博碩士論文 105282610 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.117.135.125
姓名 蘇曼(Suman Abbas)  查詢紙本館藏   畢業系所 物理學系
論文名稱 通過調控載子密度提升立方相GeTe基薄膜的熱電性能
(Enhancement of Thermoelectric Properties in Cubic GeTe-based Thin Films through Carrier Density Manipulation)
相關論文
★ 藉由陽離子替換(AgxCu1-x)2ZnSnSe4光伏吸收層以解析銅基硫銅錫鋅礦的缺陷性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-12-30以後開放)
摘要(中) 熱電材料能夠有效地將熱能轉換為電能,因此在廢熱回收和可持續能源應用方面極具潛力,因而備受關注。 其中, 薄膜熱電材料因其具有更高的能量轉換效率、適用於小型化和柔性裝置,以及與物聯網設備、可穿戴電子產品和廢熱回收系統等先進技術的兼容性,已成為重點應用領域。 基於碲化鍺 (GeTe) 的熱電材料因其高性能而脫穎而出,這歸功於其良好的電子特性、可調整的載流子濃度、結構的穩定性以及相穩定化的潛力。 作為一種無鉛熱電材料,GeTe 的斜方和立方相已被廣泛研究。 然而,由於熱膨脹係數的差異,GeTe 在大約 700 K 時會發生結構相變,這對於更廣泛的實際應用構成了挑戰。 將 GeTe 穩定在單一相,特別是具有優異電子特性和熱電性能的立方 相,將顯著提升其實用性。 本論文研究利用射頻 (RF) 濺射合成立方相 GeTe 薄膜,並通過後退火處理實現目標立方相。 為了進一步增強熱電性能,本論文引入了銦元素作為摻雜劑。研究通過全面的實驗與計算分析,探討銦摻雜對薄膜的結構、電子與熱電性能的影響。取代鍺位點的銦,增加了態密度有效質量,並作為散射中心,從而調節載子濃度、提高 Seebeck 系數並降低總熱導率。這些綜合效應顯著提升了材料的熱電性能,使得品質因數(zT)在約 575 K 時提升了約 4 倍。本研究展示了銦摻雜立方 GeTe 薄膜作為高性能熱電應用的一種有前景的候選材料,為可持續能源技術的進一步發展鋪平了道路。此外,在300 K至575 K的工作溫度範圍內,平均zT值提高了約3倍,這表明銦摻雜立方相GeSbTe薄膜在接近室溫的高性能熱電材料中具有潛力,為可持續能源技術的進一步發展鋪平了道路。
摘要(英) Thermoelectric materials have garnered significant attention due to their ability to efficiently convert heat into electricity, making them highly promising for waste heat recovery and sustainable energy applications. Among them, thin-film thermoelectrics have emerged as a key focus area, owing to their enhanced energy conversion efficiency, adaptability for miniaturized and flexible devices, and compatibility with advanced technologies such as IoT devices, wearable electronics, and waste heat recovery systems. Germanium Telluride (GeTe) - based thermoelectric materials stand out due to their high performance, attributed to favorable electronic properties, tunable carrier concentration, structural robustness, and the potential for phase stabilization. As a lead-free thermoelectric material, GeTe has been extensively studied in its rhombohedral and cubic phases. However, its structural phase transition at approximately 700 K, associated with differences in thermal expansion coefficients, poses challenges for broader practical applications. Stabilizing GeTe in a single phase, particularly the cubic phase, which exhibits superior electronic properties and thermoelectric performance, could significantly enhance its utility. This thesis investigates the synthesis of cubic phase GeTe-based thin films using radio frequency (RF) sputtering followed by post-annealing treatment to achieve the desired cubic phase. To further enhance the thermoelectric properties, indium was introduced as a dopant. Comprehensive experimental and computational studies were conducted to analyze the effects of indium doping on the structural, electronic, and thermoelectric properties of the films. Indium, substituting at the germanium site, increases the density of state effective mass and acts as a scattering center, thereby modulating carrier concentration, enhancing the Seebeck coefficient, and reducing total thermal conductivity. These combined effects led to a remarkable improvement in the thermoelectric performance of the material, resulting in approximately a 4-fold enhancement in the dimensionless figure-of-merit (zT) at around 575 K. Moreover an enhancement of ~3-fold in the average zT within the working temperature range of 300 K to 575 K suggest the potential of indium-doped cubic GeSbTe thin films as a promising candidate for high-performance near room temperature, paving the way for further advancements in sustainable energy technologies.
