博碩士論文 104886001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.222.109.133
姓名 何心如(HSIN-JU HO)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 基於行動裝置的急性中風預後分析方法研究
(Development and Validation of Mobile-Based Prognostic Analysis Methodologies for Acute Stroke Outcomes)
相關論文
★ 細菌物種基因體中非編碼小片段核糖核酸之預測★ 從年齡動態網路探討疾病盛行率
★ 藉由比較基因表現資料研究次世代定序與晶片技術分析差異★ 啟動子甲基化與對應之基因表現微陣列資訊整合分析
★ 乾燥綜合症與非病毒型肝炎之相關因子分析★ 氣候變遷對人類疾病網路造成衝擊
★ 台北和中壢地區不孕症分佈與共病探討★ 探討台灣的門診疾病與環境空氣品質的濃度變化之相關性
★ 以地區醫院病例探討桃園之地域族群與疾病之差別★ 桃園地區之區域與疾病盛行率之關聯
★ CyTOF之生物標記篩選與分析★ 透明細胞腎細胞癌質譜流式細胞儀資料分析與視覺化
★ 使用支持向量機預測蛋白質醣基化位置★ 使用基因表現資料預測基因轉錄調控網路
★ RNA Riboswitch搜尋系統之設計與實作★ 人類疾病差異表現基因與調控網路之整合系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-12-11以後開放)
摘要(中) 中風是一場改變人生的事件,全球每年有數百萬人因此受影響,留下身體機能的種種限制,使患者難以恢復自主生活,給家庭和社區造成負擔。中風不僅伴隨高死亡率,對倖存患者而言,還意味必須面對漫長的復健之路。雖然復健已證明有助於恢復身體功能,但這段復健之路往往充滿挑戰。現代復健設備和技術不斷進步,但在可及性、經濟成本及療程強度仍是一大難題。為了解決這個問題,本研究利用行動裝置復健 (Wearable Device-Assisted Rehabilitation, WEAR) 平台配備了行動裝置感測器與智慧型手機應用程式,可透過該平台連接網絡伺服器提供的介面進行即時的動作追蹤和回饋,讓醫護人員能夠遠程監控,使患者在臨床與家庭環境中都能參與復健活動,以增強中風後復健康復效果,協助中風患者實現復健目標。我們的研究目標在於探索此行動裝置平台與傳統復健療法結合後,能否讓中風患者在復健過程中獲得更好的療效並提高其接受度,使高效的復健成為可能。我們邀請了127位急性中風患者參與一項為期90天的臨床研究,這些患者在發病12周內,隨機分成兩組,一組對照組,僅接受傳統式復健,另一組穿戴組,接受WEAR 平台結合傳統復健治療。我們測量每位患者主要的恢復成效,包含第90天的modified Rankin Scale (mRS) 分數變化,並加入巴氏量表,評估患者在日常生活活動、平衡和運動功能方面的細微進展。我們的研究結果顯示:兩組患者在第90天均顯示顯著的恢復,但穿戴組表現更為突出,其mRS得分顯著改善。這不僅僅是功能上的進步,更是賦權的過程。基於統一科技接受與使用理論 (Unified Theory of Acceptance and Use of Technology) 的問卷調查顯示,穿戴組患者在社會影響下更具動力,並逐漸接受使用科技進行復健。在研究期間發現,穿戴組在效能期望和努力期望上也有顯著提升,顯示該技術整合不僅可行且受到歡迎。對中風患者來說,復健是一條充滿挑戰和不確定性的旅程。本研究結果顯示,WEAR平台作為傳統療法的輔助,能夠提升復健體驗,提供更個人化且持續的復健方案,適應不同的環境與患者需求。此系統不僅支持功能性恢復,更提供了一個具成本效益的可持續照護模式,有助於縮小復健潛力與現實可及性之間的差距,為中風後復健邁向更具包容性的未來鋪路。
摘要(英) Stroke represent a life-altering medical condition affecting millions annually, resulting in substantial physical limitations that compromise survivors’ independence. In the journey to regain functionality, rehabilitation emerges as a beacon of hope. Yet, access to quality rehabilitation is not always guaranteed, especially when obstacles like socioeconomic factors and limited medical resources stand in the way. This study introduces an innovative solution: a wearable device-assisted rehabilitation (WEAR) platform, designed to empower stroke survivors through a blend of advanced technology and conventional therapy. The investigation aimed to evaluate the effectiveness of incorporating this wearable platform into conventional rehabilitation protocols for enhancing recovery experience and outcomes among stroke survivors, making effective rehabilitation more accessible and accepted.
