參考文獻 |
(1) Alken, P., Thebault, E., Beggan, C. D., Amit, H., Aubert, J., Baerenzung, J., Bondar, T., Brown, W., Califf, S., & Chambodut, A. (2021). International geomagnetic reference field: the thirteenth generation. Earth, planets and space, 73(1), 1-25.
(2) Amante, C., & Eakins, B. W. (2009). ETOPO1 arc-minute global relief model: procedures, data sources and analysis.
(3) Baba, K. (2005). Electrical structure in marine tectonic settings. Surveys in Geophysics, 26, 701-731.
(4) Baba, K., Utada, H., Goto, T.-n., Kasaya, T., Shimizu, H., & Tada, N. (2010). Electrical conductivity imaging of the Philippine Sea upper mantle using seafloor magnetotelluric data. Physics of the Earth and Planetary Interiors, 183(1-2), 44-62.
(5) Banks, R. (1969). Geomagnetic variations and the electrical conductivity of the upper mantle. Geophysical Journal International, 17(5), 457-487.
(6) Chave, A. D., & Thomson, D. J. (2004). Bounded influence magnetotelluric response function estimation. Geophysical Journal International, 157(3), 988-1006.
(7) Constable, C., & Constable, S. (2023). A grand spectrum of the geomagnetic field. Physics of the Earth and Planetary Interiors, 344, 107090.
(8) Constable, S. C., Parker, R. L., & Constable, C. G. (1987). Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52(3), 289-300.
(9) Fan, J., & Zhao, D. (2021). P?wave tomography and azimuthal anisotropy of the Manila?Taiwan?southern Ryukyu region. Tectonics, 40(2), e2020TC006262.
(10) Grayver, A. V. (2021). Global 3?D electrical conductivity model of the world ocean and marine sediments. Geochemistry, Geophysics, Geosystems, 22(9), e2021GC009950.
(11) Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., & Smoczyk, G. M. (2018). Slab2, a comprehensive subduction zone geometry model. Science, 362(6410), 58-61.
(12) Hirschmann, M. M. (2010). Partial melt in the oceanic low velocity zone. Physics of the Earth and Planetary Interiors, 179(1-2), 60-71.
(13) Khan, A., & Shankland, T. (2012). A geophysical perspective on mantle water content and melting: inverting electromagnetic sounding data using laboratory-based electrical conductivity profiles. Earth and Planetary Science Letters, 317, 27-43.
(14) Kuvshinov, A., Grayver, A., Toffner-Clausen, L., & Olsen, N. (2021). Probing 3-D electrical conductivity of the mantle using 6 years of Swarm, CryoSat-2 and observatory magnetic data and exploiting matrix Q-responses approach. Earth, planets and space, 73(1), 1-26.
(15) Kuvshinov, A., Olsen, N., Avdeev, D. B., & Pankratov, O. V. (2002). Electromagnetic induction in the oceans and the anomalous behaviour of coastal C?responses for periods up to 20 days. Geophysical Research Letters, 29(12), 36-31-36-34.
(16) Kuvshinov, A., Sabaka, T., & Olsen, N. (2006). 3-D electromagnetic induction studies using the Swarm constellation: Mapping conductivity anomalies in the Earth′s mantle. Earth, planets and space, 58(4), 417-427.
(17) Liu, L., & Li, S. (2022). Mantle transition zone discontinuities beneath Taiwan and its adjacent areas: Implications for slab subductions. Tectonophysics, 826, 229248.
(18) Lizarralde, D., Chave, A., Hirth, G., & Schultz, A. (1995). Northeastern Pacific mantle conductivity profile from long?period magnetotelluric sounding using Hawaii?to?California submarine cable data. Journal of Geophysical Research: Solid Earth, 100(B9), 17837-17854.
(19) Niehof, J. T., Morley, S. K., Welling, D. T., & Larsen, B. A. (2022). The SpacePy space science package at 12 years. Frontiers in Astronomy and Space Sciences, 9, 1023612.