關鍵字(中) ★ 熱電材料
★ 薄膜
★ 立方相GeSbTe
★ 載子調控
★ 共振摻雜
關鍵字(英) ★ Thermoelectrics
★ thin films
★ cubic phase GeSbTe
★ carrier tuning
★ resonant doping
論文目次 摘要 i
Abstract iii
Acknowledgment v
List of Figures ix
List of Tables xi
Chapter 1 Introduction 1
1.1 Background 1
1.2 Research Motivation and Scope 3
1.3 Thesis Layout 4
Chapter 2 Theory and Literature Review 7
2.1 Introduction to Thermoelectricity 7
2.1.1 Seebeck Effect 7
2.1.2 Peltier Effect 8
2.1.3 Thomson Effect 9
2.2 Thermoelectric Power Generation Theory 10
2.3 Thermoelectric Power Generator 13
2.3.1 Fundamental working of a Thermoelectric Generator 13
2.3.2 TEG Module Design and Power Generation Equations 14
2.3.3 Optimizing Efficiency and Output Power 15
2.4 History of Development of Thermoelectric Materials 16
2.5 Fundamental Properties of GeTe 17
2.5.1 Crystal Lattice Structure 17
2.5.2 Ge Vacancies in GeTe and High Carrier Concentration 18
2.5.3 Band Structure of GeTe 19
2.5.4 Advantages of Cubic Phase of GeTe for Thermoelectrics 20
2.6 Strategies to Improve the Thermoelectric Performance of GeTe 22
Chapter 3 Materials and Methodology 25
3.1 Film Synthesis 25
3.1.1 Radiofrequency Sputtering (RF) for Film Deposition 25
3.1.2 Thermal Evaporator for Indium Deposition 25
3.1.3 Furnace Heating for Post-Annealing 26
3.2 Characterization Techniques 27
3.2.1 Temporally Coherent X-ray Diffraction 27
3.2.2 Carrier Concentration and Mobility Measurement 28
3.2.3 Simultaneous Measurement of Electrical Conductivity and Seebeck Coefficient 29
3.2.4 Thin Film Thermal Conductivity Measurement (TF-LFA) 30
Chapter 4 Indium - An Effective Dopant in GeTe-based Thin Films 33
4.1 Introduction 33
4.2 Experimental Process 35
4.2.1 Material Characterizations 36
4.2.2 Thermoelectric Measurements 37
4.2.3 Density Functional Theory (DFT) Calculations 37
4.3 Results and Discussion 38
4.3.1 Structural Analysis of Thin Films 38
4.3.2 Electronic Properties of Thin Films 43
4.3.3 Electrical and Thermoelectric Transport Properties of In-doped Thin Films 45
4.4 Power Factor and Figure-of-Merit of In-doped Thin Films 55
4.5 Conclusions 57
Chapter 5 Summary and Future Perspective 59
5.1 Summary 59
5.2 Future Perspective 59
5.2.1 Further Doping Possibilities in GeTe 59
5.2.2 Device Fabrication of Cubic GeSbTe Thin Films 61
Bibliography 63
Appendix A 79
List of Publications 85
List of Conferences /Awards 87
參考文獻 M. Filonchyk, M.P. Peterson, H. Yan, A. Gusev, L. Zhang, Y. He, and S. Yang. “Greenhouse Gas Emissions and Reduction Strategies for the World′s Largest Greenhouse Gas Emitters,” Science of The Total Environment, 944, 2024, 173895.
[2] P. Achakulwisut, P. Erickson, C. Guivarch, R. Schaeffer, E. Brutschin, and S. Pye. “Global Fossil Fuel Reduction Pathways Under Different Climate Mitigation Strategies and Ambitions,” Nature Communications, 14, 1, 2023, 5425.
[3] R. Singh, S. Dogra, S. Dixit, N.I. Vatin, R. Bhardwaj, A.K. Sundramoorthy, H. Perera, S.P. Patole, R.K. Mishra, and S. Arya. “Advancements in Thermoelectric Materials for Efficient Waste Heat Recovery and Renewable Energy Generation,” Hybrid Advances, 5, 2024, 100176.
[4] A. Olabi, M. Al-Murisi, H.M. Maghrabie, B.A. Yousef, E.T. Sayed, A.H. Alami, and M.A. Abdelkareem. “Potential Applications of Thermoelectric Generators (TEGs) in Various Waste Heat Recovery Systems,” International Journal of Thermofluids, 16, 2022, 100249.
[5] H. Xie, Y. Zhang, P. Gao, “Thermoelectric-powered Sensors for Internet of Things.” Micromachines, 14 ,1, 2022, 31.
[6] N. V. Toan; T. T. K. Tuoi, N. Van Hieu, T. Ono, “Thermoelectric Generator with a High Integration Density for Portable and Wearable Self-Powered Electronic Devices.” Energy Conversion and Management, , 245, 2021,114571.
[7] Schubert, E. Fred. Doping in III-V Semiconductors. E. Fred Schubert, 2015.
[8] B. Zhou, S. Li, W. Li, J. Li, X. Zhang, S. Lin, Z. Chen, and Y. Pei. “Thermoelectric Properties of SnS with Na-Doping,” ACS Applied Materials & Interfaces, 9, 39, 2017, 34033-34041.
[9] J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder. “Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States,” Science, 321, 5888, 2008, 554-557.
[10] A. Banik, B. Vishal, S. Perumal, R. Datta, and K. Biswas. “The Origin of Low Thermal Conductivity in Sn1?xSbxTe: Phonon Scattering via Layered Intergrowth Nanostructures,” Energy & Environmental Science, 9, 6, 2016, 2011-2019.
[11] J. L. Lensch-Falk, J.D. Sugar, M.A. Hekmaty, and D.L. Medlin. “Morphological Evolution of Ag2Te Precipitates in Thermoelectric PbTe,” Journal of Alloys and Compounds, 504, 1, 2010, 37-44.
