博碩士論文 111329022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:18.117.73.33
姓名 王秉祥(Bing-Shiang Wang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 多層結構鎵奈米粒子/聚合物複合材料之介電性質探討
(Investigation of the Dielectric Properties of Multilayer Gallium Nanoparticle/Polymer Composites)
相關論文
★ 開發鎵奈米粒子沉浸於可拉伸聚合物之可調式電漿子結構★ 利用等效差分時域(FDTD)模擬分析自組裝鎵奈米顆粒嵌入可拉伸彈性材料光學性質探討
★ 彈性基板嵌入金屬奈米粒子之光-物質耦合性質之探討★ 以反應式濺鍍前驅物應用於兩階段式成長二硫化鉬薄膜
★ 無鉛銲料錫銀銦與銅基板的界面反應★ 高度反射性銀/鑭雙層p型氮化鎵歐姆接觸之性質研究
★ 以電子迴旋共振化學氣相沉積氫化非晶矽薄膜之熱處理結晶化研究★ 研究奈晶矽與非晶矽之多層結構經熱退火處理後之性質及其在PIN太陽能電池吸收層中之應用
★ 利用陽極氧化鋁模板製備銀奈米結構陣列於玻璃基板★ 利用電子迴旋共振化學氣相沉積法沉積氫化非晶矽薄膜探討其應力與結晶行為
★ 高反射低電阻銀鑭合金P型氮化鎵歐姆接觸之研究★ 陽極氧化鋁模板製備銀奈米粒子陣列及其表面增強拉曼散射效應之應用
★ 製備磷摻雜奈米矽晶氧化矽薄膜及其於太陽能電池之應用★ 陽極氧化鋁模板製備銀奈米粒子陣列及其光學性質
★ 以電流控制方式快速製備孔洞間距400至500奈米之陽極氧化鋁模板★ 利用濕式氧化法製備氧化矽薄膜應用於矽晶太陽能電池表面鈍化技術之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-1以後開放)
摘要(中) 在先前的實驗中,實驗室已在適當的製程條件下利用真空熱蒸鍍機(Thermal coater)將鎵金屬奈米粒子蒸鍍於經過固化處理的聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)塊材的近表面之下。而在本次實驗中進一步將未固化的PDMS與己烷(Hexane)按特定比例混合,達到稀釋PDMS的目的。此混合物隨後被均勻塗佈於矽基板上,經過加熱處理後固化,形成奈微級厚度的PDMS薄膜,同樣利用熱蒸鍍的方式將鎵奈米粒子沉積於薄膜當中,通過重複這一系列步驟,並根據PDMS塗佈的不同薄膜厚度,成功製備了具有多層結構的超薄鎵奈米粒子/聚合物複合材料。本研究透過掃描式(SEM)對複合材料的多層結構進行觀察,分析其表面和截面的形貌特徵。接著使用精密數字電橋(LCR-meter)量測介電常數,另外用自製材料按壓試驗載具,對超薄複合材料施加微小應力,從而觀察和分析材料在外部應力作用下的電容變化(?C/C0)。
實驗結果顯示,將Hexane與未固化的PDMS按70:1的比例混合後,可製備出厚度僅為96奈米的PDMS薄層,並以此條件製備的鎵奈米粒子/PDMS複合材料為3層結構的情況中,在1 kHz頻率下其介電常數表現為12.06;而當鎵奈米粒子的層數增至12層時,介電常數進一步提升至15.09,相比純PDMS的介電常數高出4.5倍。進一步進行的壓力測試發現,使用70:1和10:1的Hexane/PDMS比例製備的12層結構鎵奈米粒子/PDMS複合材料,在大約2.4 kPa的壓力下,電容變化率分別為0.079和0.013。這顯示在鎵粒子層之層間距較窄(即層間PDMS較薄)的情況下,複合材料不僅展示出更高的介電常數,同時在相對壓力下也顯示出更高的電容變化率。
摘要(英) In our previous experiments, we used a thermal coater under optimal conditions to deposit gallium nanoparticles beneath the surface of cured polydimethylsiloxane (PDMS). We advanced this process by mixing uncured PDMS with hexane in a specified ratio, thinning the PDMS for uniform coating on a silicon substrate. After heating and curing, this created nanometer-thick PDMS films, into which gallium nanoparticles were deposited through thermal evaporation. Repeating these steps with varied film thicknesses enabled the successful fabrication of ultra-thin, multilayer gallium nanoparticle/polymer composites. These composites were analyzed using Scanning Electron Microscopy (SEM) and to study their multilayer structures and morphological characteristics. We measured the dielectric constant with a precision LCR meter and applied minimal stress using a custom press test apparatus to observe and analyze capacitance changes (?C/C0) under stress. Experimental results indicate that by mixing Hexane with uncured PDMS at a ratio of 70:1, we achieved the thinnest PDMS layer of 96 nanometers. Using this preparation, a three-layer gallium nanoparticle/PDMS composite exhibited a dielectric constant of 12.06 at 1 kHz. Increasing the layers to twelve enhanced the constant to 15.09, 4.5 times that of pure PDMS. Further pressure tests on these 12-layer composites, prepared with 70:1 and 10:1 Hexane/PDMS ratios, showed capacitance change rates of 0.079 and 0.013 under approximately 2.4 kPa. These findings demonstrate that with narrower interlayer spacing (thinner PDMS layers), the composites not only show higher dielectric constants but also greater capacitance change rates under pressure.