(20) Olsen, N. (1999). Long-period (30 days–1 year) electromagnetic sounding and the electrical conductivity of the lower mantle beneath Europe. Geophysical Journal International, 138(1), 179-187.
(21) Presnall, C., & Gudfinnsson, G. H. (2005). Carbonate-rich melts in the oceanic low-velocity zone and deep mantle. Special Papers-Geological Society of America, 388, 207.
(22) Puthe, C., & Kuvshinov, A. (2014). Mapping 3-D mantle electrical conductivity from space: a new 3-D inversion scheme based on analysis of matrix Q-responses. Geophysical Journal International, 197(2), 768-784.
(23) Puthe, C., Kuvshinov, A., Khan, A., & Olsen, N. (2015). A new model of Earth′s radial conductivity structure derived from over 10 yr of satellite and observatory magnetic data. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 203(3), 1864-1872.
(24) Quan, W., Liu, X., Zhao, D., & Li, S. (2023). Seismic evidence for slab detachment beneath the Taiwan Orogen. Earth and Planetary Science Letters, 610, 118131.
(25) Schmucker, U. (1987). Substitute conductors for electromagnetic response estimates. Pure and Applied Geophysics, 125(2), 341-367.
(26) Semenov, A., & Kuvshinov, A. (2012). Global 3-D imaging of mantle conductivity based on inversion of observatory C-responses—II. Data analysis and results. Geophysical Journal International, 191(3), 965-992.
(27) Shimizu, H., Koyama, T., & Baba, K. (2009). Three-dimensional geomagnetic response functions for global and semi-global scale induction problems. Geophysical Journal International, 178(1), 123-144.
(28) Shimizu, H., Yoneda, A., Baba, K., Utada, H., & Palshin, N. A. (2011). Sq effect on the electromagnetic response functions in the period range between 104 and 105 s. Geophysical Journal International, 186(1), 193-206.
(29) Shyu, J. B. H., Sieh, K., Chen, Y. G., & Liu, C. S. (2005). Neotectonic architecture of Taiwan and its implications for future large earthquakes. Journal of Geophysical Research: Solid Earth, 110(B8).
(30) Straume, E. O., Gaina, C., Medvedev, S., Hochmuth, K., Gohl, K., Whittaker, J. M., Abdul Fattah, R., Doornenbal, J. C., & Hopper, J. R. (2019). GlobSed: Updated total sediment thickness in the world′s oceans. Geochemistry, Geophysics, Geosystems, 20(4), 1756-1772.
(31) Toyokuni, G., Zhao, D., & Kurata, K. (2022). Whole-mantle tomography of Southeast Asia: New insight into plumes and slabs. Authorea Preprints.
(32) Uyeshima, M., & Schultz, A. (2000). Geoelectromagnetic induction in a heterogeneous sphere: a new three-dimensional forward solver using a conservative staggered-grid finite difference method. Geophysical Journal International, 140(3), 636-650.
(33) Wang, J., Leki?, V., Schmerr, N. C., Gu, Y. J., Guo, Y., & Lin, R. (2024). Mesozoic intraoceanic subduction shaped the lower mantle beneath the East Pacific Rise. Science Advances, 10(39), eado1219.
(34) Xia, S., Zhao, D., Sun, J., & Huang, H. (2016). Teleseismic imaging of the mantle beneath southernmost China: New insights into the Hainan plume. Gondwana Research, 36, 46-56.
(35) Yao, H., Ren, Z., Tang, J., & Zhang, K. (2022). A multi?resolution finite?element approach for global electromagnetic induction modeling with application to southeast China coastal geomagnetic observatory studies. Journal of Geophysical Research: Solid Earth, 127(8), e2022JB024659.
(36) Yoshino, T., Manthilake, G., Matsuzaki, T., & Katsura, T. (2008). Dry mantle transition zone inferred from the conductivity of wadsleyite and ringwoodite. Nature, 451(7176), 326-329.
(37) Zhao, D., Toyokuni, G., & Kurata, K. (2021). Deep mantle structure and origin of Cenozoic intraplate volcanoes in Indochina, Hainan and South China Sea. Geophysical Journal International, 225(1), 572-588. |