[12] S.H. Lo, J. He, K. Biswas, M.G. Kanatzidis, and V.P. Dravid. “Phonon Scattering and Thermal Conductivity in p-Type Nanostructured PbTe-BaTe Bulk Thermoelectric Materials,” Advanced Functional Materials, 22, 24, 2012, 5175-5184.
[13] R. Biswas, S. Mukherjee, R. Mallik, S. Vitta, and T. Dasgupta. “Ultralow Thermal Conductivity and Low Charge Carrier Scattering Potential in Zn1?xCdxSb Solid Solutions for Thermoelectric Application,” Materials Today Energy, 12, 2019, 107-113.
[14] Y. Pei, and D.T. Morelli. “Vacancy Phonon Scattering in Thermoelectric In2Te3–InSb Solid Solutions,” Applied Physics Letters, 94, 12, 2009, 122112.
[15] S. Wang, C. Chang, S. Bai, B. Qin, Y. Zhu, S. Zhan, J. Zheng, S. Tang, and L. D. Zhao. “Fine Tuning of Defects Enables High Carrier Mobility and Enhanced Thermoelectric Performance of n-Type PbTe,” Chemistry of Materials, 35, 2, 2023, 755-763.
[16] S. Sumithra, N.J. Takas, D.K. Misra, W.M. Nolting, P. Poudeu, and K.L. Stokes. “Enhancement in Thermoelectric Figure of Merit in Nanostructured Bi2Te3 with Semimetal Nanoinclusions,” Advanced Energy Materials, 1, 6, 2011, 1141-1147.
[17] C. Prajapati, S. Muthiah, N.K. Upadhyay, S. Bathula, D.K. Kedia, and S. Dhakate. “Nanostructured Inclusions Enhancing the Thermoelectric Performance of Higher Manganese Silicide by Modulating the Transport Properties,” Ceramics International, 50, 20, 2024, 40087-40095.
[18] P. Peng, C. Wang, J. Chen, P. Fan, R. Du, H. Si, Z. Cheng, and J. Wang. “Enhanced Thermoelectric Properties of SnTe through Core-Shell Structures and Band Engineering,” Journal of Alloys and Compounds, 942, 2023, 169010.
[19] S. Wei, B. Wang, Z. Zhang, W. Li, L. Yu, S. Wei, Z. Ji, W. Song, and S. Zheng. “Achieving High Thermoelectric Performance through Carrier Concentration Optimization and Energy Filtering in Cu3SbSe4-Based Materials,” Journal of Materiomics, 8, 5, 2022, 929-936.
[20] G. Tan, F. Shi, S. Hao, H. Chi, L.-D. Zhao, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis. “Codoping in SnTe: Enhancement of Thermoelectric Performance through Synergy of Resonance Levels and Band Convergence,” Journal of the American Chemical Society, 137, 15, 2015, 5100-5112.
[21] X. L. Shi, J. Zou, and Z. G. Chen. “Advanced Thermoelectric Design: From Materials and Structures to Devices,” Chemical Reviews, 120, 15, 2020, 7399-7515.
[22] Rowe, D. M. et. al., Handbook of Thermoelectrics, Macro to Nano, 1st edition, Boca Raton: CRC Press, 2006.
[23] Goldsmid, H. J. et. al., Introduction to Thermoelectricity, 2nd edition, Berlin: Springer, 2016.
[24] P. Zhang, Z. Lou, L. Gong, Z. Wu, X. Chen, W. Xu, Y. Wang, J. Xu, Z. Dashevsky, and F. Gao. “Development and Applications of Thermoelectric Oxide Ceramics and Devices,” Energies, 16, 11, 2023, 4475.
[25] Rowe, D. M. et. al., CRC Handbook of Thermoelectrics, 1st edition, Boca Raton, FL: CRC Press, 1995.
[26] L. Borgsmiller, D. Zavanelli, and G. J. Snyder. “Phase-Boundary Mapping to Engineer Defects in Thermoelectric Materials,” PRX Energy, 1, 2, 2022, 022001.
[27] S. N. F. Mott and H. Jones. “The Theory of the Properties of Metals and Alloys,” 1936.
[28] Y. Pei, H. Wang, and G. J. Snyder. “Band Engineering of Thermoelectric Materials,” Advanced Materials, 24, 46, 2012, 6125-6135.
[29] V. Devanathan. “The Wiedemann-Franz Law for Electrical and Thermal Conduction in Metals,” Journal of Chennai Academy of Sciences, 4, 2021, 1-26.
[30] P. Pichanusakorn, P. Bandaru, “Nanostructured Thermoelectrics”, Materials Science and Engineering R: Reports, 67 , 2010, 19-63.
[31] W. Lu, S. Li, R. Xu, J. Zhang, D. Li, Z. Feng, Y. Zhang, G. Tang, “Boosting Thermoelectric Performance of SnSe via Tailoring Band Structure, Suppressing Bipolar Thermal Conductivity, and Introducing Large Mass Fluctuation,” ACS Applied Materials & Interfaces, 11, 2019, 45133-4514.
[32] G. J. Snyder and E. S. Toberer. “Complex Thermoelectric Materials,” Nature Materials, 7, 2, 2008, 105-114.
