博碩士論文 111329031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:18.221.142.39
姓名 邱翊齊(Yi-Chi Chiu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 微量Cu對回收Al-Zn-Mg合金機械性質與應力腐蝕性之影響
(Effect of minor Cu on the mechanical properties and SCC of recycled Al-Zn-Mg alloys)
相關論文
★ 元素揮發對Mg-Ni-Li合金儲放氫特性之影響★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響
★ LaNi5對Mg2Ni合金電極性質之影響★ 固溶處理之冷卻速率對SP-700鈦合金微結構與機械性質之影響
★ Pb含量與熱處理對AgPb18+xSbTe20合金熱電性質影響之探討★ 鈧對Al-7Si-0.6Mg合金機械性質影響
★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響★ 高壓氫壓縮機用之儲氫合金開發
★ 固溶處裡對SP-700鈦合金微結構及機械性質之影響★ 微量鋯與安定化退火對Al-4.7Mg-0.75Mn 合金腐蝕與機械性質之影響
★ 微量Ni對Al-4.5Cu-0.3Mg-0.15Ti合金熱穩定性之影響★ 微量Zr與冷加工對Al-4.7Zn-1.6Mg合金淬火敏感性之影響
★ 微量Zr和Sc與均質化對Al-4.5Zn-1.5Mg合金機械性質與再結晶之影響★ 高含量Ti、B對A201-T7鋁合金熱裂性、微結構與機械性質的影響
★ 改良劑(鍶、銻)與熱處理對Al-11Si-3Cu-0.5Mg合金微結構及磨耗性質之影響★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究藉由微結構、拉伸試驗、慢速拉伸試驗(SSRT)與極化電位試驗,探討微量Cu對於原生Al-Zn-Mg合金與100%再生商用Al-Zn-Mg合金、之機械性質與抗應力腐蝕性的影響。研究中將以原生Al-Zn-Mg(-Cu)合金作為對照組,對比分析未添加Cu與添加0.2 wt% Cu的合金在不同回收比例下的性能差異。
結果顯示,微量Cu的添加可顯著提升原生與100%再生Al-Zn-Mg合金的強度與抗腐蝕性能。在微結構分析中,Cu的添加提升了α-Al基地中η’-MgZn?強化相的析出量,使合金的抗拉強度明顯增加,增強其機械性質。同時,Cu的添加提高了晶界析出相(η-MgZn?平衡相)的Cu含量,進而提升其腐蝕電位,減少與α-Al基地之間的電位差,降低伽凡尼腐蝕的發生率,從而顯著提升合金的抗腐蝕能力。
然而,100%再生Al-Zn-Mg(-Cu)合金因α-Al基地中含有損害機械性質的β富鐵相,導致其延性略有下降,並增加合金在腐蝕環境中發生點蝕的可能性。但整體而言,100%回收與非回收的Al-Zn-Mg(-Cu)合金、在強度與抗腐應力腐蝕性相近,證明回收合金的應用潛力。
總結而言,微量Cu的添加不僅有效提升原生與回收Al-Zn-Mg合金的強度與抗腐蝕性能,還顯著改善回收合金的綜合性質,為回收鋁合金的工業應用提供了重要參考。
關鍵詞: Al-Zn-Mg合金、回收比、Cu含量、應力腐蝕
摘要(英) This study investigates the effects of trace Cu on the mechanical properties and stress corrosion resistance of primary Al-Zn-Mg alloys and 100% recycled commercial Al-Zn-Mg alloys through microstructural analysis, tensile testing, slow strain rate testing (SSRT), and polarization potential testing. The primary Al-Zn-Mg(-Cu) alloy serves as a control group in the study, with a comparative analysis conducted on the performance differences between alloys with no Cu addition and those containing 0.2 wt% Cu across varying recycling ratios.
The results demonstrate that the addition of trace Cu significantly enhances the strength and corrosion resistance of both primary and 100% recycled Al-Zn-Mg alloys. Microstructural analysis reveals that Cu addition increases the precipitation of the η’-MgZn? strengthening phase within the α-Al matrix, thereby significantly improving the tensile strength and mechanical properties of the alloy. Furthermore, the addition of Cu raises the Cu content in the η-MgZn? equilibrium phase at grain boundaries, which, in turn, elevates the corrosion potential, reduces the potential difference with the α-Al matrix, and decreases the occurrence of galvanic corrosion, thereby markedly improving the corrosion resistance of the alloy.
