博碩士論文 110222016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.119.0.68
姓名 施奕辰(Yi-Chen Shi)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Activation and Oxidation of CD3OD on Iridium Oxide Prepared under Ambient Pressure)
相關論文
★ 鐵電型液晶材料光熱相變研究★ An AFM study of thermal behavior of lipid over layers on mica
★ 利用RHEED、LEED、AES 研究Al2O3在NiAl(100)和Co在Al2O3/NiAl(100)上的幾何結構和生長方式★ Patterning Co Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Growth of Oxide on NiAl(100) and its Interaction with Au★ 用原子力顯微鏡在脂質膜上做微影術並且討論其在基板上之動力行為
★ Catalytic properties of Au nanoclusters supported on Al2O3/NiAl (100) surface★ Atomic Structures and Electro-catalytic Properties of Pt Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Nanowires from Aligned One-dimensional Arrays of Co Nanoclusters on Al2O3 Grown on Vicinal NiAl Surfaces★ 以掃描穿隧電子顯微鏡及光激發能譜研究奈金屬粒子在氧化鋁薄膜上的成長
★ 在氧化鋁上成長金與白金的和金奈米粒子★ 以第一原理研究一到二顆金原子在θ型氧化鋁(001)表面上的吸附與擴散行為
★ 甲醇在以thita-三氧化二鋁/鎳鋁合金為基板之奈米黃金粒子上的分解反應-以熱脫附質譜術與傅立葉紅外光譜儀方法之研究★ 探測θ-Al2O3/NiAl(100)表面之下的結構以及Au-Pt雙金屬顆粒在θ-Al2O3/NiAl(100)表面上的形貌
★ 利用穿隧式電子顯微鏡的探針產生在鎳鋁合金(100)面上的局部氧化反應★ 利用PES探討吸附物對Au-Pt奈米團簇所引發表面發生重構的現象
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-10以後開放)
摘要(中) 在常壓下製備的氧化銥上,甲醇的分解實驗仍未被完整的研究。在我們之前的研究中,常壓下製備的氧化銥的晶體和表面結構隨著壓力的變化而變化。因此,不同條件下製備的氧化銥上甲醇的脫附特性和反應路徑可能會受到氧化物結構的影響。在本研究中,我們選擇了在775 K下,在1 × 10-6 Torr、1 × 10-2 Torr、1 × 10-1 Torr、1 Torr和5 Torr O2下製備的5種銥氧化物結構,以研究甲醇的分解,並採用了熱脫附質譜術(TPD)、紅外線吸附光譜(IRAS)、近大氣壓-光電子能譜(NAP-PES)和近大氣壓-質譜術(NAP-MS)等技術。
在氧氣壓為10-6 Torr下生長的銥氧化物上,CD3OD的反應路徑清晰可見,顯示出CD3OD在180 K時脫氫生成CD2O,在220 K生成CO,隨後在300 K氧化為DCOO,最終在370 K完全脫氫生成CO2。相比於2 × 1氧吸附的Ir,低曝量的CD3OD在成長條件為10-2和10-1 Torr氧氣的銥氧化物上難以與表面氧結合並形成CO2。隨著氧化物生長條件達到1 × 10-2 Torr,含碳物質更容易從氧化物中脫附。過渡態和簇狀銥氧化物上的甲醇反應機制是分解為CO和D2,這與單晶銥上的反應差不多 [2]。在近常壓的甲醇實驗中,在低於1 × 10-1 Torr下生長的銥氧化物,CH3OH的主要反應機制是在300 K先是分解為CHxO,然後形成主要產物為CO和少量產物CHx(x = 0 ~ 4),與低曝量甲醇反應機制一致。在1 Torr和5 Torr氧氣下生長的銥氧化物上,CD3OD的反應更偏向於氧化,且在低溫下容易脫附。與2 × 1氧吸附的Ir(100)相比,3維雙相和2 & 3維混相的銥氧化物上CD2O的形成和CO的脫附發生在更低的溫度。在近常壓實驗中,在300 K的溫度和氧覆蓋較高的氧化物上,CO和CHx的生成量進一步減少,但在1 Torr以上生長的銥氧化物上CHxO (x = 1 ~ 3)和C*仍略有增加。生長在10-2 Torr O2以上的銥氧化物上,氣體生成物在400 K時對CD2O的選擇性更高,而非CO。
摘要(英) The methanol decomposition on the iridium oxide prepared under ambient pressure hasn’t been studied fully. In our previous studies [1], the crystal and surface structure of iridium oxide prepared under ambient pressure varied with pressures. Therefore, the desorption property and reaction pathway of methanol on the iridium oxide prepared under different conditions might be affected by the oxide structure. In this studies, 5 structures of Ir oxides prepared under 1 × 10-6 Torr, 1 × 10-2 Torr, 1 × 10-1 Torr, 1 and 5 Torr O2 at 775 K are selected for the methanol decomposition investigation by the temperature programmed desorption (TPD), the infrared reflection adsorption spectroscopy (IRAS), near ambient X ray photoelectron spectroscopy (NAP-PES) and the near ambient pressure- mass spectroscopy (NAP-MS).