[33] L. E. Bell. “Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems,” Science, 321, 5895, 2008, 1457-1461.
[34] N. V. Burnete, F. Mariasiu, D. Moldovanu, and C. Depcik. “Simulink Model of a Thermoelectric Generator for Vehicle Waste Heat Recovery,” Applied Sciences, 11, 3, 2021, 1340.
[35] C. Wood. “Materials for Thermoelectric Energy Conversion,” Reports on Progress in Physics, 51, 4, 1988, 459.
[36] N. Abishek and K. G. Naik. “Influence of Gallium Doping on Structural and Thermoelectric Properties of Bismuth Telluride,” Journal of Crystal Growth, 565, 2021, 126141.
[37] W . Xie, X. Tang, Y. Yan, Q. Zhang, and T. M. Tritt. “High Thermoelectric Performance BiSbTe Alloy with Unique Low-Dimensional Structure,” Journal of Applied Physics, 105, 11, 2009, 113713.
[38] R. Zhai, L. Hu, H. Wu, Z. Xu, T. J. Zhu, and X. B. Zhao. “Enhancing Thermoelectric Performance of n-Type Hot Deformed Bismuth-Telluride-Based Solid Solutions by Nonstoichiometry-Mediated Intrinsic Point Defects,” ACS Applied Materials & Interfaces, 9, 34, 2017, 28577-28585.
[39] X. Zhang, Z. Bu, S. Lin, Z. Chen, W. Li, and Y. Pei. “GeTe Thermoelectrics,” Joule, 4, 5, 2020, 986-1003.
[40] H. Wu, L.-D. Zhao, F. Zheng, D. Wu, Y. Pei, X. Tong, M. Kanatzidis, and J. He. “Broad Temperature Plateau for Thermoelectric Figure of Merit ZT > 2 in Phase-Separated PbTe0.7S0.3,” Nature Communications, 5, 1, 2014, 4515.
[41] Y. Tang, Z. M. Gibbs, L. A. Agapito, G. Li, H.-S. Kim, M. B. Nardelli, S. Curtarolo, and G. J. Snyder. “Convergence of Multi-Valley Bands as the Electronic Origin of High Thermoelectric Performance in CoSb3 Skutterudites,” Nature Materials, 14, 12, 2015, 1223-1228.
[42] Z. Zhou, G. Han, X. Lu, G. Wang, and X. Zhou. “High-Performance Magnesium-Based Thermoelectric Materials: Progress and Challenges,” Journal of Magnesium and Alloys, 10, 7, 2022, 1719-1736.
[43] S. M. Kauzlarich, S. R. Brown, and G. J. Snyder. “Zintl Phases for Thermoelectric Devices,” Dalton Transactions, 21, 2007, 2099-2107.
[44] J. Shuai, J. Mao, S. Song, Q. Zhang, G. Chen, and Z. Ren. “Recent Progress and Future Challenges on Thermoelectric Zintl Materials,” Materials Today Physics, 1, 2017, 74-95.
[45] R. Moshwan, L. Yang, J. Zou, and Z. G. Chen. “Eco-Friendly SnTe Thermoelectric Materials: Progress and Future Challenges,” Advanced Functional Materials, 27, 43, 2017, 1703278.
[46] R. Basu and A. Singh. “High Temperature Si-Ge Alloy Towards Thermoelectric Applications: A Comprehensive Review,” Materials Today Physics, 21, 2021, 100468.
[47] W. Li, S. Ghosh, N. Liu, and B. Poudel. “Half-Heusler Thermoelectrics: Advances from Materials Fundamental to Device Engineering,” Joule, 8, 5, 2024, 1274-1311.
[48] J. E. Boschker, R. Wang, and R. Calarco. “GeTe: A Simple Compound Blessed with a Plethora of Properties,” CrystEngComm, 19, 36, 2017, 5324-5335.
[49] V. Ranganayakulu, C. L. Chen, M. N. Ou, C. H. Lee, Y. Y. Chen. “Boosting the Thermoelectric Performance of GeTe via Vacancy Control and Engineering Sintering Parameters,” Materials Today Communications, 33, 2022, 104411.
[50] Z. Liu, N. Sato, Q. Guo, W. Gao, T. Mori. “Realizing the Role of Germanium Vacancies in Germanium Telluride: Metastable Cubic Structure Stabilization, Band Structure Modification, and Stable n-Type Conduction,” NPG Asia Materials, 12, 1, 2020, 66.
[51] A. Kolobov, J. Tominaga, P. Fons, and T. Uruga. “Local Structure of Crystallized GeTe Films,” Applied Physics Letters, 82, 3, 2003, 382-384.
[52] M. Hong, Z. G. Chen, L. Yang, Y. C. Zou, M. S. Dargusch, H. Wang, and J. Zou. “Realizing zT of 2.3 in Ge1-x-ySbxInyTe via Reducing the Phase-Transition Temperature and Introducing Resonant Energy Doping,” Advanced Materials, 30, 11, 2018, 1705942.
[53] J. Li, Z. Chen, X. Zhang, Y. Sun, J. Yang, Y. Pei, “Electronic Origin of the High Thermoelectric Performance of GeTe among the p-type Group IV Monotellurides,” NPG Asia Materials, 9 ,2017, 353-353.
