter array interpolation,” IEEE Signal Process. Mag. 22, 44-54
(2005).
9.F. Gasparini, and R. Schettini, “Color correction for digital photographs,” presented at
12th International Conference on Image Analysis and Processing, Mantova, Italy, 17-19
September 2003.
10. B. E. Bayer, “Color imaging array,” United States Patent, US3971065A (1976).
11. K. Hirakawa, and P. J. Wolfe, “Spatio-spectral color filter array design for optimal image
recovery,” IEEE Trans. Image Process. 17, 1876-1890 (2008).
75
12. C. Solomon, and T. Breckon, Fundamentals of Digital Image Processing. (Wiley
Blackwell, 2010).
13. R. C. Gonzalez, and R. E. Woods, Digital Image Processing Third Edition. (Upper Saddle
River, New Jersey, 2008).
14. Y. Ge, Q. Zhang, Y. Sun, Y. Shen, and X. Wang, “Grayscale medical image segmentation
method based on 2D&3D object detection with deep learning,” BMC Med Imaging 22,
33 (2022).
15. D. Chaudhuri, N. K. Kushwaha, A. Samal, and R. Agarwal, “Automatic building
detection from high-resolution satellite images based on morphology and internal gray
variance,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 9, 1767-1779 (2015).
16. X. Zhang, J. Cui, W. Wang, and C. Lin, “A study for texture feature extraction of high
resolution satellite images based on a direction measure and gray level co-occurrence
matrix fusion algorithm,” Sensors 17, 1474 (2017).
17. T. Xu, M. Xu, Y. Ren, J. Xu, H. Zhang, and N. Zheng, “A File Fragment Classification
Method Based on Grayscale Image,” J. Comput. 9, 1863-1870 (2014).
18. I. ?eger, and S. Grgi?, “An overview of grayscale image colorization methods,” presented
at 2020 International Symposium ELMAR, Zadar, Croatia, 14-15 September 2020.
19. K. Zhang, D. Li, W. Luo, W. Ren, B. Stenger, W. Liu, H. Li, and M.-H. Yang,
“Benchmarking ultra-high-definition image super-resolution,” presented at Proceedings
of the IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 10
17 October 2021.
20. R. Reulke, and A. Eckardt, “Image quality and image resolution,” presented at 2013
Seventh International Conference on Sensing Technology, Wellington, New Zealand, 3
5 December 2013.
21. C. Solomon, and T. Breckon, Fundamentals of Digital Image Processing: A practical
approach with examples in Matlab. (John Wiley & Sons, 2011).
76
22. I. Bankman, Handbook of Medical Image Processing and Analysis. (Elsevier,
Amsterdam, The Netherlands, 2008).
23. O. Rukundo, and H. Cao, “Nearest neighbor value interpolation,” Int. J. Adv. Comput.
Sci. Appl. 3, 25-30 (2012).
24. E. J. Kirkland, and E. J. Kirkland, “Bilinear interpolation,” Advanced Computing in
Electron Microscopy, 261-263 (2010).
25. K. T. Gribbon, and D. G. Bailey, “A novel approach to real-time bilinear interpolation,”
presented at Proceedings. DELTA 2004. Second IEEE International Workshop on
Electronic Design, Test and Applications, Perth, Australia, 28-30 January 2004.
26. S. Gao, and V. Gruev, “Bilinear and bicubic interpolation methods for division of focal
plane polarimeters,” Opt. Express 19, 26161-26173 (2011).
27. M. Hidane, M. El Gheche, J. F. Aujol, Y. Berthoumieu, and C. A. Deledalle, “Image zoom
completion,” IEEE Trans. Image Process. 25, 3505-3517 (2016).
28. H. S. Stone, B. Tao, and M. McGuire, “Analysis of image registration noise due to
rotationally dependent aliasing,” J. Visual Commun. Image Representation 14, 114-135
(2003).