The clear reaction pathway of CD3OD on Ir oxide grown under 10-6 Torr oxygen (2 × 1 oxygen adsorbed Ir(100)) demonstrates the CD3OD dehydrogenation from CD2O at 180 K and CO at 220 K, oxidation to DCOO at 300 K CO2, to then CO2 from total dehydrogenation at 370 K. The Langmuir dose CD3OD is difficult to combine with surface oxygen and form CO2 on Ir oxide grown under 10-2 and 10-1 Torr oxygen (Ir(100)-(2 × 1)-O + IrO2(100) and IrO2(100)), compared to TPD results on 2 × 1 oxygen adsorbed Ir. Since oxide growth condition up to 1 × 10-2 Torr, carbon species is more facile to desorb from the oxide. The reaction mechanisms of methanol on Ir(100)-(2 × 1)-O + IrO2(100) and IrO2(100) are simply decomposing to CO and D2, as that on single crystal Ir [2]. In ambient methanol experiments, the main mechanism of CH3OH is decomposition to CHxO at 300 K, and then main product CO and the minor product CHx (x = 1 ~ 3) on the Ir oxide grown under below 1 × 10-1 Torr. It is consistent with the Langmuir doses experiment. The reactions of CD3OD are preferential to oxidation with facile desorption at low temperature on Ir oxides grown under 1 and 5 Torr oxygen (IrO2(102) & (10-2) and IrO2(110)). The CD2O formation and CO desorption occur at lower temperature on IrO2(102) & (10-2) and IrO2(110), compared to 2 × 1 oxygen adsorbed Ir(100). In ambient pressure experiment, the CO and CHx products is further reduced on higher oxygen-covered oxide at 300 K, but CHxO (x = 1 ~ 3) and C* still slightly increases on Ir oxides grown under above 1 Torr oxygen. Gaseous productions on the Ir oxides grown above 10-2 Torr O2 have higher selectivity to CD2O at 400 K, rather than CO.
關鍵字(中) ★ 甲醇 關鍵字(英) ★ Methanol
論文目次 Chapter 1 Introduction 1
Chapter 2 Literature Survey 3
2.1 Motivation of Research 3
2.1.1 Activation of CH4 at Low Temperature under UHV on IrO2(110) 3
2.2 Iridium Oxides Grown under Ambient Pressure Conditions and Studied with RHEED and STM 5
2.2.1 2 × 1 Oxygen Adsorbed Ir(100), Ir(100)-(2 × 1)-O + IrO2(100) and IrO2(100) 5
2.2.2 3D Cluster Iridium Oxide, IrO2(100) 9
2.2.3 3D Double-Phase Iridium Oxide, IrO2(102) & (10-2) 11
2.2.4 2D & 3D Mixing Iridium Oxide, IrO2(110) 12
2.3 Decomposition and Oxidation of Methanol on Clean Ir(111) and Oad saturated Ir(111) (10 L O2) 14
2.4 Decomposition Reaction of CH3OH on s-RuO2 at Different Coverage of CH3OH and on RuO2 with Different Oxygen Coverage 16
2.5 Reaction Mechanism of CH3OH on Cu2O/Cu(111) under Ambient Pressure Methanol and at Elevated Temperature 17
2.6 Desorption-Limited Evolution and Reaction-Limited Production of H2O at Higher Temperature on Stoichiometric and O-rich IrO2(110) 19
Chapter 3 Experimental Apparatus and Procedure 21
3.1 Experimental Apparatus 21
3.1.1 Temperature Programmed Desorption (TPD) 21
3.1.2 Infrared Reflection Adsorption Spectroscopy (IRAS) 25
3.1.3 Fourier Transform Interferometers 29