[54] W. Y. Lyu, W. D. Liu, M. Li, X. L. Shi, M. Hong, T. Cao, K. Guo, J. Luo, J. Zou, and Z. G. Chen. “Condensed Point Defects Enhance Thermoelectric Performance of Rare-Earth Lu-Doped GeTe,” Journal of Materials Science & Technology, 151, 2023, 227-233.
[55] W. Lyu, W. Liu, M. Li, X. Shi, M. Hong, W. Chen, T. Cao, B. Hu, Y. Chen, and K. Guo. “Efficient Stepwise Carrier Concentration Optimization in Ge(1+x)-ySbyTe,” Journal of Materials Chemistry C, 12, 2024, 18004-18008.
[56] J. Li, Z. Chen, X. Zhang, H. Yu, Z. Wu, H. Xie, Y. Chen, and Y. Pei. “Simultaneous Optimization of Carrier Concentration and Alloy Scattering for Ultrahigh Performance GeTe Thermoelectrics,” Advanced Science, 4, 12, 2017, 1700341.
[57] M. Samanta and K. Biswas. “Low Thermal Conductivity and High Thermoelectric Performance in (GeTe)1-2x(GeSe)x(GeS)x: Competition Between Solid Solution and Phase Separation,” Journal of the American Chemical Society, 139, 27, 2017, 9382-9391.
[58] D. Z. Wang, W. D. Liu, X. L. Shi, H. Gao, H. Wu, L. C. Yin, Y. Zhang, Y. Wang, X. Wu, and Q. Liu. “Se-Alloying Reducing Lattice Thermal Conductivity of Ge0.95Bi0.05Te,” Journal of Materials Science & Technology, 106, 2022, 249-256.
[59] H. Kim, S. K. Kihoi, U. S. Shenoy, J. N. Kahiu, D. H. Shin, D. K. Bhat, H. S. Lee. “High Thermoelectric and Mechanical Performance Achieved by a Hyperconverged Electronic Structure and Low Lattice Thermal Conductivity in GeTe Through CuInTe2 Alloying,” Journal of Materials Chemistry A, 11, 15, 2023, 8119-8130.
[60] R. Basu and A. Singh. “A Comprehensive Review on Entropy Engineered GeTe: Antidote for Phase Transformation,” Energy Advances, 3, 2024, 689-711.
[61] K. S. Bayikadi, R. Sankar, C. T. Wu, C. Xia, Y. Chen, L. C. Chen, K.-H. Chen, and F. C. Chou. “Enhanced Thermoelectric Performance of GeTe Through in-Situ Microdomain and Ge-Vacancy Control,” Journal of Materials Chemistry A, 7, 25, 2019, 15181-15189.
[62] H. Liu, X. Zhang, J. Li, Z. Bu, X. Meng, R. Ang, and W. Li. “Band and Phonon Engineering for Thermoelectric Enhancements of Rhombohedral GeTe,” ACS Applied Materials & Interfaces, 11, 34, 2019, 30756-30762.
[63] Z. Zheng, X. Su, R. Deng, C. Stoumpos, H. Xie, W. Liu, Y. Yan, S. Hao, C. Uher, and C. Wolverton. “Rhombohedral to Cubic Conversion of GeTe via MnTe Alloying Leads to Ultralow Thermal Conductivity, Electronic Band Convergence, and High Thermoelectric Performance,” Journal of the American Chemical Society, 140, 7, 2018, 2673-2686.
[64] Z. Liu, J. Sun, J. Mao, H. Zhu, W. Ren, J. Zhou, Z. Wang, D. J. Singh, J. Sui, and C.-W. Chu. “Phase-Transition Temperature Suppression to Achieve Cubic GeTe and High Thermoelectric Performance by Bi and Mn Codoping,” Proceedings of the National Academy of Sciences of the United States of America, 115, 21, 2018, 5332-5337.
[65] S. Zhi, J. Li, L. Hu, J. Li, N. Li, H. Wu, F. Liu, C. Zhang, W. Ao, and H. Xie. “Medium Entropy-Enabled High Performance Cubic GeTe Thermoelectrics,” Advanced Science, 8, 12, 2021, 2100220.
[66] S. Schwarzmuller, M. Jakob, M. Nentwig, T. Schroder, A. Kuhn, A. Duvel, P. Heitjans, O. Oeckler. “Tuning the Vacancy Concentration in Lithium Germanium Antimony Tellurides—Influence on Phase Transitions, Lithium Mobility, and Thermoelectric Properties,” Chemistry of Materials, 30, 21, 2018, 7970-7978.
[67] M. Liu, J. Zhu, B. Cui, F. Guo, Z. Liu, Y. Zhu, M. Guo, Y. Sun, Q. Zhang, and Y. Zhang. “High-Performance Lead-Free Cubic GeTe-Based Thermoelectric Alloy,” Cell Reports Physical Science, 3, 6, 2022, 100902.
[68] S. Abbas, B. Jarwal, T.-T. Ho, S. M. Valiyaveettil, C. R. Hsing, T. L. Chou, C. M. Wei, L. C. Chen, K. H. Chen. “Synergistic Effect of Indium Doping on Thermoelectric Performance of Cubic GeTe-Based Thin Films,” Materials Today Physics, 49, 2024, 101581.