The WEAR platform facilitates real-time interaction between participants and rehabilitation protocols. Equipped with sensors and an application embedded in smartphones, this platform connects to a web server where medical staff can monitor and guide each step of a participant′s recovery journey. This randomized controlled trial enrolled 127 acute stroke survivors within 12 weeks post-onset for a 90-day intervention period. Participants were randomly assigned to either the wearable group (WG), combining WEAR with conventional rehabilitation, or the control group (CG), receiving only traditional rehabilitation. Primary recovery outcomes, including changes in modified Rankin Scale (mRS) scores at day 90 (D90), along with secondary measures such as the Barthel Index and Functional Independence Measure, capturing the nuanced shifts in balance and motor ability.
Our findings painted a hopeful picture: both groups showed significant recovery at D90, but the WG group surpassed expectations, demonstrating greater improvement in mRS scores. This wasn’t just a story of functional gains; it was about empowerment. Surveys using the Unified Theory of Acceptance and Use of Technology (UTAUT) revealed that participants in WG felt more motivated, supported by social influence, and increasingly open to using technology in their rehabilitation. At follow-up intervals (D30 and D90), the wearable group also saw notable gains in performance expectancy and effort expectancy, suggesting that this integration of technology was not only feasible but welcomed. The cross-sectional questionnaire survey revealed significant higher scores Social Influence (SI) and Behavior Intention scores in WG than CG. Follow-up survey in WG demonstrated significantly increasing Performance Expectancy, Effort Expectancy, and Facilitating Conditions scores and insignificantly increasing SI and BI scores at D30 and D90, respectively.
For stroke survivors, rehabilitation is a journey, often filled with challenges and uncertainties. This study suggests that the WEAR platform, as a companion to conventional therapy, could enhance the recovery experience, providing more personalized and continuous rehabilitation that adapts to various settings and participant needs. This platform not only supports functional recovery but offers a sustainable, cost-effective model of care that may help bridge the gap between rehabilitation potential and real-world accessibility, making strides toward a more inclusive approach to post-stroke recovery.
關鍵字(中) ★ 中風
★ 復健
★ 隨機臨床實驗
★ 客製化手機應用程式
★ 行動裝置輔助復健平台
★ 功 能性恢復
關鍵字(英) ★ Stroke
★ Rehabilitation
★ Randomized Controlled Trial
★ Customized Application
★ Wearable Rehabilitation Platform
★ Functional Recovery
論文目次 Table of Contents
中文摘要 i
Abstract iii
致謝 v
Table of Contents vi
List of Figures ix
List of Tables x
Chapter 1 Introduction 1
1-1 Background of Stroke 1
1-2 The Use of Application in Clinical 2
1-3 Related Works 4
1-4 Research Goal 5
Chapter 2 Platform Architecture 7
2-1 Mobility Rehabilitation Platform 7
2-1-1 Rehabilitation APP on Smartphone 8
2-1-2 Rehabilitation APP on Smartwatch 12
2-2 Motion Capture and Assessment 12
2-3 Server for Record Tracking at Home 14
2-4 Summary 16
Chapter 3 Preparation for Implementation of Rehabilitation Assistance Platform 19
3-1 W-Stroke Care APP 19
3-1-1 Clinical Implement by Activities 20
3-1-2 Tracking Rehabilitation Activity Records 23
3-1-3 W-Stroke Care APP of e-Book 24
3-1-4 Risk Factors Assessment for Stroke 26
3-2 Clinical Procedure and Actigraphy 27
Chapter 4 Clinical Implementation of the Rehabilitation Assistance Platform 30
4-1 Clinical Trial Design 30
4-1-1 Ethical Statement 30
4-1-2 Participants Recruitment 31
4-1-3 Implement W-Stroke Care APP 32
4-1-4 Implementation of Rehabilitation Programs 34
4-1-5 Acceptance of WEAR Platform 36
4-2 Data Collection 36
4-2-1 Collection of Clinical Information 36
4-2-2 Retention of Data 37
4-2-3 Data Pre-processing and Preparation 37
4-3 Outcome Measures 37
4-3-1 Primary Outcome 38
4-3-2 Secondary Outcomes 38
4-4 Statistical Analyses 39
Chapter 5 Clinical Trial Results of the Rehabilitation Assistance Platform 42
5-1 Participants Characteristics 42
5-2 Primary Outcome 46
5-3 Secondary Outcomes 47
5-4 Results of Acceptance of WEAR Platform 47
5-5 Clinical Impacts Estimation 50
Chapter 6 Discussion and Conclusion 52
6-1 Discussion 52
6-2 Conclusion 57
Reference 58
Appendix 64
參考文獻 Reference
1. Gao L, Tan E, Kim J, et al. Telemedicine for Stroke: Quantifying the Long-Term National Costs and Health Benefits. Front Neurol 2021; 12: 804355.
2. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol 2021; 20(10): 795-820.
3. Berge E, Whiteley W, Audebert H, et al. European Stroke Organisation (ESO) guidelines on intravenous thrombolysis for acute ischaemic stroke. Eur Stroke J 2021; 6(1): I-LXII.
4. Tsao CW, Aday AW, Almarzooq ZI, et al. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation 2022; 145(8): e153-e639.
5. Hsieh CY, Lee TH, Chang KC. A nationwide plan for postacute care of stroke in Taiwan. Int J Stroke 2014; 9(1): E3.
6. Organization WH. The top 10 causes of death. 09 December 2020. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed 15 Feb 2024).
7. Martin SS, Aday AW, Almarzooq ZI, et al. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024; 149(8): e347-e913.
8. Welfare MoHa. 2022 Cause of Death Statistics in Taiwan. 2023. https://www.mohw.gov.tw/cp-16-74869-1.html (accessed Feb 04 2024).
9. Association AH. About Stroke. https://www.stroke.org/en/about-stroke (accessed 18 Feb 2024).
10. Welfare MoHa. 2023 Cause of Death Statistics in Taiwan. 2024. https://www.mohw.gov.tw/cp-16-79055-1.html (accessed Nov 15 2024).
11. Organization WH, World Self Medication Industry (WSMI) WHF, (WHF) aISS. Avoiding heart attacks and strokes : don’t be a victim - protect yourself.; 2005.
12. Organization WH. Stroke, Cerebrovascular accident. https://www.emro.who.int/health-topics/stroke-cerebrovascular-accident/index.html (accessed 16 Feb 2024).
13. Ho H-J, Wu L-C, Wu EH-K, et al. Improving patient outcomes in acute and subacute stroke using a wearable device-assisted rehabilitation system: a randomized controlled trial. Journal of International Medical Research 2024; 52(10).
14. Winstein CJ, Stein J, Arena R, et al. Guidelines for Adult Stroke Rehabilitation and Recovery: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2016; 47(6): e98-e169.
15. Burridge JH, Lee ACW, Turk R, et al. Telehealth, Wearable Sensors, and the Internet: Will They Improve Stroke Outcomes Through Increased Intensity of Therapy, Motivation, and Adherence to Rehabilitation Programs? J Neurol Phys Ther 2017; 41 Suppl 3: S32-S8.
16. Stinear CM, Lang CE, Zeiler S, Byblow WD. Advances and challenges in stroke rehabilitation. Lancet Neurol 2020; 19(4): 348-60.
17. Liu K, Yin M, Cai Z. Research and application advances in rehabilitation assessment of stroke. J Zhejiang Univ Sci B 2022; 23(8): 625-41.
18. Association AS. The Rehabilitation Team. https://www.stroke.org/en/life-after-stroke/stroke-rehab/the-rehabilitation-team (accessed Nov 17 2024).
19. Teasell R, Salbach NM, Foley N, et al. Canadian Stroke Best Practice Recommendations: Rehabilitation, Recovery, and Community Participation following Stroke. Part One: Rehabilitation and Recovery Following Stroke; 6th Edition Update 2019. Int J Stroke 2020; 15(7): 763-88.