3.1.4 Photoelectron Spectroscopy (PES) 31
3.2 Ambient Pressure Experiments 33
3.2.1 Near Ambient pressure PES(NAP-PES) 33
3.2.2 Near Ambient Pressure Mass Spectroscopy(NAP-MS) 33
3.3 Experimental Procedure 34
Chapter 4 Results and Discussions 36
4.1 Decomposition and Oxidation of Methanol on clean Ir(100) and Ir(100)-(2 × 1)-O (1 × 10-6 Torr O2 30 mins) 36
4.1.1 Reaction products of Langmuir Doses CD3OD on clean Ir(100) 36
4.1.2 Reaction Products of Langmuir Doses CD3OD from Ir(100)-(2 × 1)-O (1 × 10-6 Torr O2 30mins) 37
4.1.3 Formation of Products or Intermediates Revealed by IR and NAP-PES Results on Ir(100)-(2 × 1)-O (1 × 10-6 Torr O2 30 mins) 39
4.1.4 Gaseous Productions Revealed by NAP-MS from Ir(100)-(2 × 1)-O (1 × 10-6 Torr O2 30 mins) 42
4.2 Decomposition of Methanol on Ir(100)-(2 × 1)-O + IrO2(100) (1 × 10-2 Torr O2 30 mins) and 3D Cluster Iridium Oxide IrO2(100) (1 × 10-1 Torr O2 30 mins) 43
4.2.1 Reaction Products of Langmuir Doses CD3OD from Ir(100)-(2 × 1)-O + IrO2(100) (1 × 10-2 Torr O2 30 mins) 44
4.2.2 Formation of Products or Intermediates Revealed by IR and NAP-PES Results on Ir(100)-(2 × 1)-O + IrO2(100) (1 × 10-2 Torr O2 30 mins) 45
4.2.3 Gaseous Productions Revealed by NAP-MS from Ir(100)-(2 × 1)-O + IrO2(100) (1 × 10-2 Torr O2 30 mins) 48
4.2.4 Reaction Products of Langmuir Doses CD3OD from IrO2(100) (1 × 10-1 Torr O2 30 mins) 49
4.2.5 Formation of Products or Intermediates Revealed by IR and NAP-PES Results on IrO2(100) (1 × 10-1 Torr O2 30 mins) 51
4.2.6 Gaseous Productions Revealed by NAP-MS from IrO2(100) (1 × 10-1 Torr O2 30 mins) 55
4.3 Decomposition and Oxidation of Methanol on IrO2(102) & (10-2) (1 Torr O2 10 mins) and IrO2(110) (5 Torr O2 30 mins) 56
4.3.1 Reaction Products of Langmuir Doses CD3OD from IrO2(102) & (10-2) (1 Torr O2 10 mins) 57
4.3.2 Formation of Products or Intermediates Revealed by IR and NAP-PES Results on IrO2(102) & (10-2) (1 Torr O2 10 mins) 59
4.3.4 Reaction Products of Langmuir Doses CD3OD from IrO2(110) (5 Torr O2 30 mins) 63
4.3.6 Gaseous Productions Revealed by NAP-MS from IrO2(110) (5 Torr O2 30 mins) 69
4.4 Surface Densities of Naked Ir Sites and Productions per Site on Ir(100)-(2 × 1)-O + IrO2(100) and IrO2(100) 70
Chapter 5 Discussion 73
5.1 Active Oxygen and Oxide Formation Influencing Reaction of Langmuir Dose CD3OD on Clean Ir(100) and 5 Ir Oxides 73
5.2 Reaction Probabilities on Clean Ir(100) and 5 Ir Oxides 78
5.3 Reaction Mechanism under Ambient CH3OH on 5 Structures of Ir Oxides Revealed by NAP-PES 79
5.4 Surface Density of Adsorption Sites on Clean Ir(100) and 5 Ir Oxides 81
5.5 Uptake and Decomposition of Hydrogen and Water 85
5.6 Elimination of Surface Oxygen with Second CD3OD Exposure 87
Chapter 6 Conclusion 89
References 91
參考文獻 [1] 李律昕, “A Structural Study of Iridium Oxide Grown on Ir(100) under Ambient Pressure Conditions”, 中央大學物理系論文, 中華民國112年.