29. E. O′Neill, “Spatial filtering in optics,” IEEE Trans. Inf. Theory 2, 56-65 (1956).
30. J. Hunt, J. Glaze, W. Simmons, and P. Renard, “Suppression of self-focusing through
low-pass spatial filtering and relay imaging,” Appl. Opt. 17, 2053-2057 (1978).
31. M. Young, “Low-cost LCD video display for optical processing,” Appl. Opt. 25, 1024
1026 (1986).
32. F. Zhou, X. Li, and Z. Li, “High-frequency details enhancing DenseNet for super
resolution,” Neurocomputing 290, 34-42 (2018).
33. T. Acharya, and A. K. Ray, Image processing: principles and applications. (John Wiley
& Sons, 2005).
34. A. Alaghi, C. Li, and J. P. Hayes, “Stochastic circuits for real-time image-processing
77
applications,” presented at Proceedings of the 50th Annual Design Automation
Conference,New York, United States, 29 May 2013.
35. I. Pitas, Digital image processing algorithms and applications. (John Wiley & Sons,
2000).
36. I. Lissner, J. Preiss, P. Urban, M. S. Lichtenauer, and P. Zolliker, “Image-difference
prediction: From grayscale to color,” IEEE Trans. Image Process. 22, 435-446 (2012).
37. J. J. Benedetto, and P. J. Ferreira, Modern sampling theory: mathematics and applications.
(Springer Science & Business Media, 2012).
38. D. Fraser, “Interpolation by the FFT revisited-an experimental investigation,” IEEE Trans.
Acoust., Speech Signal Process. 37, 665-675 (1989).
39. B. Xu, T. Han, Z. Zhang, X. Liu, and M. Ju, “Research on Sub-Nyquist Rate Sampling
Method Based on Sparse Fourier Transform Theory,” presented at 2021 IEEE 4th
International Conference on Electronics Technology, Chengdu, China, 7-10 May 2021.
40. S. He, and M. Torkelson, “Computing partial DFT for comb spectrum evaluation,” IEEE
Signal Process. Lett. 3, 173-175 (1996).
41. I. McCowan, D. Dean, M. McLaren, R. Vogt, and S. Sridharan, “The delta-phase
spectrum with application to voice activity detection and speaker recognition,” IEEE
Trans. Audio, Speech Language Process. 19, 2026-2038 (2011).
42. R. Verma, and J. Ali, “A comparative study of various types of image noise and efficient
noise removal techniques,” International Journal of Advanced Research in Computer
Science and Software Engineering 3, (2013).
43. S. Pyatykh, J. Hesser, and L. Zheng, “Image noise level estimation by principal
component analysis,” IEEE Trans. Image Process. 22, 687-699 (2012).
44. P. Heckbert, “Fourier transforms and the fast Fourier transform (FFT) algorithm,”
Comput. Graph. 2, 15-463 (1995).
45. P. T. Gough, “A fast spectral estimation algorithm based on the FFT,” IEEE transactions
78
on signal processing 42, 1317-1322 (1994).
46. Y.-W. Lin, and C.-Y. Lee, “Design of an FFT/IFFT processor for MIMO OFDM systems,”
IEEE Trans. Circuits Syst. I, Reg. Papers 54, 807-815 (2007).
47. L. Hu, L. Wang, X. Chen, and J. Yang, “Image subtraction in Fourier space,” The
Astrophy. J. 936, 157 (2022).
48. 孫慶成,光電工程概論(全華圖書股份有限公司,新北市,2012)。。
49. J. W. Goodman, Introduction to Fourier Optics, Third Edition. (Roberts and Company
publishers, 2005).
50. F. Tokluoglu, “Drone Shot of the ITU Faculty of Architecture,” https://reurl.cc/qv8Zkp.
指導教授 楊宗勳 孫慶成(Tsung-Hsun,Yang) 審核日期 2025-3-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明