20. Administration UFaD. Digital Health Center of Excellence. 2024. https://www.fda.gov/medical-devices/digital-health-center-excellence (accessed July-15 2024).
21. Jiang X, Ming WK, You JH. The Cost-Effectiveness of Digital Health Interventions on the Management of Cardiovascular Diseases: Systematic Review. J Med Internet Res 2019; 21(6): e13166.
22. Capela NA, Lemaire ED, Baddour N. Feature selection for wearable smartphone-based human activity recognition with able bodied, elderly, and stroke patients. PLoS One 2015; 10(4): e0124414.
23. Isho T, Tashiro H, Usuda S. Accelerometry-based gait characteristics evaluated using a smartphone and their association with fall risk in people with chronic stroke. J Stroke Cerebrovasc Dis 2015; 24(6): 1305-11.
24. Kang YN, Shen HN, Lin CY, et al. Does a Mobile app improve patients′ knowledge of stroke risk factors and health-related quality of life in patients with stroke? A randomized controlled trial. BMC Med Inform Decis Mak 2019; 19(1): 282.
25. Sureshkumar K, Murthy G, Natarajan S, Naveen C, Goenka S, Kuper H. Evaluation of the feasibility and acceptability of the ′Care for Stroke′ intervention in India, a smartphone-enabled, carer-supported, educational intervention for management of disability following stroke. BMJ Open 2016; 6(2): e009243.
26. Sureshkumar K, Murthy GV, Munuswamy S, Goenka S, Kuper H. ′Care for Stroke′, a web-based, smartphone-enabled educational intervention for management of physical disabilities following stroke: feasibility in the Indian context. BMJ Innov 2015; 1(3): 127-36.
27. Godecke E, Armstrong E, Rai T, et al. A randomized control trial of intensive aphasia therapy after acute stroke: The Very Early Rehabilitation for SpEech (VERSE) study. Int J Stroke 2021; 16(5): 556-72.
28. Kim Y, Kim M, Kim J, Song TJ. Smartphone-Based Speech Therapy for Poststroke Dysarthria: Pilot Randomized Controlled Trial Evaluating Efficacy and Feasibility. J Med Internet Res 2024; 26: e56417.
29. Kiran S, Thompson CK. Neuroplasticity of Language Networks in Aphasia: Advances, Updates, and Future Challenges. Front Neurol 2019; 10: 295.
30. Valentin LSS. Can Digital Games Be a Way of Improving the Neuroplasticity in Stroke Damage? Can the Adult Brain Grow New Cells or Rewire Itself in Response to a New Experience? Open Journal of Medical Psychology 2017; 06(02): 153-65.
31. Macoir J, Lavoie M, Routhier S, Bier N. Key Factors for the Success of Self-Administered Treatments of Poststroke Aphasia Using Technologies. Telemed J E Health 2019; 25(8): 663-70.
32. Giorgino T, Tormene P, Maggioni G, Pistarini C, Quaglini S. Wireless support to poststroke rehabilitation: MyHeart′s neurological rehabilitation concept. IEEE Trans Inf Technol Biomed 2009; 13(6): 1012-8.
33. Aprile I, Germanotta M, Cruciani A, et al. Upper Limb Robotic Rehabilitation After Stroke: A Multicenter, Randomized Clinical Trial. J Neurol Phys Ther 2020; 44(1): 3-14.
34. Meschia JF, Bushnell C, Boden-Albala B, et al. Guidelines for the primary prevention of stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2014; 45(12): 3754-832.
35. Association AH. Stroke Rehabilitation. https://www.stroke.org/en/life-after-stroke/stroke-rehab (accessed 5/27 2024).
36. Saposnik G, Chow CM, Gladstone D, et al. iPad technology for home rehabilitation after stroke (iHOME): a proof-of-concept randomized trial. Int J Stroke 2014; 9(7): 956-62.
37. Lundelin K, Graciani A, Garcia-Puig J, et al. Knowledge of stroke warning symptoms and intended action in response to stroke in Spain: a nationwide population-based study. Cerebrovasc Dis 2012; 34(2): 161-8.
38. Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2019; 50(12): e344-e418.
39. Feigin VL, Krishnamurthi R, Bhattacharjee R, et al. New strategy to reduce the global burden of stroke. Stroke 2015; 46(6): 1740-7.