關鍵字(中) ★ 鎵奈米粒子
★ 彈性聚合物基板
★ 奈米複合材料
★ 介電常數
★ 應變之電容響應
關鍵字(英) ★ gallium nanoparticles
★ elastic polymer substrates
★ nanocomposite materials
★ dielectric constant
★ strain-dependent capacitive response
論文目次 目錄
摘要..................................................I
ABSTRACT.............................................II
誌謝.................................................III
目錄..................................................IV
圖目錄................................................VI
表目錄................................................IX
第一章 緒論............................................1
第二章 文獻回顧.........................................2
2-1 電容式壓力感測器簡介...............................2
2-1-1 電容式壓力感測器之工作原理.........................2
2-1-2 電容式壓力感測器之基材............................4
2-1-3 提升柔性電容式壓力感測器的性能.....................5
2-2 複合材料介電原理...................................8
2-2-1 材料的極化機制....................................8
2-2-2 介電損耗.........................................9
2-2-3 複合材料填充物界面的作用..........................12
2-3 金屬-高分子複合材料...............................15
2-3-1 金屬-高分子複合材料填充物.........................15
2-3-2 液態金屬填充物之特性..............................16
2-3-3 液態金屬-高分子複合材料於電容式壓力感測器之發展.....19
第三章 研究方法........................................24
3-1 研究動機與實驗架構................................24
3-2 實驗材料與設備....................................25
3-3 實驗步驟.........................................26
第四章 研究結果與討論..................................28
4-1 鎵奈米粒子複合材料之結構與介電性質探討..............28
4-1-1 多層鎵奈米粒子/PDMS複合材料之結構與表面形貌.......28
4-1-2 鎵奈米粒子層之層間距對於介電性質的影響............33
4-1-3 不同層數對於介電性質的影響.......................38
4-2 鎵奈米粒子複合材料應用於電容式壓力感測器之性能評估...43
4-2-1 壓力測試下之電容變化率...........................43
4-2-2 壓力測試期間之抗漏電性能評估......................47
第五章 結論...........................................50
參考文獻..............................................51
參考文獻 1. Guo, Y., Gao, S., Yue, W., Zhang, C. & Li, Y. Anodized Aluminum Oxide-Assisted Low-Cost Flexible Capacitive Pressure Sensors Based on Double-Sided Nanopillars by a Facile Fabrication Method. ACS Appl Mater Interfaces 11, 48594-48603 (2019).
2. Tang, X., Wu, C. et al. Multilevel Microstructured Flexible Pressure Sensors with Ultrahigh Sensitivity and Ultrawide Pressure Range for Versatile Electronic Skins. Small 15, e1804559 (2019).
3. Han, Z., Li, H. et al. Ultralow-Cost, Highly Sensitive, and Flexible Pressure Sensors Based on Carbon Black and Airlaid Paper for Wearable Electronics. ACS Appl Mater Interfaces 11, 33370-33379 (2019).
4. He, J., Zhang, Y. et al. Recent advances of wearable and flexible piezoresistivity pressure sensor devices and its future prospects. Journal of Materiomics 6, 86-101 (2020).
5. Chen, W. & Yan, X. Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: A review. Journal of Materials Science & Technology 43, 175-188 (2020).
6. Haque, A.B.M.T., Tutika, R., Byrum, R.L. & Bartlett, M.D. Programmable Liquid Metal Microstructures for Multifunctional Soft Thermal Composites. Advanced Functional Materials 30 (2020).
7. Bartlett, M.D., Fassler, A. et al. Stretchable, High-k Dielectric Elastomers through Liquid-Metal Inclusions. Adv Mater 28, 3726-3731 (2016).
8. Kazem, N., Hellebrekers, T. & Majidi, C. Soft Multifunctional Composites and Emulsions with Liquid Metals. Adv Mater 29 (2017).