[69] Y. Pei, A. F. May, and G. J. Snyder. “Self-Tuning the Carrier Concentration of PbTe/Ag2Te Composites with Excess Ag for High Thermoelectric Performance,” Advanced Energy Materials, 1, 2, 2011, 291-296.
[70] S. Meledath Valiyaveettil, D. L. Nguyen, D. P. Wong, C. R. Hsing, L. Paradis-Fortin, M. Qorbani, A. Sabbah, T. L. Chou, K. K. Wu, and V. Rathinam. “Enhanced Thermoelectric Performance in Ternary Skutterudite Co(Ge0.5Te0.5)3 via Band Engineering,” Inorganic Chemistry, 61, 10, 2022, 4442-4452.
[71] Y. Kawajiri, S. Tanusilp, M. Kumagai, M. Ishimaru, Y. Ohishi, J. Tanaka, and K. Kurosaki. “Enhancement of Thermoelectric Properties of n-Type Bi2Te3-xSex by Energy Filtering Effect,” ACS Applied Energy Materials, 4, 10, 2021, 11819-11826.
[72] B. Jarwal, S. Abbas, T.-L. Chou, S. M. Valiyaveettil, A. Kumar, S. Quadir, T. T. Ho, D. P. Wong, L. C. Chen, and K. H. Chen. “Boosting Thermoelectric Performance in Nanocrystalline Ternary Skutterudite Thin Films Through Metallic CoTe2 Integration,” ACS Applied Materials & Interfaces, 16, 12, 2024, 14770-14780.
[73] Y. Zhong, F. Lv, X. Zhao, Q. Deng, X. An, Z. He, L. Gan, R. Ang. “Extraordinary Role of Resonant Dopant Vanadium for Improving Thermoelectrics in n-Type PbTe,” Materials Today Physics, 30, 2023, 100955.
[74] S. N. Girard, J. He, C. Li, S. Moses, G. Wang, C. Uher, V. P. Dravid, and M. G. Kanatzidis. “In Situ Nanostructure Generation and Evolution Within a Bulk Thermoelectric Material to Reduce Lattice Thermal Conductivity,” Nano Letters, 10, 8, 2010, 2825-2831.
[75] L. Huang, J. Liao, G. Yuan, T. Liu, X. Lei, C. Wang, and Q. Zhang. “Tuning the Carrier Scattering Mechanism to Improve the Thermoelectric Performance of p-Type Mg3Sb1.5Bi0.5-Based Material by Ge Doping,” Materials Today Energy, 25, 2022, 100977.
[76] M. Dutta, M. Samanta, T. Ghosh, D. J. Voneshen, and K. Biswas. “Evidence of Highly Anharmonic Soft Lattice Vibrations in a Zintl Rattler,” Angewandte Chemie, 133, 8, 2021, 4305-4311.
[77] T. Wang, K. Dou, H. Wang, J. Kim, X. Wang, W. Su, T. Chen, W. Kim, and C. Wang. “Higher-Order Anharmonicity Leads to Ultra-Low Thermal Conductivity and High Output Power Density of SnTe-Based Thermoelectric Materials and Modules,” Materials Today Physics, 26, 2022, 100748.
[78] L. Wu, X. Li, S. Wang, T. Zhang, J. Yang, W. Zhang, L. Chen, and J. Yang. “Resonant Level-Induced High Thermoelectric Response in Indium-Doped GeTe,” NPG Asia Materials, 9, 1, 2017, 343.
[79] T. R. Bhandari, R. P. Bhattarai, and R. Adhikari. “A Review on Synthesis, Structural Properties and Applications of Metal Oxide-Based Thin Film Thermoelectric Materials,” Journal of Materials Science, 59, 2024, 20204-20220.
[80] Z. Wang, J. E. Alaniz, W. Jang, J. E. Garay, and C. Dames. “Thermal Conductivity of Nanocrystalline Silicon: Importance of Grain Size and Frequency-Dependent Mean Free Paths,” Nano Letters, 11, 6, 2011, 2206-2213.
[81] G. Kogo, B. Xiao, S. Danquah, H. Lee, J. Niyogushima, K. Yarbrough, A. Candadai, A. Marconnet, S. K. Pradhan, and M. Bahoura. “A Thin Film Efficient pn-Junction Thermoelectric Device Fabricated by Self-Align Shadow Mask,” Scientific Reports, 10, 1, 2020, 1067.
[82] D. Ao, F. Li, Y. Chen, J. Luo, G. Liang, Z. Zheng, X.-H. Zhang, and P. Fan. “CoSb3-Based Thin-Film Thermoelectric Devices with High Performance via Electrode Optimization,” ACS Applied Energy Materials, 4, 5, 2021, 5265-5273.
[83] K.S. Bayikadi, C.T. Wu, L.-C. Chen, K.-H. Chen, F.-C. Chou, R. Sankar, “Synergistic Optimization of Thermoelectric Performance of Sb doped GeTe with a Strained Domain and Domain Boundaries,” Journal of Materials Chemistry A, 8, 2020, 5332-5341.
