博碩士論文 111226005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.145.40.61
姓名 陳家恩(Jia-En Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 高功率脈衝磁控濺鍍法氮化鎵之波導優化
(Optimization of gallium nitride waveguides deposited by high-power impulse magnetron sputtering)
相關論文
★ 電子束曝光製程氮化矽微環型共振腔之研究分析★ 以Groove-first 製程步驟製作U型槽與波導
★ 氮化矽微環形共振腔模擬與傳統紫外光製程之研究★ 微環形共振腔非線性效應與壓縮光之研究
★ 以可重構之SU-8聚合物披覆層對氮化矽微環形共振腔進行色散調製★ 利用傳統光學微影和i-line紫外光微影製作氮化矽微共振腔
★ 錐形波導設計對氮化矽微環形共振腔耦合效應研究★ 耦合共振腔光波導頻寬優化研究
★ 高功率脈衝磁控濺鍍氮化鎵環形共振腔製程之研究★ 以原子層沉積披覆層及飛秒雷射退火對氮化矽微環形共振腔進行表面改質研究
★ 低限制氮化矽波導之高品質因子微環形共振腔製程研究★ 氮化矽微環型干涉儀製程與穿透頻譜調製
★ 6 吋晶圓製程整合 奈米光學應用和均勻性分析研究★ 微環形共振腔耦合馬赫曾德爾干涉儀之研究
★ 雙重曝光氮化矽環形共振腔製作與熱效應調製★ 非對稱環形共振腔耦合與品質因子控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 氮化鎵具有能帶寬和熱穩定性的優勢,因此在半導體材料中具有舉足輕重的地位,另外由於其非線性係數較大,所以也利於非線性領域的研究。傳統上在沉積氮化鎵薄膜時,幾乎都是採用有機金屬化學氣相沉積法(metal organic chemical vapor phase deposition, MOCVD),或者是利用晶圓接合(wafer bonding)的方式,前者的優勢在於其能沉積出高品質且具晶格結構的氮化鎵薄膜,但其缺點是沉積時須考慮到晶格的匹配度,若晶格匹配度不佳則無法沉積出高品質的薄膜,此種沉積方式通常沉積於藍寶石基板上,但藍寶石基板價格較為昂貴,和互補式金屬氧化半導體(complementary metal oxide semiconductor, CMOS)製程相容性不佳,且其製程需要在高溫中進行;而晶圓接合雖然可以接合在與CMOS製程相容的基板上,但同樣需要先沉積於晶格匹配的基板,且須經過較為繁複的製程步驟,最後導致薄膜表面品質較不理想。為了能於不同的基板上沉積出高品質的薄膜,因此本論文中使用了高功率磁控脈衝濺鍍法(high-power impulse magnetron sputtering, HiPIMS)來沉積氮化鎵薄膜,此種沉積方式是以高能量離子轟擊表面進行薄膜濺鍍,因此其優勢在於能在室溫沉積且不須晶格匹配,使其能輕易沉積於不同的的基板上。
論文中首先會介紹波導和微環形共振腔的基礎理論,並根據設計的光罩模擬其模態和場型,分析其是否能順利且穩定的傳輸於波導結構中;接著藉由模擬來比較有無表面披覆層對於場型傳輸的影響;最後則是藉由模擬來確認混合式波導的可行性,並且比較不同材料混合式波導的彎曲損耗,以說明氮化鎵混合式波導的優勢。接著本論文利用能沉積於不同基板的優勢,嘗試使用矽、玻璃和石英這三種基板沉積氮化鎵薄膜,來製作波導及微環形共振腔,接著藉由改善各種製程和光罩設計,來優化低限制波導和高限制波導的損耗,以及嘗試提升微環形共振腔的品質因子。最後成功的於石英和玻璃基板上,製作出可量測到共振的氮化鎵微環形共振腔,並且利用氮化鎵混合式波導做出品質因子達104的微環形共振腔。
本論文使用HiPIMS將氮化鎵沉積於石英和玻璃基板上,製作出具共振的微環形共振腔,並且首次嘗試用氮化鎵製作出混合式波導,避免掉蝕刻所帶來的損耗,為氮化鎵波導提供了更多元的發展方向。
摘要(英) Gallium nitride (GaN) has advantages in wide bandgap and thermal stability, making it a crucial material in the semiconductor industry. Additionally, due to its large nonlinear coefficient, it is also beneficial for research in the field of nonlinear optics. Traditionally, GaN thin films are predominantly deposited using metal-organic chemical vapor deposition (MOCVD) or wafer bonding techniques. The advantage of MOCVD lies in its ability to deposit high-quality GaN thin films with lattice structures. However, its drawback is the need to consider lattice matching during deposition. Without good lattice matching, high-quality thin films cannot be achieved. Typically, GaN thin films