However, the presence of β-Fe-rich phases in the α-Al matrix of 100% recycled Al-Zn-Mg(-Cu) alloys slightly reduces ductility and increases the likelihood of pitting corrosion in corrosive environments. Nonetheless, the overall strength and stress corrosion resistance of the 100% recycled and primary Al-Zn-Mg(-Cu) alloys are comparable, underscoring the application potential of recycled alloys.
In summary, the addition of trace Cu not only effectively enhances the strength and corrosion resistance of both primary and recycled Al-Zn-Mg alloys but also significantly improves the overall properties of recycled alloys, providing valuable insights for the industrial application of recycled aluminum alloys.
Keywords: Al-Zn-Mg alloys, recycling ratio, Cu content, stress corrosion.
關鍵字(中) ★ Al-Zn-Mg合金
★ 回收比
★ Cu含量
★ 應力腐蝕
關鍵字(英) ★ Al-Zn-Mg alloys
★ recycling ratio
★ Cu content
★ stress corrosion
論文目次 摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 X
一、前言與文獻回顧 1
1.1 鋁合金簡介 1
1.2 Al-Zn-Mg(-Cu)合金簡介 2
1.3 元素添加對鋁合金之影響 3
1.3.1 Zn對Al-Zn-Mg合金之影響 3
1.3.3 Cu對Al-Zn-Mg合金之影響 5
1.3.4 Fe對Al-Zn-Mg合金之影響 8
1.4 鋁合金之熱處理 9
1.4.1 固溶處理(Solution Treatment) 11
1.4.2 淬火(Quenching) 11
1.4.3 時效處理(Aging) 12
1.5 Al-Zn-Mg合金析出強化序列 13
1.6 Al-Zn-Mg合金之應力腐蝕開裂問題 15
1.7 Al的回收 16
1.7.1 磁選法(Magnetic separation) 18
1.7.2 沉浮法(Sink-float separation) 19
1.8 研究動機與目的 20
二、實驗步驟與方法 21
2.1 合金熔鑄 22
2.2 均質化、冷輥、退火與熱處理流程 23
2.3 微結構分析 24
2.3.1 光學顯微鏡(Optical Microscopy, OM) 24
2.3.2 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 24
2.3.3 電子微探儀(Electron Probe Microanalyzer, EPMA) 25
2.3.4 場發式掃描穿透式電子顯微鏡(Field Emission Scanning Transmission Electron Microscopy, FE-STEM) 25
2.3.5 導電度(Electrical Conductivity, EC) 25
2.3.6 差示掃描量熱法(Differential Scanning Calorimetry, DSC) 26
2.4 機械性質分析 26
2.4.1 洛氏硬度試驗(Rockwell hardness test) 26
2.4.2 慢速拉伸試驗(Slow strain rate testing, SSRT) 26
2.5 腐蝕性質分析 27
2.5.1 極化腐蝕試驗 27
三、結果與討論 28
3.1 微結構分析 28
3.1.1 鑄態、均質化與冷加工光學顯微鏡(OM)觀察 28
3.1.2 T6態光學顯微鏡(OM)微結構觀察與電子微探儀(EPMA)分析 31
3.1.3 導電度分析 34
3.1.4 差示掃描量熱儀(DSC)分析 36
3.1.5 場發式掃描穿透式電子顯微鏡(FE-STEM) 38
3.2 機械性質分析 40
3.2.1 洛氏硬度(HRB)分析 40
3.2.2 慢速拉伸試驗(SSRT)與掃描式電子顯微鏡(SEM)分析 42
3.3 腐蝕性質分析 50
3.3.1 極化腐蝕試驗 50
四、總結論 53
五、參考資料 55
參考文獻 [ASM1] J. R. Davis, ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International Materials Park, P.4 (1994)
[ASM2] J. R. Davis, ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International Materials Park, P.841 (1994)
[ASM3] J.R. Davis, ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International Materials Park, P. 24 (1994)
[ASTM1] ASTM B221-12: Standard Specification for Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes, ASTM International (2012)
[ASTM2] ASTM B917: Standard Practice for Heat Treatment of Aluminum-Alloy Castings from All Processes, ASTM International (2020)
[ASTM3] ASTM B918/B918M ? 20a: Standard Practice for Heat Treatment of Wrought Aluminum Alloys, ASTM International (2019)
