博碩士論文 110282006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.148.200.145
姓名 羅偉碩(Wei-Shuo Lo)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Multiscale vorticity waves and vorticity wave vortices in two-dimensional dusty plasma crystals)
相關論文
★ 二加一維鏈狀微粒電漿液體微觀運動與結構之實驗研究★ 剪力下的庫倫流體微觀黏彈性反應
★ 強耦合微粒電漿中的結構與動力行為研究★ 脈衝雷射誘發之雷漿塵爆
★ 強耦合微粒電漿中脈衝雷射引發電漿微泡★ 二維強耦合微粒電漿方向序的時空尺度律
★ 二維微粒庫倫液體中集體激發微觀動力研究★ 超薄二維庫侖液體的整齊行為
★ 超薄二維微粒電漿庫侖流的微觀運動行為★ 微米狹縫中之脈衝雷射誘發二維氣泡相互作用
★ 介觀微粒庫倫液體之流變學★ 二維神經網路系統之集體發火動力學行為
★ 大白鼠腦皮質層神經元網路之同步發放行為研究★ 二維團簇腦神經網路之同步發火
★ 二維微粒電漿液體微觀結構之記憶行為★ 微粒電漿中電漿微泡的生成與交互作用之動力行為研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-22以後開放)
摘要(中) 波渦(Wave vortices)作為一種相干實體(coherent entity),已被廣泛觀察存在於各種波動系統中,例如光學波、聲學波、彈性波、水面波、量子流體波及原子波等。其特徵為螺旋形波前(helical wavefronts)圍繞具有相位無法定義與零振幅的螺旋位錯絲(screw dislocation filaments)纏繞。先前的研究已證實,在線性波動介質中,通過不同傳播方向的單尺度平面波的疊加,或相同傳播方向但具有不同相位的平面波疊加,以產生波渦。在非線性波動介質中,調制不穩定性(modulational instability)會引發波形起伏破裂,進而在弱無序波中產生對偶波渦,並在波湍流中產生多尺度波渦。然而,在線性無序多尺度波動系統中,多尺度波渦是否存在以及如何產生仍然未知。
微觀層面上,粒子間的相互作用與無序熱擾動之間的競爭,會在冷晶體中激發出具有不同傳播方向的多尺度無序聲子(disordered phonons)。在遠低於熔點的低溫晶體中,聲子彼此正交,不會相互作用。因此,諧和晶體(harmonic crystal)成為探索多尺度時空波動動力學及檢驗波渦是否在線性無序多尺度波動系統中作為相干實體的絕佳範例。
在本研究中,我們通過經驗模態分解(empirical mode decomposition),以實驗與數值模擬的方式,首次在低粘滯阻尼下的二維微粒電漿晶格與Yukawa晶體的熱驅動多尺度無序振動中,證實多尺度聲渦波(acoustic vorticity waves)與聲渦波渦(vorticity wave vortices)作為多尺度相干實體的存在。在每一低頻模態中,聲渦波以不規則的渦狀結構出現,渦漩的形狀與渦度在時空中演化,主要由橫向聲子貢獻。在xyt空間中,這些無序波可視為一組局域化的相干實體,其中聲渦波的波峰環繞蟲狀的螺旋錯位絲(screw-dislocation filaments),聲渦波渦以不規則存活時間運動,並與對偶渦度波渦湮滅,呈現拉伸指數分佈(stretched exponential)的生命週期與短程空間相關性。
摘要(英) Wave vortices (WV), as coherent entities, have been widely observed in various wave systems, such as optical, acoustic, elastic, water surface, quantum-fluid and atom waves. They are characterized by helical wave fronts winding around screw dislocation filaments with undefined phases and null amplitudes. Previous studies have demonstrated the generation of WVs in linear wave media through the superposition of single-scale plane waves with different propagation directions or the same propagation direction with different phases. In nonlinear wave media, modulation instability induces waveform undulations, leading to pair generation of WVs and multiscale WVs in weakly disordered waves and wave turbulence, respectively. However, whether multiscale WVs exist and how multiscale WVs can be generated in the linear disordered multiscale wave system remains open question.
Down to the microscopic level, the competition between mutual interactions among particles and thermal agitations excites multiscale disordered phonons with various propagation directions in cold crystals. In cold solids far from the melting transition, thermally excited small-amplitude phonons do not interact with each other, making harmonic crystals excellent examples for exploring multiscale spatiotemporal waveform dynamics and testing whether WVs act as coherent entities in linear disordered multiscale wave system.
In this work, employing empirical mode decomposition, we experimentally and numerically demonstrate the observations of multiscale acoustic vorticity waves and vorticity wave vortices as multiscale coherent entities in thermally driven disordered vibrations of two-dimensional dusty plasma and Yukawa crystals under low viscous damping. In each low-frequency mode, the vorticity waves appear in the form of irregular vortex arrays with spatiotemporally varying vortex shapes and vorticities, predominately contributed by transverse phonons. These disordered waves can be viewed as a collection of localized coherent entities of multiscale vorticity wave vortices with vorticity wave crests winding around worm-like screw-dislocation filaments in the xyt space, exhibiting stretched-exponential lifetime distribution and short-range spatial correlations. These findings provide insights into the complex dynamics of disordered linear wave systems and offers a novel framework to study disordered waves in various media for advances in condensed matter physics and material science.
關鍵字(中) ★ 微粒電漿
★ 波渦
關鍵字(英) ★ Dusty plasmas
★ Wave vortex
論文目次 Chapter 1 Introduction………………………………………………..………
1
Chapter 2 Background………………………………………………...……... 4
2.1 Coherent excitations in wave systems…..………….…....…. 4
2.1.1 wave vortices……...………………………….……….. 4
2.1.2 Generation of wave vortices……..……………....…… 4
2.2 Vibrational modes in solids………….………………...…… 6
2.2.1 Phonons…...…………………………………...….…... 6
2.2.2 Dynamical matrix and Hessian matrix methods for studying vibrations in condensed states…………....……….. 6
2.3 Dusty plasmas for acoustic wave investigations…….…..…. 8

