博碩士論文 109682001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.225.34.193
姓名 林鼎竣(Ding-Jiun Lin)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 運用地磁響應測深探討臺灣深部電性構造
(Utilizing Geomagnetic Depth Sounding to Analyze Deep Structure Electrical Conductivity Beneath Taiwan)
相關論文
★ 運用地電阻方法探測台中盆地主要水文地質架構★ 運用自行開發之同時序多頻道大地電磁儀於台中大坑地區地下構造之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-30以後開放)
摘要(中) 本研究的主要目的是利用地磁響應測深法(Geomagnetic Depth Sounding, GDS)分析來自地磁觀測站的長時序資料研究台灣下方的深部結構來估算C響應函數。GDS主要為分析垂直向量場與水平向量場在不同自然磁場周期下的響應變化。在本研究中,外部地磁場的空間變化可以用簡易球諧函數P01來充分描述。我們分析臺灣中央氣象署提供的七個地磁觀測站的地磁資料,並使用了三個世界資料中心(Word Data Center, WDC) 的國際地磁站,計算周期範圍為1.3至21.3天的C響應函數。由於C響應函數受海水和海洋沉積物引起的海洋感應效應的影響,尤其鄰近海邊的測站。因此我們應用3-D 球型正演模型,加入具有橫向異質性導電層的情況來代表海洋及海洋沈積物分佈的外層模型,推導全球平均的1-D導電結構模型,並將校正因子應對海洋感應效應的影響。正演模型顯示,對於外層模型的不同網格解析度(0.1°×0.1°和1°×1°),越密集的網格對於區域性研究能夠提供更多變化細節。此外,為了避免過度或低估模擬結果,我們發現以100 Ohm·m在外層模型中作為陸地的電阻率值能與顯示與觀測值相符。將海洋效應進行修正後,C響應被轉換為表觀電阻率,並進行1-D反演以推導導電率-深度剖面。台灣的1-D導電模型在300至900公里深,導電率從0.06 S/m隨深度增加至0.86 S/m。在上部地函,台灣的平均導電率較全球平均高,推測主要受到板塊隱沒影響,而下部地函中,導電率與全球模型相符,顯示出台灣在下部地函沒有明顯的異質性。對於未來研究,需要探討更深的下部地函的導電模型並加入海底電磁法的資料分析。
摘要(英) The main objective of this research is to utilize Geomagnetic Depth Sounding (GDS) for estimating C-response using data from geomagnetic observatories to study the deep structure beneath Taiwan. GDS involves analyzing variations between the vertical vector field and horizontal vector field responses to different periods of natural magnetic fields. In our study, spatial variations of the external geomagnetic field can be adequately described by a simple spherical harmonic, P01. We analyzed geomagnetic data from seven geomagnetic observatories, provided by the Central Weather Administration of Taiwan, and three international stations from the World Data Center to calculate C-responses over periods ranging from 1.3-21.3 days. The C-responses at each site are influenced by the oceanic induction effect caused by the seawater and oceanic sediment. Therefore, we applied a correction factor based on the ratio between C-responses, simulated through a global average 1-D conductivity structure model, with and without a 3-D surface laterally heterogeneous surface conductance layer expressing the ocean distribution. Comparison of different mesh resolutions (0.1°×0.1° and 1°×1°) for the shell model indicated that a denser mesh provides better detail of induction variation. To avoid over- or underestimating the simulated C-response, we used a continental resistivity value of 100 Ohm.m in the shell model. After correcting the response for oceanic effects, the C-responses were converted to apparent resistivity, and 1-D inversions was performed to derive the conductivity-depth profiles. The resulting 1-D conductivity model for Taiwan ranges from 0.06 to 0.86 S/m between 300 km and 900 km depth. In the lower mantle, the conductivity converges with global models, indicating less heterogeneity beneath Taiwan. However, further investigation of require the conductivity model in further deeper mantle and derived with 3-D inversion.