[ASTM4] ASTM E18-02: Standard Test Methods for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials, ASTM International (2002)
[ASTM5] ASTM B557-15: Standard Test Methods for Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products, ASTM International (2023)
[ASTM6] ASTM G47-20: Standard Test Method for Determining Susceptibility to Stress-Corrosion Cracking of 2XXX and 7XXX Aluminum Alloy Products, ASTM International (2020)
[ASTM7] ASTM G34-01: Standard Test Method for Exfoliation Corrosion Susceptibility in 2XXX and 7XXX Series Aluminum Alloys, ASTM International (2013)
[BEN] A. Benedetti, P. Cabot, J. Garrido, & A.H. Moreira, “Influence of iron addition on the microstructure and the electrochemical corrosion of Al-Zn-Mg alloys”, Journal of Applied Electrochemistry, Volume 31, PP. 293-300, 2001.
[BER] L.K. Berg, J. Gjonnes, V. Hansen, X.Z. Li, M. Knutson-Wedel, G. Waterloo, D. Schryvers, L.R. Wallenberg, “GP-zones in Al-Zn-Mg alloys and their role in artificial aging,” Acta Materialia, Volume 49, PP. 3443-3451, 2001.
[BIN] J.H. Bin, C.K. Hua, C.S. Yi, Y. Zhen, X. Peng, C.S. Da, “Effect of Cu on the Fracture and Exfoliation Corrosion Behavior of Al-Zn-Mg-xCu Alloy”, Metal, Volume 8, Article No. 1048, 2018.
[BIR] N. Birbilis, R.G. Buchheit, “Electrochemical Characteristics of Intermetallic Phases in Aluminum Alloys,” Journal of The Electrochemical Society, Volume 152, PP. 140-151, 2005.
[BOL] D. Bolibruchova, M. Matejka, A. Michalcova, J. Kasinska, “Study of natural and artificial aging on AlSi9Cu3 alloy at different ratios of returnable material in the batch”, Materials, Volume 13, Article No. 4538, 2020.
[CET] Z. Cetinkaya, O. Bayat, “Upgrading low-rank coals (can, Canakkale/Turkey) by float-sink separation in dense media,” Energy Sources Part A-Recovery Utilization and Environmental Effects, Volume 42, PP. 113-120, 2020.
[CHA] A. Chatterjee, L. Qi, A. Misra, “In situ transmission electron microscopy investigation of nucleation of GP zones under natural aging in Al-Zn-Mg alloy”, Scripta Materialia, Volume 207, Article No. 114319, 2020.
[CHE1] S.Y. Chen, J.Y. Li, G.Y. Hu, K.H. Chen, L.P. Huang, “Effect of Zn/Mg ratios on SCC, electrochemical corrosion properties and microstructure of Al-Zn-Mg alloy”, Journal of Alloys And Compounds, Volume 757, PP. 259-264, 2018.
[CHE2] Y. Chen, T.A. Zhang, G.Z. Lv, X. Chao, X.W. Yang, “Extraction and Utilization of Valuable Elements from Bauxite and Bauxite Residue: A Review,” Bulletin of Environmental Contamination and Toxicology, Volume 109, PP. 228-237, 2022.
[CHI1] N.Q. Chinh, J. Lendvai, D.H. Ping, K. Hono, “The effect of Cu on mechanical and precipitation properties of Al–Zn–Mg alloys,” Materials Science and Engineering A, Volume 378, PP. 52-60, 2004.
[CHI2] Yang-Chun Chiu, Kun-Ting Du, Hui-Yun Bor, Guang-Hui Liu, Sheng-Long Lee, “The effects of Cu, Zn and Zr on the solution temperature and quenching sensitivity of Al–Zn–Mg–Cu alloys”, Materials Chemistry and Physics, Volume 247, Article No. 122853, 2020.