40. Chen Y-W. W-Stroke Care: Wearable and Personal Application Development and Practice for Post-Stroke Rehabilitation: National Central University; 2016.
41. Yang CC, Hsu YL. A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors (Basel) 2010; 10(8): 7772-88.
42. Ouedraogo F, Auger LP, Moreau E, et al. Acceptability of Telerehabilitation: Experiences and Perceptions by Individuals with Stroke and Caregivers in an Early Supported Discharge Program. Healthcare (Basel) 2024; 12(3).
43. Maceira-Elvira P, Popa T, Schmid AC, Hummel FC. Wearable technology in stroke rehabilitation: towards improved diagnosis and treatment of upper-limb motor impairment. J Neuroeng Rehabil 2019; 16(1): 142.
44. Klassen TD, Semrau JA, Dukelow SP, Bayley MT, Hill MD, Eng JJ. Consumer-Based Physical Activity Monitor as a Practical Way to Measure Walking Intensity During Inpatient Stroke Rehabilitation. Stroke 2017; 48(9): 2614-7.
45. Pollock A, Baer G, Campbell P, et al. Physical rehabilitation approaches for the recovery of function and mobility following stroke. The Cochrane database of systematic reviews 2014; 2014(4): Cd001920.
46. Susan S. Adler DB, Math Buck. PNF in Practive-An Illustrated Guide. 3rd ed: Srpinger-Verlag Berlin Heidelberg; 2008.
47. Youssef H, Demirer M, Middlebrooks EH, Anisetti B, Meschia JF, Lin MP. Framingham Stroke Risk Profile Score and White Matter Disease Progression. Neurologist 2024; 29(5): 259-64.
48. Hong C, Pencina MJ, Wojdyla DM, et al. Predictive Accuracy of Stroke Risk Prediction Models Across Black and White Race, Sex, and Age Groups. Jama 2023; 329(4): 306-17.
49. Kerimov K, Coskun Benlidayi I, Ozdemir C, Gunasti O. The Effects of Upper Extremity Isokinetic Strengthening in Post-Stroke Hemiplegia: A Randomized Controlled Trial. J Stroke Cerebrovasc Dis 2021; 30(6): 105729.
50. Chang K-W, Lin C-M, Yen C-W, Yang C-C, Tanaka T, Guo L-Y. The Effect of Walking Backward on a Treadmill on Balance, Speed of Walking and Cardiopulmonary Fitness for Patients with Chronic Stroke: A Pilot Study. International Journal of Environmental Research and Public Health 2021; 18(5).
51. Liu CH, Chen YT, Kittikowit S, Hongsuchon T, Chen YJ. Using Unified Theory of Acceptance and Use of Technology to Evaluate the Impact of a Mobile Payment App on the Shopping Intention and Usage Behavior of Middle-Aged Customers. Front Psychol 2022; 13: 830842.
52. Viswanath Venkatesh MGM, Gordon B. Davis and Fred D. Davis. User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly 2003; 27(3).
53. Cramer SC, Le V, Saver JL, et al. Intense Arm Rehabilitation Therapy Improves the Modified Rankin Scale Score: Association Between Gains in Impairment and Function. Neurology 2021; 96(14): e1812-e22.
54. van den Berg M, Crotty MP, Liu E, Killington M, Kwakkel GP, van Wegen E. Early Supported Discharge by Caregiver-Mediated Exercises and e-Health Support After Stroke: A Proof-of-Concept Trial. Stroke 2016; 47(7): 1885-92.
55. Wang F, Zhang S, Zhou F, Zhao M, Zhao H. Early physical rehabilitation therapy between 24 and 48?h following acute ischemic stroke onset: a randomized controlled trial. Disability and Rehabilitation 2022; 44(15): 3967-72.
56. Goyal M, Menon BK, van Zwam WH, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 2016; 387(10029): 1723-31.
57. Broderick JP, Adeoye O, Elm J. Evolution of the Modified Rankin Scale and Its Use in Future Stroke Trials. Stroke 2017; 48(7): 2007-12.