關鍵字(中) ★ 地磁響應測深
★ C響應
★ 地函
★ 導電率
★ 電磁模型
★ 海洋效應
關鍵字(英) ★ Geomagnetic depth sounding
★ C-response
★ Mantle
★ Electrical conductivity
★ Electromagnetic modeling
★ Ocean effect
論文目次 TABLE OF CONTENTS
摘要 i
ABSTRACT ii
ACKNOWLEDGMENTS iii
TABLE OF CONTENTS v
ABBREVATION viii
LIST OF FIGURES ix
LIST OF TABLES xi
CHAPTER I EXORDIUM 1
1.1 Background and Motivation 1
1.2 Research Objectives 3
1.3 Structure of the Dissertation 3
CHAPTER II FOUNDATIONAL CONCEPTS 8
2.1. Overview of Geomagnetic Depth Sounding 8
2.1.1. Basic Principle 8
2.1.2. Derivation of the C-response 11
2.2. Data processing 14
2.2.1. Data acquisition 15
2.2.2. Data resampling and geomagnetic rotation 16
2.2.3. Detiding 17
2.2.4. C-response estimation 19
2.2.5. Ocean effect correction 19
2.2.6. 1-D Inversion 25
CHAPTER III RESULTS 28
3.1. Overview 28
3.2. C-response of Geomagnetic Observatories 28
3.3. Simulation of C-response for Ocean Effect Correction 29
3.4. 1-D Electrical Conductivity Model of Taiwan 34
CHAPTER IV DISCUSSION 38
4.1 Ocean Effect on the C-response 38
4.1.1. Influence of the Model Resolution 38
4.1.2. Comparison of the Simulated C-response Under Different Resistivity of Continent 38
4.2 Electrical Conductivity Distribution 42
4.3 Comparison between Regional and Global 1-D Model 43
4.3.1 Continent to Subduction Zone 43
CHAPTER V CONCLUDING REMARKS 46
5.1. Conclusions 46
5.2. Future Directions 47
5.2.1 Water Content and Temperature Derived from Electrical Conductivity 47
5.2.2 Combination of OBEM and GDS 49
BIBLIOGRAPHY 53
APPENDIX 58
A.1. Determination of the Conductivity Maps in Shell Models. 58
參考文獻 (1) Alken, P., Thebault, E., Beggan, C. D., Amit, H., Aubert, J., Baerenzung, J., Bondar, T., Brown, W., Califf, S., & Chambodut, A. (2021). International geomagnetic reference field: the thirteenth generation. Earth, planets and space, 73(1), 1-25.
(2) Amante, C., & Eakins, B. W. (2009). ETOPO1 arc-minute global relief model: procedures, data sources and analysis.
(3) Baba, K. (2005). Electrical structure in marine tectonic settings. Surveys in Geophysics, 26, 701-731.
(4) Baba, K., Utada, H., Goto, T.-n., Kasaya, T., Shimizu, H., & Tada, N. (2010). Electrical conductivity imaging of the Philippine Sea upper mantle using seafloor magnetotelluric data. Physics of the Earth and Planetary Interiors, 183(1-2), 44-62.
(5) Banks, R. (1969). Geomagnetic variations and the electrical conductivity of the upper mantle. Geophysical Journal International, 17(5), 457-487.
(6) Chave, A. D., & Thomson, D. J. (2004). Bounded influence magnetotelluric response function estimation. Geophysical Journal International, 157(3), 988-1006.
(7) Constable, C., & Constable, S. (2023). A grand spectrum of the geomagnetic field. Physics of the Earth and Planetary Interiors, 344, 107090.
(8) Constable, S. C., Parker, R. L., & Constable, C. G. (1987). Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52(3), 289-300.
(9) Fan, J., & Zhao, D. (2021). P?wave tomography and azimuthal anisotropy of the Manila?Taiwan?southern Ryukyu region. Tectonics, 40(2), e2020TC006262.
(10) Grayver, A. V. (2021). Global 3?D electrical conductivity model of the world ocean and marine sediments. Geochemistry, Geophysics, Geosystems, 22(9), e2021GC009950.
(11) Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., & Smoczyk, G. M. (2018). Slab2, a comprehensive subduction zone geometry model. Science, 362(6410), 58-61.
(12) Hirschmann, M. M. (2010). Partial melt in the oceanic low velocity zone. Physics of the Earth and Planetary Interiors, 179(1-2), 60-71.
(13) Khan, A., & Shankland, T. (2012). A geophysical perspective on mantle water content and melting: inverting electromagnetic sounding data using laboratory-based electrical conductivity profiles. Earth and Planetary Science Letters, 317, 27-43.
(14) Kuvshinov, A., Grayver, A., Toffner-Clausen, L., & Olsen, N. (2021). Probing 3-D electrical conductivity of the mantle using 6 years of Swarm, CryoSat-2 and observatory magnetic data and exploiting matrix Q-responses approach. Earth, planets and space, 73(1), 1-26.
(15) Kuvshinov, A., Olsen, N., Avdeev, D. B., & Pankratov, O. V. (2002). Electromagnetic induction in the oceans and the anomalous behaviour of coastal C?responses for periods up to 20 days. Geophysical Research Letters, 29(12), 36-31-36-34.
(16) Kuvshinov, A., Sabaka, T., & Olsen, N. (2006). 3-D electromagnetic induction studies using the Swarm constellation: Mapping conductivity anomalies in the Earth′s mantle. Earth, planets and space, 58(4), 417-427.
(17) Liu, L., & Li, S. (2022). Mantle transition zone discontinuities beneath Taiwan and its adjacent areas: Implications for slab subductions. Tectonophysics, 826, 229248.