[CLI] M.R. Clinch, S.J. Harris, W. Hepples, N.J.H. Holroyd, M.J. Lawday, B. Noble, “Optimising the Mechanical Properties of 7xxx Series Alloys by Controlling Composition and Precipitation Kinetics,” Materials Science and Engineering: A, Volume 112, PP. 63-72, 2020.
[CUI] X.L. Cui, Y.Y. Wu, X.F. Liu, Q.R. Zhao, G.J. Zhang, “Effects of grain refinement and boron treatment on electrical conductivity and mechanical properties of AA1070 aluminum,” Materials & Design, Volume 86, PP. 397-403, 2015.
[DAI] P. Dai, X. Luo, Y.Q. Yang, Z.D. Kou, B. Huang, J.X. Zang, J.G. Ru, “The Fracture Behavior of 7085-T74 Al Alloy Ultra-Thick Plate During High Cycle Fatigue,” Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, Volume 51, PP. 3248-3255, 2020.
[DON] P.X. Dong, S.Y. Chen, K.H. Chen, “Effects of Cu content on microstructure and properties of super-high-strength Al-9.3Zn-2.4Mg-xCu-Zr alloy,” Journal of Alloys and Compounds, Volume 788, PP. 329-337, 2019.
[GAU] G. Gaustad, E. Olivetti, R. Kirchain, “Improving aluminum recycling: A survey of sorting and impurity removal technologies,” Resources, Conservation and Recycling, Volume 58, PP. 79-87, 2012.
[HIN] A.R. Hind, S.K. Bhargava, S.C. Grocott, “The Surface Chemistry of Bayer Process Solids: A Review,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 146, PP. 359-374, 1999.
[HU] K. Hu, C.H. Lin, S.C. Xia, C.K. Zheng, B. Lin, “Effect of Fe content on low cycle fatigue behavior of squeeze cast Al-Zn-Mg-Cu alloys”, Materials Characterization, Volume 164, Article No. 110680, 2020.
[KNI] S.P. Knight, N. Birbilis, B.C. Muddle, A.R. Trueman, S.P. Lynch, “Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al–Zn–Mg–Cu alloys,” Corrosion Science, Volume 52, Issue 12, PP. 4073-4080, 2010.
[KOF] C. Koffler, J. Florin, “Tackling the downcycling issue—A revised approach to value-corrected substitution in life cycle assessment of aluminum (VCS 2.0),” Sustainability, Volume 5, PP. 4546-4560, 2013.
[KU] J.A. Ku, K.P. Wang, Q. Wang, Z.Y. Lei, “Application of magnetic separation technology in resource utilization and environmental treatment,” Separations, Volume 11, Article No. 130, 2024.
[LEE1] 李勝隆, 金屬熱處理:原理與應用, 全華, P.9_3 (2018)
[LEE2] 李勝隆, 金屬熱處理:原理與應用, 全華, P.9_41 (2018)
[LEE3] 李勝隆, 金屬熱處理:原理與應用, 全華, P.9_52 (2018)
[LI1] N. Li, C.F. Dong, C. Man, X. Li, D.C. Kong, Y.C. Ji, M. Ao, J.L. Cao, L. Yue, X.T. Liu, M. Du, “Insight into the localized strain effect on micro-galvanic corrosion behavior in AA7075-T6 aluminum alloy,” Corrosion Science, Volume 180, Article No. 109174, 2021.
[LI2] X.L. Li, A. Scherf, M. Heilmaier, F. Stein, “The Al-Rich Part of the Fe-Al Phase Diagram,” Journal of Phase Equilibria and Diffusion, Volume 37, PP. 162-173, 2016.
[LI3] X.M. Li, J.J. Yu, “Modeling the Effects of Cu Variations on the Precipitated Phases and Properties of Al-Zn-Mg-Cu Alloys,” Journal of Materials Engineering and Performance, Volume 22, PP. 2970-2981, 2013.
[MA] Y.L. Ma, Y.C. Huang, X.Y. Zhang, “Precipitation thermodynamics and kinetics of the second phase of Al-Zn-Mg-Cu-Sc-Zr-Ti aluminum alloy”, Journal of Materials Research and Technology, Volume 10, PP. 445-452, 2021.