[2] C. J. Weststrate, W. Ludwig, J. W. Bakker, A. C. Gluhoi, “Methanol Decomposition and Oxidation on Ir(111)”, J. Phys. Chem. C, Vol. 111, No. 21, pp. 7741-7747, 2007.\r [3] Jianyu Wang, Chaoran Li, Yaguang Zhu, Shyam Patel, Jorge Anibal Boscoboinik, and Guangwen Zhou, “Effect of the Chemical States of Copper on Methanol Decomposition and Oxidation”, J. Phys. Chem. C, Vol. 128, No. 11, pp. 4559–4572, 2024.
[4] J. Barbier, E. Churin, P. Marecot, J.C. Menezo, “Deactivation by Coking of Platinum/Alumina Catalysts”, Vol. 36, pp. 277-285,1988.
[5] S. Fuentes, F. Figueras, R. Gomez, “Deactivation by Coking of Rhodium Catalysts of Widely Varying Dispersion”, Vol. 68, No. 2, pp. 419-422, 1981.
[6] Rahul Rai and Jason F. Weaver, ”Methanol Oxidation on Stoichiometric and Oxygen-rich RuO2(110)”, Vol. 19, pp. 18975-18987, 2017.
[7] Can Hakanoglu, Jose A. Hinojosa, Jr., and Jason F. Weaver, “Oxidation of Methanol on a PdO(101) Thin Film”, J. Phys. Chem. C, Vol. 115, No. 23, pp. 11575–11585, 2011.
[8] Ivan Orozco, Erwei Huang, Mausumi Mahapatra, Rui Shi, Jindong Kang, Slavomir Nemsa?k, Sanjaya D. Senanayake, Ping Liu, and Jose?A. Rodriguez, “In Situ Studies of Methanol Decomposition Over Cu(111) and Cu2O/Cu(111): Effects of Reactant Pressure, Surface Morphology, and Hot Spots of Active Sites”, J. Phys. Chem. C, Vol. 125, pp. 558?571, 2021.
[9] A. Franklin, M. Kim, R. Martin, F. Feng, T. Li, Z. Liang, A. Asthagiri and J.F. Weaver, “Adsorption and Oxidation of CH4 on Oxygen-Rich IrO2(110)”, ACS Publication, Vol. 123, No. 45, pp. 27603-27614, 2019.
[10] Yingxue Bian, Tao Li and Jason F Weaver, “Structure and reactivity of iridium oxide layers grown on Ir(100) by oxidation at sub-ambient O2 pressures”, J. Phys. D: Appl. Phys., Vol. 52, No. 43, pp. 434002, 2019.
[11] Zhu Liang, Tao Li, Minkyu Kim, Aravind Asthagiri, Jason F. Weaver, “Low- temperature activation of methane on the IrO2(110) surface”, Science, Vol. 356, No. 6335, pp. 299-303, 2020.
[12] C. J. Weststrate, W. Ludwig, J. W. Bakker, and A. C. Gluhoi, “Methanol Decomposition and Oxidation on Ir(111)”, J. Phys. Chem. C, Vol. 111, No. 21, pp. 7741–7747, 2007.
[13] IvanOrozco, ErweiHuang, MausumiMahapatra, RuiShi, JindongKang, SlavomirNemsak, SanjayaD. Senanayake, PingLiu, and JoseA.Rodriguez, “In Situ Studies of Methanol Decomposition Over Cu(111) and Cu2O/Cu(111): Effects of Reactant Pressure, Surface Morphology, and Hot Spots of Active Sites”, J. Phys. Chem. C, Vol. 125, No. 1, pp. 558–571, 2021.
[14] Tao Lia*, Minkyu Kimb*, Zhu Liang, Aravind Asthagiri and Jason F. Weaver, “Hydrogen oxidation on oxygen-rich IrO2(110)”, Catalysis, Structure & Reactivity, Vol. 4, No. 4, pp. 1–13, 2018.
[15] Elaine M. McCash, “Surface Chemistry”, Oxford University Press, 2001.
[16] A.M. Bradshaw, E. Schweizer, “Infrared reflection absorption spectroscopy of adsorbed molecules, in: R.E. Hester(Ed.)”, Advances in Spectroscopy: Spectroscopy of Surfaces, Wiley, New York, 1988.
[17] R. G. Greenler, “Infrared Study of Adsorbed Molecules on Metal Surfaces by Reflection Techniques”, J. Chem. Phys., Vol. 44, pp. 310, 1966.
[18] ABB FT-IR reference manual.
[19] 李冠卿,近代光學,聯經出版社,1988.