(18) Lizarralde, D., Chave, A., Hirth, G., & Schultz, A. (1995). Northeastern Pacific mantle conductivity profile from long?period magnetotelluric sounding using Hawaii?to?California submarine cable data. Journal of Geophysical Research: Solid Earth, 100(B9), 17837-17854.
(19) Niehof, J. T., Morley, S. K., Welling, D. T., & Larsen, B. A. (2022). The SpacePy space science package at 12 years. Frontiers in Astronomy and Space Sciences, 9, 1023612.
(20) Olsen, N. (1999). Long-period (30 days–1 year) electromagnetic sounding and the electrical conductivity of the lower mantle beneath Europe. Geophysical Journal International, 138(1), 179-187.
(21) Presnall, C., & Gudfinnsson, G. H. (2005). Carbonate-rich melts in the oceanic low-velocity zone and deep mantle. Special Papers-Geological Society of America, 388, 207.
(22) Puthe, C., & Kuvshinov, A. (2014). Mapping 3-D mantle electrical conductivity from space: a new 3-D inversion scheme based on analysis of matrix Q-responses. Geophysical Journal International, 197(2), 768-784.
(23) Puthe, C., Kuvshinov, A., Khan, A., & Olsen, N. (2015). A new model of Earth′s radial conductivity structure derived from over 10 yr of satellite and observatory magnetic data. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 203(3), 1864-1872.
(24) Quan, W., Liu, X., Zhao, D., & Li, S. (2023). Seismic evidence for slab detachment beneath the Taiwan Orogen. Earth and Planetary Science Letters, 610, 118131.
(25) Schmucker, U. (1987). Substitute conductors for electromagnetic response estimates. Pure and Applied Geophysics, 125(2), 341-367.
(26) Semenov, A., & Kuvshinov, A. (2012). Global 3-D imaging of mantle conductivity based on inversion of observatory C-responses—II. Data analysis and results. Geophysical Journal International, 191(3), 965-992.
(27) Shimizu, H., Koyama, T., & Baba, K. (2009). Three-dimensional geomagnetic response functions for global and semi-global scale induction problems. Geophysical Journal International, 178(1), 123-144.
(28) Shimizu, H., Yoneda, A., Baba, K., Utada, H., & Palshin, N. A. (2011). Sq effect on the electromagnetic response functions in the period range between 104 and 105 s. Geophysical Journal International, 186(1), 193-206.
(29) Shyu, J. B. H., Sieh, K., Chen, Y. G., & Liu, C. S. (2005). Neotectonic architecture of Taiwan and its implications for future large earthquakes. Journal of Geophysical Research: Solid Earth, 110(B8).
(30) Straume, E. O., Gaina, C., Medvedev, S., Hochmuth, K., Gohl, K., Whittaker, J. M., Abdul Fattah, R., Doornenbal, J. C., & Hopper, J. R. (2019). GlobSed: Updated total sediment thickness in the world′s oceans. Geochemistry, Geophysics, Geosystems, 20(4), 1756-1772.
(31) Toyokuni, G., Zhao, D., & Kurata, K. (2022). Whole-mantle tomography of Southeast Asia: New insight into plumes and slabs. Authorea Preprints.
(32) Uyeshima, M., & Schultz, A. (2000). Geoelectromagnetic induction in a heterogeneous sphere: a new three-dimensional forward solver using a conservative staggered-grid finite difference method. Geophysical Journal International, 140(3), 636-650.
(33) Wang, J., Leki?, V., Schmerr, N. C., Gu, Y. J., Guo, Y., & Lin, R. (2024). Mesozoic intraoceanic subduction shaped the lower mantle beneath the East Pacific Rise. Science Advances, 10(39), eado1219.
(34) Xia, S., Zhao, D., Sun, J., & Huang, H. (2016). Teleseismic imaging of the mantle beneath southernmost China: New insights into the Hainan plume. Gondwana Research, 36, 46-56.
(35) Yao, H., Ren, Z., Tang, J., & Zhang, K. (2022). A multi?resolution finite?element approach for global electromagnetic induction modeling with application to southeast China coastal geomagnetic observatory studies. Journal of Geophysical Research: Solid Earth, 127(8), e2022JB024659.
(36) Yoshino, T., Manthilake, G., Matsuzaki, T., & Katsura, T. (2008). Dry mantle transition zone inferred from the conductivity of wadsleyite and ringwoodite. Nature, 451(7176), 326-329.
(37) Zhao, D., Toyokuni, G., & Kurata, K. (2021). Deep mantle structure and origin of Cenozoic intraplate volcanoes in Indochina, Hainan and South China Sea. Geophysical Journal International, 225(1), 572-588.
指導教授 張?瑜(Ping-Yu Chang) 審核日期 2024-11-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明