58. Kasner SE. Clinical interpretation and use of stroke scales. Lancet Neurol 2006; 5(7): 603-12.
59. Chumney D, Nollinger K, Shesko K, Skop K, Spencer M, Newton RA. Ability of Functional Independence Measure to accurately predict functional outcome of stroke-specific population: systematic review. J Rehabil Res Dev 2010; 47(1): 17-29.
60. Park SH, Lee YS. The Diagnostic Accuracy of the Berg Balance Scale in Predicting Falls. West J Nurs Res 2017; 39(11): 1502-25.
61. Do?an A, Mengulluo?lu M, Ozgirgin N. Evaluation of the effect of ankle-foot orthosis use on balance and mobility in hemiparetic stroke patients. Disabil Rehabil 2011; 33(15-16): 1433-9.
62. Duff SV, He J, Nelsen MA, et al. Interrater reliability of the Wolf Motor Function Test-Functional Ability Scale: why it matters. Neurorehabil Neural Repair 2015; 29(5): 436-43.
63. Yeung LF, Ockenfeld C, Pang MK, et al. Randomized controlled trial of robot-assisted gait training with dorsiflexion assistance on chronic stroke patients wearing ankle-foot-orthosis. J Neuroeng Rehabil 2018; 15(1): 51.
64. Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods 2009; 41(4): 1149-60.
65. Lim JY, Koh JH, Paik NJ. Intramuscular botulinum toxin-A reduces hemiplegic shoulder pain: a randomized, double-blind, comparative study versus intraarticular triamcinolone acetonide. Stroke 2008; 39(1): 126-31.
66. Valiengo LC, Goulart AC, de Oliveira JF, Bensenor IM, Lotufo PA, Brunoni AR. Transcranial direct current stimulation for the treatment of post-stroke depression: results from a randomised, sham-controlled, double-blinded trial. J Neurol Neurosurg Psychiatry 2017; 88(2): 170-5.
67. Correia FD, Nogueira A, Magalhaes I, et al. Home-based Rehabilitation With A Novel Digital Biofeedback System versus Conventional In-person Rehabilitation after Total Knee Replacement: a feasibility study. Sci Rep 2018; 8(1): 11299.
68. Hsin-Ju Ho EH-KW, Shu-Fang Lee, Te-Hsiu Lee, Sheng-Hua Chiang, Chun-Hsiung Chen, Hui-Yu Chen, Shiuan-Jia Pan, Li-Ching Wu, Yu-Wei Chen; on behalf of the WEAR-Stroke Study Group. Improving outcomes of patients with acute stroke using a wearable device-assisted rehabilitation system: a randomized controlled trial. Journal of International Medical Research 2024.
69. Van Breukelen GJ. ANCOVA versus change from baseline: more power in randomized studies, more bias in nonrandomized studies [corrected]. J Clin Epidemiol 2006; 59(9): 920-5.
70. England TJ, Hedstrom A, O′Sullivan SE, et al. Remote Ischemic Conditioning After Stroke Trial 2: A Phase IIb Randomized Controlled Trial in Hyperacute Stroke. J Am Heart Assoc 2019; 8(23): e013572.
71. Yeung LF, Lau CCY, Lai CWK, Soo YOY, Chan ML, Tong RKY. Effects of wearable ankle robotics for stair and over-ground training on sub-acute stroke: a randomized controlled trial. J Neuroeng Rehabil 2021; 18(1): 19.
72. Mishra P, Singh U, Pandey CM, Mishra P, Pandey G. Application of student′s t-test, analysis of variance, and covariance. Ann Card Anaesth 2019; 22(4): 407-11.
73. Quinn TJ, Dawson J, Walters MR, Lees KR. Functional outcome measures in contemporary stroke trials. Int J Stroke 2009; 4(3): 200-5.
74. Organization WH. International Classification of Functioning, Disability and Health (ICF). World Health Organization; 2001.
75. Erler KS, Wu R, DiCarlo JA, et al. Association of Modified Rankin Scale With Recovery Phenotypes in Patients With Upper Extremity Weakness After Stroke. Neurology 2022; 98(18): e1877-e85.
76. Moore JL, Nordvik JE, Erichsen A, Rosseland I, Bo E, Hornby TG. Implementation of High-Intensity Stepping Training During Inpatient Stroke Rehabilitation Improves Functional Outcomes. Stroke 2020; 51(2): 563-70.