are deposited on sapphire substrates, which are expensive, lack compatibility with complementary metal-oxide-semiconductor (CMOS) processes, and require high-temperature processing. On the other hand, wafer bonding allows integration onto CMOS-compatible substrates, but the initial deposition still requires lattice-matched substrates, involves more complex processing steps, and results in poorer surface quality of the thin films. To enable the deposition of high-quality thin films on a variety of substrates, this thesis employs high-power impulse magnetron sputtering (HiPIMS) for GaN thin film deposition. This deposition method utilizes high-energy ion bombardment to sputter the thin film onto the surface. Its advantages include the ability to deposit at room temperature without requiring lattice matching, allowing easy deposition on various substrates.
The thesis begins with an introduction to the fundamental theories of waveguides and micro-ring resonators, followed by simulations of the designed photomask to analyze the modes and field distributions, ensuring stable and efficient propagation within the waveguide structure. Simulations are then conducted to compare the effects of surface coating layers on field propagation. Finally, the feasibility of hybrid waveguides is verified through simulations, and the bending losses of hybrid waveguides made from different materials are compared, demonstrating the advantages of GaN hybrid waveguides. Leveraging the ability to deposit GaN films on various substrates, this thesis fabricates waveguides and micro-ring resonators using GaN thin films deposited on silicon, glass, and quartz substrates. By improving fabrication processes and optimizing photomask designs, efforts were made to reduce losses in both low-confinement and high-confinement waveguides while enhancing the quality factor of microring resonators. Ultimately, micro-ring resonators with resonances were successfully fabricated on quartz and glass substrates, and hybrid waveguides made with GaN achieved a micro-ring resonator quality factor of 104.
In conclusion, this thesis demonstrates the use of HiPIMS to deposit GaN on quartz and glass substrates to fabricate micro-ring resonators with resonances. Additionally, hybrid GaN waveguides were first developed to avoid losses associated with etching, providing a more versatile approach for GaN waveguide applications.