[20] Harald Ibach, “Physics of Surfaces and Interfaces”, Springer-Verlag, 2006.
[21] Skoog D.A. et al., “Principles of Instrumental Analysis (4th)”, Saunders College, 1992.
[22] J. C. Vickerman, “Surface Analysis – The Principal Techniques”, Jon Wiley & Sons, 1997.
[23] A. K. Stantra, D.W. Goodman, “J.Phys: Condens Matter”, Vol.14, R31 - R62, 2002.
[24] Ricardo B. Barros, Ana Rosa Garcia, Laura M. Ilharco, “The effect of pre-adsorbed atoms on the reactivity of methanol-d4 on Ru(001): Comparison between hydrogen and oxygen”, Surface Science, Vol. 600, No. 12, pp. 2425-2433, 2006.
[25] J. Lauterbach, R.W. Boyle, M. Schick, W.J. Mitchell, B. Meng, W.H. Weinberg, “The adsorption of CO on Ir(111) investigated with FT-IRAS”, Surface Science, Vol. 350, No. 1-3, pp. 32-44, 1996.
[26] Shimanouchi, Takehiko, “Tables of Molecular Vibrational Frequencies Consolidated Volume I”, the National Standard Reference Data Series National Bureau of Standards, 1972.
[27] Rachel Martin, Jovenal Jamir, Minkyu Kim, Christopher J. Lee, Vikram Mehar, Aravind Asthagiri, Jason F. Weaver, “Activity of Ir(100) and IrO2(110) for the Catalytic Oxidation of Methane”, The Journal of Physical Chemistry C, Vol. 126, No. 36, pp. 15156-15166, 2022.
[28] Tao Li, Minkyu Kim, Zhu Liang, Aravind Asthagiri & Jason F. Weaver, “Hydrogen oxidation on oxygen-rich IrO2(110)”, Catalysis, Structure & Reactivity, Vol. 4, No. 4, pp. 1-13, 2019.
[29] T.J. Lerotholi, G. Held*, D.A. King, “Phase mixing and phase separation accompanying the catalytic oxidation of CO on Ir(100)”, Surface science, Vol. 601, No. 5, pp. 1285-1295, 2007.
[30] Manuel Corva,ab Zhijing Feng,ab Carlo Dri,ab Federico Salvador,b Paolo Bertoch,b Giovanni Comelli,ab and Erik Vesselli, “Carbon dioxide reduction on Ir(111): stable hydrocarbon surface species at near-ambient pressure”, Phys. Chem. Chem. Phys., Vol. 18, No. 9, pp. 6763-6772, 2016.
[31] Ricardo B. Barros, Ana Rosa Garcia, Laura M. Ilharco, “The Decomposition Pathways of Methanol on Clean Ru(0001), Studied by Reflection-Absorption Infrared Spectroscopy (RAIRS)”, J. Phys. Chem. B, Vol. 105, No. 45, pp. 11186–11193, 2001.
[32] D. Hadzi, I. Petrov and Μ. Zitko, “The Influence of Hydrogen Bonding upon The Frequency and Intensity of The OD In-Plane Deformation Vibration of some Phenols and Alcohols”, Advances in Molecular Spectroscopy, pp. 794-800, 1962.
[33] Baran Eren, Federica Venturini, Georg Held, Christopher G. Sole, Jesus S. Lacasa, David Grinter, Cruz S. Esconjauregui, Robert S. Weatherup, “Identifying The Catalyst Chemical State and Adsorbed Species during Methanol Conversion on Copper Using Ambient Pressure X-ray Spectroscopies”, Phys.Chem.Chem.Phys., Vol. 22, No. 34, pp. 18806-18814, 2020.
[34] V.V. Kaichev, A.V. Miller, I.P. Prosvirin, V.I. Bukhtiyarov, “In Situ XPS and MS Study of Methanol Decomposition and Oxidation on Pd(111) under Millibar Pressure Range”, Surface Science, Vol. 606, No. 3-4, pp. 420-425, 2012.
[35] Marta Borasio, Oscar Rodr?’guez de la Fuente, Gu1nther Rupprechter, and Hans-Joachim Freund, “In Situ Studies of Methanol Decomposition and Oxidation on Pd(111) by PM-IRAS and XPS Spectroscopy”, J. Phys. Chem. B, , Vol. 109, No. 38, pp. 17791–17794, 2005.
?
指導教授 羅夢凡(Meng-Fan Luo) 審核日期 2025-1-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明