9. Guo, Y., Wei, X. et al. Recent Advances in Carbon Material?Based Multifunctional Sensors and Their Applications in Electronic Skin Systems. Advanced Functional Materials 31 (2021).
10. Li, R., Zhou, Q. et al. Research progress of flexible capacitive pressure sensor for sensitivity enhancement approaches. Sensors and Actuators A: Physical 321 (2021).
11. Li, J., Bao, R., Tao, J., Peng, Y. & Pan, C. Recent progress in flexible pressure sensor arrays: from design to applications. Journal of Materials Chemistry C 6, 11878-11892 (2018).
12. Liu, F., Han, F. et al. An Omni-Healable and Highly Sensitive Capacitive Pressure Sensor with Microarray Structure. Chemistry 24, 16823-16832 (2018).
13. Wang, H., Li, Z. et al. Flexible capacitive pressure sensors for wearable electronics. Journal of Materials Chemistry C 10, 1594-1605 (2022).
14. Se Dong, M., Yonghyeon, Y. & Hangsik, S. Simplified Structural Textile Respiration Sensor Based on Capacitive Pressure Sensing Method. IEEE Sensors Journal 14, 3245-3251 (2014).
15. Qin, D., Xia, Y. & Whitesides, G.M. Soft lithography for micro- and nanoscale patterning. Nat Protoc 5, 491-502 (2010).
16. Serrano-Aroca, A. & Deb, S. in Acrylate Polymers for Advanced Applications (2020).
17. Datta, J. & Kasprzyk, P. Thermoplastic polyurethanes derived from petrochemical or renewable resources: A comprehensive review. Polymer Engineering & Science 58 (2017).
18. Amjadi, M., Kyung, K.U., Park, I. & Sitti, M. Stretchable, Skin?Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review. Advanced Functional Materials 26, 1678-1698 (2016).
19. Zhang, S.L., Xin, Z.X., Zhang, Z.X. & Kim, J.K. Characterization of the properties of thermoplastic elastomers containing waste rubber tire powder. Waste Manag 29, 1480-1485 (2009).
20. Xu, F., Li, X. et al. Recent Developments for Flexible Pressure Sensors: A Review. Micromachines (Basel) 9 (2018).
21. Mannsfeld, S.C., Tee, B.C. et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater 9, 859-864 (2010).
22. Dinh, T.H.N., Martincic, E., Dufour-Gergam, E. & Joubert, P.Y. Mechanical Characterization of PDMS Films for the Optimization of Polymer Based Flexible Capacitive Pressure Microsensors. Journal of Sensors 2017, 1-9 (2017).
23. Chen, S., Zhuo, B. & Guo, X. Large Area One-Step Facile Processing of Microstructured Elastomeric Dielectric Film for High Sensitivity and Durable Sensing over Wide Pressure Range. ACS Appl Mater Interfaces 8, 20364-20370 (2016).
24. D. Kwon, T.-I.L., M.S. Kim, S. Kim, T.-S. Kim, I. Park in 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) (IEEE, Anchorage, AK, USA; 2015).
25. Shi, R., Lou, Z., Chen, S. & Shen, G. Flexible and transparent capacitive pressure sensor with patterned microstructured composite rubber dielectric for wearable touch keyboard application. Science China Materials 61, 1587-1595 (2018).
26. Mao, S. in Capacitor Fundamentals Part 4 – Dielectric Polarization (Knowles Precision Devices; 2019).
27. Yan, F., Shi, Y. et al. Optimization of polarization and electric field of bismuth ferrite-based ceramics for capacitor applications. Chemical Engineering Journal 417 (2021).
28. Psarras, G.C. in Dielectric Polymer Materials for High-Density Energy Storage 11-57 (2018).
29. Dang, Z.-M., Yuan, J.-K. et al. High-permittivity polymer nanocomposites: Influence of interface on dielectric properties. Journal of Advanced Dielectrics 03 (2013).
30. R. Tamura, E.L., T. Manaka and M. Iwamoto Analysis of pentacene field effect transistor as a Maxwell-Wagner effect element. J. Appl. Phys. 100 (2006).
31. Fan, Y., Hang, Z. et al. Frequency-dependent electrical properties of microscale self-enclosed ionic liquid enhanced soft composites. Soft Matter 19, 1913-1929 (2023).
32. Hashemi, R. & Weng, G.J. A theoretical treatment of graphene nanocomposites with percolation threshold, tunneling-assisted conductivity and microcapacitor effect in AC and DC electrical settings. Carbon 96, 474-490 (2016).