77. Pohl J, Held JPO, Verheyden G, et al. Consensus-Based Core Set of Outcome Measures for Clinical Motor Rehabilitation After Stroke-A Delphi Study. Front Neurol 2020; 11: 875.
78. Jekauc D, Rayling S, Klopp S, Schmidt D, Rittmann LM, Fritsch J. Effects of a web-based rehabilitation aftercare on subjective health, work ability and motivation: a partially randomized controlled trial. BMC Musculoskelet Disord 2021; 22(1): 366.
79. Venketasubramanian N, Anderson C, Ay H, et al. Stroke Care during the COVID-19 Pandemic: International Expert Panel Review. Cerebrovasc Dis 2021; 50(3): 245-61.
80. Klassen TD, Dukelow SP, Bayley MT, et al. Higher Doses Improve Walking Recovery During Stroke Inpatient Rehabilitation. Stroke 2020; 51(9): 2639-48.
81. Cramer SC, Dodakian L, Le V, et al. Efficacy of Home-Based Telerehabilitation vs In-Clinic Therapy for Adults After Stroke: A Randomized Clinical Trial. JAMA Neurol 2019; 76(9): 1079-87.
82. Gache K, Leleu H, Nitenberg G, Woimant F, Ferrua M, Minvielle E. Main barriers to effective implementation of stroke care pathways in France: a qualitative study. BMC Health Serv Res 2014; 14: 95.
83. Keane S, Lincoln M, T S. Retention of allied health professionals in rural New South Wales: a thematic analysis of focus group discussions. BMC health services research 2012; 12: 175-86.
84. Szeto SG, Wan H, Alavinia M, Dukelow S, MacNeill H. Effect of mobile application types on stroke rehabilitation: a systematic review. J Neuroeng Rehabil 2023; 20(1): 12.
85. Barrett M, Snow JC, Kirkland MC, et al. Excessive sedentary time during in-patient stroke rehabilitation. Top Stroke Rehabil 2018; 25(5): 366-74.
86. Sjoholm A, Skarin M, Churilov L, Nilsson M, Bernhardt J, Linden T. Sedentary behaviour and physical activity of people with stroke in rehabilitation hospitals. Stroke Res Treat 2014; 2014: 591897.
87. Putman K, de Wit L, Schupp W, et al. Use of time by physiotherapists and occupational therapists in a stroke rehabilitation unit: a comparison between four European rehabilitation centres. Disabil Rehabil 2006; 28(22): 1417-24.
88. Haji Mukhti MI, Ibrahim MI, Tengku Ismail TA, et al. Exploring the Need for Mobile Application in Stroke Management by Informal Caregivers: A Qualitative Study. Int J Environ Res Public Health 2022; 19(19).
89. Chan YK, Tang YM, Teng L. A comparative analysis of digital health usage intentions towards the adoption of virtual reality in telerehabilitation. Int J Med Inform 2023; 174: 105042.
90. Wang MY, Chen H, Gong C, et al. Understanding the use intention and influencing factors of telerehabilitation in people with rehabilitation needs: a cross-sectional survey. Front Public Health 2023; 11: 1274080.
91. Siegler JE, Zha AM, Czap AL, et al. Influence of the COVID-19 Pandemic on Treatment Times for Acute Ischemic Stroke: The Society of Vascular and Interventional Neurology Multicenter Collaboration. Stroke 2021; 52(1): 40-7.
92. Leira EC, Russman AN, Biller J, et al. Preserving stroke care during the COVID-19 pandemic: Potential issues and solutions. Neurology 2020; 95(3): 124-33.
93. Dafer RM, Osteraas ND, Biller J. Acute Stroke Care in the Coronavirus Disease 2019 Pandemic. J Stroke Cerebrovasc Dis 2020; 29(7): 104881.
94. Prvu Bettger J, Thoumi A, Marquevich V, et al. COVID-19: maintaining essential rehabilitation services across the care continuum. BMJ Glob Health 2020; 5(5).
95. Bernhardt J, Hayward KS. What Is Next After This Well-Conducted, but Neutral, Multisite Trial Testing Self-Rehabilitation Approaches? Stroke 2021; 52(6): 1948-50.
指導教授 吳立青(Li-Ching Wu) 審核日期 2024-12-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明