關鍵字(中) ★ 氮化鎵
★ 高功率脈衝磁控濺鍍法
★ 波導
★ 微環形共振腔
關鍵字(英)
論文目次 誌謝 iv
摘要 v
ABSTRACT vii
目錄 ix
圖目錄 xii
表目錄 xvi
第一章 緒論 1
1.1 前言 1
1.2 波導與波導材料 2
1.3 微環形共振腔 3
1.4 氮化鎵及其常見沉積方式 5
1.5 研究動機 7
1.6 論文架構 9
第二章 微環形共振腔結構模擬 10
2.1 模擬工具及原理 10
2.1.1 有限元素法(Finite Element Method, FEM) 10
2.1.2 時域有限差分法(Finite-Difference-Time-Domain, FDTD) 10
2.1.3 有限差分本徵模(Finite Difference Eigenmode, FDE) 11
2.2 氮化矽波導之場型模擬 11
2.2.1 高限制波導之場型模擬 11
2.2.2 低限制波導之場型模擬 12
2.2.3 氧化披覆層對於波導場型之模擬 14
2.3 氮化鎵波導之場型模擬 16
2.3.1 高限制波導之場型模擬 16
2.3.2 低限制波導之場型模擬 18
2.4 不同基板上氮化鎵波導的場型模擬 20
2.5 混合式氮化鎵波導的模擬 22
2.5.1 混合式氮化鎵波導場型模擬 22
2.5.2 混合式氮化鎵波導彎曲損耗模擬 24
第三章 元件製作 26
3.1 製程流程 26
3.2 絕緣層之沉積 27
3.3 薄膜製程 29
3.3.1 氮化矽薄膜之沉積 29
3.3.2 氮化鎵薄膜之沉積 30
3.3.3 氮化鎵薄膜折射率量測 33
3.4 微影製程 34
3.4.1 光阻塗佈 34
3.4.2 曝光機台 35
3.4.3 光阻顯影 37
3.5 蝕刻製程 39
3.5.1 氮化矽波導之蝕刻 39
3.5.2 氮化鎵波導之蝕刻 40
3.6 披覆層之沉積 46
第四章 微環形共振腔之量測 49
4.1 元件量測之計算和原理 49
4.2 傳輸頻譜之量測系統架構 51
4.3 TEOS氧化物披覆層對品質因子的影響 52
4.4 不同種類之氮化鎵波導比較 54
4.4.1 RIE-230iP之蝕刻結果比較 54
4.4.2 Spiral結構設計與量測 56
4.4.3 波導設計之優化 58
4.5 氮化鎵波導量測 64
4.5.1 氮化鎵波導量測 64
4.5.2 氮化鎵混合式波導量測 67
4.6 量測結果之總結 69
第五章 結論與未來展望 70
參考資料 71
參考文獻 [1] Bogaerts, Wim, et al. "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology." Journal of Lightwave Technology 23.1 (2005): 401.
[2] Rudenko, T. E., A. N. Nazarov, and V. S. Lysenko. "The advancement of silicon-on-insulator (SOI) devices and their basic properties." Semiconductor Physics, Quantum Electronics & Optoelectronics 23.3 (2020).
[3] Shi, Wei, Ye Tian, and Antoine Gervais. "Scaling capacity of fiber-optic transmission systems via silicon photonics." Nanophotonics 9.16 (2020): 4629-4663.
[4] Carroll, Lee, et al. "Photonic packaging: transforming silicon photonic integrated circuits into photonic devices." Applied Sciences 6.12 (2016): 426.
[5] Axt, Vollrath Martin, and Shaul Mukamel. "Nonlinear optics of semiconductor and molecular nanostructures; a common perspective." Reviews of Modern Physics 70.1 (1998): 145.
[6] Kaniber, Michael, et al. "Integrated superconducting detectors on semiconductors for quantum optics applications." Applied Physics B 122 (2016): 1-10.
[7] Gaeta, Alexander L., Michal Lipson, and Tobias J. Kippenberg. "Photonic-chip-based frequency combs." nature photonics 13.3 (2019): 158-169.
[8] Meier, Cedrik, et al. "Silicon nanoparticles: Absorption, emission, and the nature of the electronic bandgap." Journal of applied physics 101.10 (2007).
[9] Cheng, Qijin, Shuyan Xu, and Kostya Ken Ostrikov. "Controlled-bandgap silicon nitride nanomaterials: deterministic nitrogenation in high-density plasmas." Journal of Materials Chemistry 20.28 (2010): 5853-5859.
[10] Zheng, Yanzhen, et al. "Integrated gallium nitride nonlinear photonics." Laser & Photonics Reviews 16.1 (2022): 2100071.
[11] Kang, Moon Sung, et al. "Gallium nitride nanostructures for light-emitting diode applications." Nano energy 1.3 (2012): 391-400.