33. Toshikatsu Tanaka, M.K., Norikazu Fuse and Yoshimichi Ohki Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Transactions on Dielectrics and Electrical Insulation 12, 669-681 (2005).
34. Lewis, T.J. Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE Transactions on Dielectrics and Electrical Insulation 11, 739-753 (2004).
35. Thakur, Y., Zhang, T. et al. Enhancement of the dielectric response in polymer nanocomposites with low dielectric constant fillers. Nanoscale 9, 10992-10997 (2017).
36. Tomer, V., Polizos, G., Randall, C.A. & Manias, E. Polyethylene nanocomposite dielectrics: Implications of nanofiller orientation on high field properties and energy storage. Journal of Applied Physics 109 (2011).
37. Li, Q., Han, K., Gadinski, M.R., Zhang, G. & Wang, Q. High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites. Adv Mater 26, 6244-6249 (2014).
38. Pillai, C.M.P.K.C. Pyroelectric Behavior in Barium Titante/Polyvintlidene Fluoride Composites. IEEE Transactions on Electrical Insulation EI-21, 501 - 504 (1986).
39. Nan, C.-W. Physics of Iinhomogeneous Inorganic Materials. Progress in Materials Science 37, 1-116 (1993).
40. Zhang, L., Wang, W., Wang, X., Bass, P. & Cheng, Z.Y. Metal-polymer nanocomposites with high percolation threshold and high dielectric constant. Applied Physics Letters 103 (2013).
41. Mu, C., Li, J. et al. Enhanced Piezocapacitive Effect in CaCu3Ti4O12–Polydimethylsiloxane Composited Sponge for Ultrasensitive Flexible Capacitive Sensor. ACS Applied Nano Materials 1, 274-283 (2017).
42. Huang, C., Wang, X. et al. Soft and Stretchable Liquid Metal-Elastomer Composite for Wearable Electronics. ACS Appl Mater Interfaces 14, 38196-38204 (2022).
43. Zhang, Y., Liu, S. et al. Highly Stretchable and Sensitive Pressure Sensor Array Based on Icicle-Shaped Liquid Metal Film Electrodes. ACS Appl Mater Interfaces 12, 27961-27970 (2020).
44. Yang, J., Kwon, K.Y. et al. Skin?Inspired Capacitive Stress Sensor with Large Dynamic Range via Bilayer Liquid Metal Elastomers. Advanced Materials Technologies 7 (2021).
45. Byun, S.-H., Sim, J.-Y. et al. Mechanically transformative electronics, sensors,and implantable devices. Science Advanced 5 (2019).
46. Zhixing Zhang, L.T., Can Chen, Huitao Yu, Huihui Bai, Ling Wang, Mengmeng Qin, Yiyu Feng, Wei Feng Liquid metal-created macroporous composite hydrogels with self-healing ability and multiple sensations as artificial flexible sensors. J. Mater. Chem. A 9, 875-883 (2021).
47. Munirathinam, K., Kwon, K., Park, J. & Lee, D.-W. Liquid dielectric layer-based microfluidic capacitive sensor for wireless pressure monitoring. Sensors and Actuators A: Physical 357 (2023).
48. 高永菱,「鎵奈米粒子蒸鍍於聚合物之自組裝機制探討及其電漿子光學性質研究」
,國立中央大學,碩士論文,民國111年06月。
49. Jadav, G.L., Aswal, V.K., Bhatt, H., Chaudhari, J.C. & Singh, P.S. Influence of film thickness on the structure and properties of PDMS membrane. Journal of Membrane Science 415-416, 624-634 (2012).
50. Nan, C.-W. Effective-medium theory of piezoelectric composites. Journal of Applied Physics 76, 1155-1163 (1994).
51. Feng, Y., Li, M.-L. et al. Polymer/metal multi-layers structured composites: A route to high dielectric constant and suppressed dielectric loss. Applied Physics Letters 112 (2018).
52. Gao, W., Zheng, Y., Shen, J. & Guo, S. Electrical properties of polypropylene-based composites controlled by multilayered distribution of conductive particles. ACS Appl Mater Interfaces 7, 1541-1549 (2015).
53. Hoang, A., Faruqe, O., Bury, E., Park, C. & Koh, A. Homogeneity of liquid metal polymer composites: impact on mechanical, electrical, and sensing behavior. Soft Matter 19, 7202-7215 (2023).
54. Deepa, K.S., Sebastian, M.T. & James, J. Effect of interparticle distance and interfacial area on the properties of insulator-conductor composites. Applied Physics Letters 91 (2007).
指導教授 陳一塵(I-Chen Chen) 審核日期 2024-10-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明