[MEN] C.Y. Meng, D. Zhang, L.Z. Zhuang, J.S. Zhang, “Correlations between stress corrosion cracking, grain boundary precipitates and Zn content of Al-Mg-Zn alloys,” Journal of Alloys and Compounds, Volume 655, PP. 178-187, 2016.
[MIT] H.S. Srinivasan, C.K. Mital, “Studies on the passivation behaviour of Al-Zn-Mg alloy in chloride solutions containing some anions and cations using electrochemical impedance spectroscopy,” Electrochimica Acta, Volume 39, PP. 2633-2637, 1994.
[MUR1] S. Murali, K. S. Raman, K. S. S. Murthy, “Effect of trace additions (Be, Cr, Mn and Co) on the mechanical properties and fracture toughness of Fe-containing Al-7Si-0.3Mg Alloy,” Cast Metals, Vol. 6, PP. 189-198, 1994.
[MUR2] S. Murali, K. S. Raman, K. S. S. Murthy, “Morphological studies on β-FeSiAl5 phase in Al-7-Si-0.3Mg alloy with trace additions of Be, Mn, Cr, and Co,” Materials Characterization, Vol. 33, PP. 99-112, 1994.
[MUR3] S. Murali, K. S. Raman, K. S. S. Murthy, “The formation of β-FeSiAl5 in Al-7Si-0.3Mg alloy containing Be,” Materials Science and Engineering: A, Vol. 190, PP. 165-172, 1995.
[NIS] N. Nishikawa, Y. Masuda, K. Otake, R. Kuramoto, Y. Yamazaki, T. Nagai, “Development of Low-CO2 Recycled Aluminum Alloy,” Journal of Japan Institute of Light Metals, Volume 8, PP. 62-65, 2022.
[QIN] W.B. Qin, J.S. Li, Y.Y. Liu, J.J. Kang, L.N. Zhu, D.F. Shu, P. Peng, D.S. She, D.Z. Meng, Y.S. Li, “Effects of grain size on tensile property and fracture morphology of 316L stainless steel,” Materials Letters, Volume 254, PP. 116-119, 2019.
[PAR] I. Park, S. Jeon, C.B. Tabelin, T. Phengsaart, M. Silwamba, N. Hiroyoshi, “A novel recycling route for aluminum alloys: Synthesis of FeAl bimetallic materials and magnetic separation,” Minerals Engineering, Volume 201, Article No. 108202, 2023.
[PRA] S. Prasad, “Studies on the Hall-Heroult aluminum electrowinning process,” Journal of the Brazilian Chemical Society, Volume 11, PP. 245-251, 2000.
[RAM] T. Ramgopal, P. Schmutz, G.S. Frankel, "Electrochemical Behavior of Thin Film Analogs of Mg(Zn, Cu, Al)?" Journal of the Electrochemical Society, Volume 148, No. 9, PP. 348-356, 2001.
[RAT] P.K. Rout, M.M. Ghosh, K.S. Ghosh, “Microstructural, mechanical, and electrochemical behavior of a 7017 Al–Zn–Mg alloy of different tempers,” Materials Characterization, Volume 104, PP. 49-60, 2015.
[SEN] O.N. Senkov, F.H.Froes, V.V. Stolyarov, R.Z. Valiev, J. Liu, “Microstructure of aluminum-iron alloys subjected to severe plastic deformation,” Scripta Materialia, Volume 38, PP. 1511-1516, 1998.
[SHA] G. Sha, A. Cerezo, “Early-stage precipitation in Al–Zn–Mg–Cu alloy (7050),” Acta Materialia, Volume 52, PP. 4503-4516, 2004.
[SHU] W.X. Shu, L.G. Hou, C. Zhang, F. Zhang, J.C. Liu, J.T. Liu, L.Z. Zhuang, J.S. Zhang, “Tailored Mg and Cu contents affecting the microstructures and mechanical properties of high strength Al-Zn-Mg-Cu alloys,” Materials Science and Engineering: A, Volume 657, PP. 269-283, 2016.