[84] P. V. Medeiros, S. Stafstrom, and J. Bjork. “Effects of Extrinsic and Intrinsic Perturbations on the Electronic Structure of Graphene: Retaining an Effective Primitive Cell Band Structure by Band Unfolding,” Physical Review B, 89, 4, 2014, 041407.
[85] P. V. Medeiros, S. S. Tsirkin, S. Stafstrom, and J. Bjork. “Unfolding Spinor Wave Functions and Expectation Values of General Operators: Introducing the Unfolding-Density Operator,” Physical Review B, 91, 4, 2015, 041116.
[86] L. Yue, W. Cui, S. Zheng, Y. Wu, X. Dong, and G. Lu. “Enhanced Thermoelectric Performance of In and Se Co-Doped GeTe Compounds,” Journal of Materials Research and Technology, 9, 3, 2020, 4106-4113.
[87] C. Merlet, “Thin film quantification by EPMA: Accuracy of Analytical Procedure,” Microscopy and Microanalysis, 12, 2006, 842-843.
[88] M. Ahmad, J. Zhao, J. Iqbal, W. Miao, L. Xie, R. Mo, and J. Zhu. “Conductivity Enhancement by Slight Indium Doping in ZnO Nanowires for Optoelectronic Applications,” Journal of Physics D: Applied Physics, 42, 16, 2009, 165406.
[89] S. Y. Bae, C. W. Na, J. H. Kang, and J. Park. “Comparative Structure and Optical Properties of Ga-, In-, and Sn-Doped ZnO Nanowires Synthesized via Thermal Evaporation,” The Journal of Physical Chemistry B, 109, 7, 2005, 2526-2531.
[90] G. Xing, J. Sun, Y. Li, X. Fan, W. Zheng, and D. J. Singh. “Thermoelectric Properties of p-Type Cubic and Rhombohedral GeTe,” Journal of Applied Physics, 123, 19 2018, 195105.
[91] L. Wang, X. Zhang, and L.-D. Zhao. “Evolving Strategies Toward Seebeck Coefficient Enhancement,” Accounts of Materials Research, 4, 5, 2023, 448-456.
[92] C. Chiritescu, D. G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, and P. Zschack. “Ultralow Thermal Conductivity in Disordered, Layered WSe2 Crystals,” Science, 315, 5810, 2007, 351-353.
[93] D. G. Cahill and F. Watanabe. “Thermal Conductivity of Isotopically Pure and Ge-Doped Si Epitaxial Layers from 300 to 550 K,” Physical Review B, 70, 23, 2004, 235322.
[94] E. Bozorg-Grayeli, A. Sood, M. Asheghi, V. Gambin, R. Sandhu, T. I. Feygelson, B. B. Pate, K. Hobart, and K. E. Goodson. “Thermal Conduction Inhomogeneity of Nanocrystalline Diamond Films by Dual-Side Thermoreflectance,” Applied Physics Letters, 102, 11, 2013, 111907.
[95] W. Capinski, H. Maris, T. Ruf, M. Cardona, K. Ploog, D. Katzer. “Thermal-Conductivity Measurements of GaAs/AlAs Superlattices Using a Picosecond Optical Pump-and-Probe Technique,” Physical Review B, 59, 12, 1999, 8105.
[96] H. S. Kim, Z. M. Gibbs, Y. Tang, H. Wang, and G. J. Snyder. “Characterization of Lorenz Number with Seebeck Coefficient Measurement,” APL Materials, 3, 4, 2015, 041506.
[97] M. T. Buscaglia, F. Maglia, U. Anselmi-Tamburini, D. Marre, I. Pallecchi, A. Ianculescu, G. Canu, M. Viviani, M. Fabrizio, and V. Buscaglia. “Effect of Nanostructure on the Thermal Conductivity of La-Doped SrTiO3 Ceramics,” Journal of the European Ceramic Society, 34, 2, 2014, 307-316.
[98] J. Li, Q. Hu, S. He, X. Tan, Q. Deng, Y. Zhong, F. Zhang, and R. Ang. “Enhancing Near-Room-Temperature GeTe Thermoelectrics Through In/Pb Co-Doping,” ACS Applied Materials & Interfaces, 13, 31, 2021, 37273-37279.
[99] R. Liang, G. Yan, Y. Geng, L. Hu, F. Liu, W. Ao, C. Zhang, “Compromise Design of Resonant Levels in GeTe?Based Alloys with Enhanced Thermoelectric Performance,” Advanced Functional Materials, 2024, 2404021.
[100] S. Perumal, M. Samanta, T. Ghosh, U. S. Shenoy, A. K. Bohra, S. Bhattacharya, A. Singh, U. V. Waghmare, and K. Biswas. “Realization of High Thermoelectric Figure of Merit in GeTe by Complementary Co-Doping of Bi and In,” Joule, 3, 10, 2019, 2565-2580.

[101] Z. Guo, G. Wu, X. Tan, R. Wang, Z. Zhang, G. Wu, Q. Zhang, J. Wu, G. Q. Liu, and J. Jiang. “Enhanced Thermoelectric Performance in GeTe by Synergy of Midgap State and Band Convergence,” Advanced Functional Materials, 33, 11, 2023, 2212421.