[12] Nakamura, Shuji, and Michael R. Krames. "History of gallium–nitride-based light-emitting diodes for illumination." Proceedings of the IEEE 101.10 (2013): 2211-2220.
[13] Fletcher, AS Augustine, and D. Nirmal. "A survey of Gallium Nitride HEMT for RF and high power applications." Superlattices and Microstructures 109 (2017): 519-537.
[14] Khan, M. A., et al. "New developments in gallium nitride and the impact on power electronics." 2005 IEEE 36th Power Electronics Specialists Conference. IEEE, 2005.
[15] Melton, William A., and Jacques I. Pankove. "GaN growth on sapphire." Journal of crystal growth 178.1-2 (1997): 168-173.
[16] Awan, Kashif M., et al. "Fabrication and optical characterization of GaN waveguides on (? 201)-oriented β-Ga 2 O 3." Optical Materials Express 8.1 (2018): 88-96.
[17] Zheng, Yanzhen, et al. "Integrated gallium nitride nonlinear photonics." Laser & Photonics Reviews 16.1 (2022): 2100071.
[18] Tsai, Tsung-Yen, et al. "MOCVD growth of GaN on sapphire using a Ga2O3 interlayer." Journal of The Electrochemical Society 158.11 (2011): H1172.
[19] Dragoi, Viorel, et al. "Direct wafer bonding of GaN for power devices applications." ECS Transactions 86.5 (2018): 23.
[20] Anders, Andre. "Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS)." Journal of Applied Physics 121.17 (2017).
[21] Ji, Xingchen, et al. "Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold." Optica 4.6 (2017): 619-624.
[22] 低限制氮化矽波導之高品質因子微環形共振腔製程研究. 2023. PhD Thesis. National Central University.
[23] Wu, Shih-Hsin, et al. "Fabrication of gallium nitride waveguide resonators by high-power impulse magnetron sputtering at room temperature." APL Photonics 9.1 (2024).
[24] Dhatt, Gouri, Emmanuel Lefrancois, and Gilbert Touzot. Finite element method. John Wiley & Sons, 2012.
[25] Yee, Kane. "Numerical solution of initial boundary value problems involving Maxwell′s equations in isotropic media." IEEE Transactions on antennas and propagation 14.3 (1966): 302-307.
[26] Voigt, Anja, et al. "Improved adhesion of novolac and epoxy based resists by cationic organic materials on critical substrates for high volume patterning applications." Advances in Patterning Materials and Processes XXXI. Vol. 9051. SPIE, 2014.
[27] Niehusmann, Jan, et al. "Ultrahigh-quality-factor silicon-on-insulator microring resonator." Optics letters 29.24 (2004): 2861-2863.
[28] Xiao, Shijun, et al. "Modeling and measurement of losses in silicon-on-insulator resonators and bends." Optics Express 15.17 (2007): 10553-10561.
[29] Feng, Shaoqi, et al. "Silicon photonics: from a microresonator perspective." Laser & photonics reviews 6.2 (2012): 145-177.
[30] Xiao, Shijun, et al. "Compact silicon microring resonators with ultra-low propagation loss in the C band." Optics express 15.22 (2007): 14467-14475.
[31] Bal?ytis, A., et al. "High precision fabrication of antennas and sensors." Ninth International Symposium on Precision Engineering Measurement and Instrumentation. Vol. 9446. SPIE, 2015.
[32] He, Zhaoqin, et al. "Ultra-high Q Microring Resonators on Gallium-nitride-on-sapphire Platform." 2023 Opto-Electronics and Communications Conference (OECC). IEEE, 2023.
[33] Xiong, Chi, et al. "Integrated photonic circuits in gallium nitride and aluminum nitride." International Journal of High Speed Electronics and Systems 23.01n02 (2014): 1450001.
[34] 用於玻璃基板上低損耗波導之研究. 2024. PhD Thesis. National Central University.
指導教授 王培勳(Pei-Hsun Wang) 審核日期 2025-3-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明