[SPE] M.O. Speidel, M.V. Hyatt, “Stress-corrosion cracking of high-strength aluminum alloys”, Advances in Corrosion Science and Technology, Volume 2, PP. 115-335, 1972.
[SVE] H.U. Sverdrup, K.V. Ragnarsdottir, D. Koca, “Aluminium for the future: Modelling the global production, market supply, demand, price and long-term development of the global reserves,” Resources, Conservation and Recycling, Volume 103, PP. 139-154, 2015.
[SUN] Y.W. Sun, Q.L. Pan, Y.Q. Sun, W.Y. Wang, Z.Q. Huang, X.D. Wang, Q. Hu, “Localized corrosion behavior associated with Al7Cu2Fe intermetallic in Al-Zn-Mg-Cu-Zr alloy”, Corrosion Science, Volume 180, Article No. 109305, 2020.
[TAN] P. Tan, Y.D. Sui, H.N. Jin, S. Zhu, Y.H. Jiang, L.N. Han, “Effect of Zn content on the microstructure and mechanical properties of as-cast Al-Zn-Mg-Cu alloy with medium Zn content,” Journal of Materials Research and Technology, Volume 18, PP. 2620-2630, 2022.
[THR] E. Thronsen, S. Shah, C. Hatzoglou, C.D. Marioara, S. Wenner, S.J. Andersen, B. Holmedal, R. Holmestad, “The evolution of precipitates in an Al-Zn-Mg alloy,” Journal of Materials Research and Technology, Volume 23, PP. 5666-5680, 2023.
[VAN] S. Van den Eynde, E. Bracquene, D. Diaz-Romero, I. Zaplana, B. Engelen, J.R. Duflou, “Forecasting global aluminium flows to demonstrate the need for improved sorting and recycling methods,” Waste Management, Volume 137, PP. 231-240, 2022.
[WAN] X. Wang, Q. Pan, L. Liu, S. Xiong, W. Wang, J. Lai, Y. Sun, Z. Huang, “Characterization of hot extrusion and heat treatment on mechanical properties in a spray-formed ultra-high strength Al-Zn-Mg-Cu alloy,” Materials Characterization, Volume 144, PP. 131-140, 2018.
[WER] J.C. Werenskiold, A. Deschamps, Y. Brechet, “Characterization and modeling of precipitation kinetics in an Al–Zn–Mg alloy,” Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, Volume 293, PP. 267-274, 2000.
[WIL] J.C. Williams, E.A. Starke, “Progress in Structural Materials for Aerospace Systems”, Acta Materialia, Volume 51, PP. 5775-5799, 2003.
[XIO] L. Xiong, Z.S. You, S.D. Qu, L. Lu, “Fracture behavior of heterogeneous nanostructured 316L austenitic stainless steel with nanotwin bundles,” Acta Materialia, Volume 150, PP. 130-138, 2018.
[XU] X.X. Xu, Y.T. Feng, P. Yang, B.R. Zhang, Y. Wang, Q. Wang, X.L. Fan, H.M. Ding, “The influence of trace elements on the microstructures and properties of the aluminum conductors,” Results in Physics, Volume 11, PP. 1058-1063, 2018.
[YAN] L.Z. Yan, Y.G. Zhang, X.W. Li, Z.H. Li, F. Wang, H.W. Liu, B.Q. Xiong, “Effect of Zn addition on microstructure and mechanical properties of an Al–Mg–Si alloy”, Materials Science and Engineering: A, Volume 750, PP. 136-144, 2019.
[ZHA1] Y.X. Zhao, H. Li, Y. Liu, Y.C. Huang, “The microstructures and mechanical properties of a highly alloyed Al-Zn-Mg-Cu alloy: The role of Cu concentration,” Journal of Materials Research and Technology, Volume 18, PP. 122-137, 2022.
[ZHA2] M.H. Zhang, S.D. Liu, J.Y. Jiang, W.C. Wei, “Effect of Cu content on intergranular corrosion and exfoliation corrosion susceptibility of Al-Zn-Mg-(Cu) alloys,” Transactions of Nonferrous Metals Society of China, Volume 33, PP. 1963-1976, 2023.
指導教授 李勝隆(Sheng-Long Lee) 審核日期 2025-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明