[102] H. Sun, X. Lu, H. Chi, D. T. Morelli, and C. Uher. “Highly Efficient (In2Te3)x(GeTe)3-3x Thermoelectric Materials: A Substitute for TAGS,” Physical Chemistry Chemical Physics, 16, 29, 2014, 15570-15575.
[103] A. Suwardi, J. Cao, Y. Zhao, J. Wu, S. W. Chien, X. Y. Tan, L. Hu, X. Wang, W. Wang, and D. Li. “Achieving High Thermoelectric Quality Factor Toward High Figure of Merit in GeTe,” Materials Today Physics, 14, 2020, 100239.
[104] F. Robinson, V. Sethi, C. K. de Groot, A. L. Hector, R. Huang, G. Reid. “Low-Pressure CVD of GeE (E = Te, Se, S) Thin Films from Alkylgermanium Chalcogenolate Precursors and Effect of Deposition Temperature on the Thermoelectric Performance of GeTe,” ACS Applied Materials & Interfaces, 13, 40, 2021, 47773-47783.
[105] E. R. Sittner, K. S. Siegert, P. Jost, C. Schlockermann, F. R. L. Lange, M. Wuttig. “(GeTe)x–(Sb2Te3)1-x Phase-Change Thin Films as Potential Thermoelectric Materials,” Physica Status Solidi (A), 210, 1, 2013, 147-152.
[106] Z. Hu, H. Yu, J. He, Y. Ran, H. Zeng, Y. Zhao, Z. Yu, and K. Tai. “High-Performance Sb-Doped GeTe Thermoelectric Thin Film and Device,” Acta Metallurgica Sinica (English Letters), 36, 10, 2023, 1699-1708.
[107] M. Li, M. Hong, X. Tang, Q. Sun, W.-Y. Lyu, S.-D. Xu, L.-Z. Kou, M. Dargusch, J. Zou, Z.-G. Chen, “Crystal Symmetry Induced Structure and Bonding Manipulation Boosting Thermoelectric Performance of GeTe,” Nano Energy, 73, 2020, 104740.
[108] M. Hong, Y. Wang, T. Feng, Q. Sun, S. Xu, S. Matsumura, S.T. Pantelides, J. Zou, Z.-G. Chen, “Strong Phonon–Phonon Interactions Securing Extraordinary Thermoelectric Ge1–x Sb x Te with Zn-Alloying-Induced Band Alignment,” Journal of the American Chemical Society, 141, 2018, 1742-1748.
[109] L. Xie, Y. Chen, R. Liu, E. Song, T. Xing, T. Deng, Q. Song, J. Liu, R. Zheng, X. Gao, “Stacking Faults Modulation for Scattering Optimization in GeTe-based Thermoelectric Materials,” Nano Energy, 68, 2020, 104347.
[110] B. Srinivasan, S. Le Tonquesse, A. Gelle, C. Bourges, L. Monier, I. Ohkubo, J.-F. Halet, D. Berthebaud, T. Mori, “Screening of Transition (Y, Zr, Hf, V, Nb, Mo, and Ru) and Rare-Earth (La and Pr) Elements as Potential Effective Dopants for Thermoelectric GeTe – An Experimental and Theoretical appraisal,” Journal of Materials Chemistry A, 8, 2020, 19805-19821.
[111] S. Imam, K.S. Bayikadi, M. Ubaid, V. Ranganayakulu, S. Devi, B.S. Pujari, Y.-Y. Chen, L.-C. Chen, K.-H. Chen, F.-L. Lin, “Achieving Synergistic Performance through Highly Compacted Microcrystalline Rods induced in Mo doped GeTe based Compounds,” Materials. Today Physics, 22, 2022, 100571.
[112] U.S. Shenoy, D.K. Bhat, “Tuning the Electronic Structure of Rhombohedral and Cubic GeTe for Thermoelectric Application: Influence of Molybdenum Doping,” Journal of Physics and Chemistry of Solids, 188, 2024, 111943.
[113] E. Isotta, J. Andrade?Arvizu, U. Syafiq, A. Jimenez?Arguijo, A. Navarro?Guell, M. Guc, E. Saucedo, P. Scardi, “Towards Low Cost and Sustainable Thin Film Thermoelectric Devices based on Quaternary Chalcogenides,” Advanced Functional Materials, 32, 2022, 2202157.
[114] J. Yan, X. Liao, D. Yan, Y. Chen, “Review of Micro Thermoelectric Generator”, Journal of Microelectromechanical Systems, 27, 2018, 1-18.
[115] R. Amin, M.A. Hossain, Y. Zakaria, “Interfacial Kinetics and Ionic Diffusivity of the Electrodeposited MoS2 Film,” ACS Applied Materials Interfaces., 10, 2018, 13509-13518.
[116] J. Ma, X.-Y. Xin, H.-Q. Liu, Y.-J. Gu, Y.-F. Wang, “Origin of Improved Average Power Factor and Mechanical Properties of SnTe with High-Dose Bi2Te3 Alloying,” Ceramics International, 49 , 2023, 21916-21922.
指導教授 陳貴賢 林麗瓊 陳賜原(Chen, Kuei-Hsien Chen, Li-Chyong Chen, Szu-Yuan) 審核日期 2024-12-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明