Chapter 3 Methods……………………………………………………..…….. 11
3.1 Experiment………...…………………………………….….. 11
3.2 Simulation………...………………………………………… 12
3.3 Data analysis………………………………………...……… 14
3.2.1 Wave dispersion relation…….…….…….…….….. 14
3.3.2 Empirical mode decomposition…….……….…… 15
3.3.3 Vorticity field…….……….………………….…… 18

Chapter 4 Result and Discussion……………………………….….…………. 19
4.1 Multiscale phonons in two-dimensional dusty plasma crystals……………………………………………………….
19
4.2 Decomposition of particle displacement into multiscale modes..…………….………………….……….……….…… 21
4.3 Multiscale vorticity waves and vorticity wave vortices as coherent excitations……………………….………………… 23
4.4 Self-similar dynamical behaviors of multiscale vorticity wave vortices…………………………….………….……… 26
4.5 Simple physical model of vorticity waves and VWV generation…………………………………………………… 28
4.6 Simulation results………………………………………….... 31

Chapter 5 Conclusion……………………………………………………….. 34

Reference 37
參考文獻 [1] T. E. Faber, Fluid Dynamics for Physicists (Cambridge University Press, Cambridge, 1995).
[2] G. Falkovich, K. Gaw?dzki, and M. Vergassola, Particles and fields in fluid turbulence, Rev. Mod. Phys. 73, 913 (2001).
[3] P. Davidson, Turbulence: An Introduction for Scientists and Engineers (Oxford University Press, 2015).
[4] G. Boffetta and R. E. Ecke, Two-Dimensional Turbulence, Annu. Rev. Fluid Mech. 44(1), (2011).
[5] P.-C. Lin and L. I, Interacting Multiscale Acoustic Vortices as Coherent Excitations in Dust Acoustic Wave Turbulence, Phys. Rev. Lett. 120, 135004 (2018).
[6] J. F. Nye, M. V. Berry, and F. C. Frank, Dislocations in wave trains, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 336, 165 (1997).
[7] F. T. Arecchi, G. Giacomelli, P. L. Ramazza, and S. Residori, Vortices and defect statistics in two-dimensional optical chaos, Phys. Rev. Lett. 67, 3749 (1991).
[8] P. Z. Dashti, F. Alhassen, and H. P. Lee, Observation of Orbital Angular Momentum Transfer between Acoustic and Optical Vortices in Optical Fiber, Phys. Rev. Lett. 96, 043604 (2006).
[9] E. Hemsing, A. Knyazik, M. Dunning, D. Xiang, A. Marinelli, C. Hast, and J. B. Rosenzweig, Coherent optical vortices from relativistic electron beams, Nat. Phys. 9, 549 (2013).
[10] X. Wang, Z. Nie, Y. Liang, J. Wang, T. Li, and B. Jia, Recent advances on optical vortex generation, Nanophotonics 7, 1533 (2018).
[11] J.-L. Thomas and R. Marchiano, Pseudo Angular Momentum and Topological Charge Conservation for Nonlinear Acoustical Vortices, Phys. Rev. Lett. 91, 244302 (2003).
[12] K. Volke-Sepulveda, A. O. Santillan, and R. R. Boullosa, Transfer of Angular Momentum to Matter from Acoustical Vortices in Free Space, Phys. Rev. Lett. 100, 024302 (2008).
[13] S. Guo, Z. Ya, P. Wu, and M. Wan, A review on acoustic vortices: Generation, characterization, applications and perspectives, J. Appl. Phys. 132, 210701 (2022).
[14] Y.-Y. Tsai and L. I, Observation of self-excited acoustic vortices in defect-mediated dust acoustic wave turbulence, Phys. Rev. E 90, 013106 (2014).
[15] Y.-Y. Tsai, J.-Y. Tsai, and L. I, Generation of acoustic rogue waves in dusty plasmas through three-dimensional particle focusing by distorted waveforms, Nat. Phys. 12, 573 (2016).
[16] G. J. Chaplain, J. M. De Ponti, and T. A. Starkey, Elastic orbital angular momentum transfer from an elastic pipe to a fluid, Commun. Phys. 5, 1 (2022).
[17] N. Francois, H. Xia, H. Punzmann, P. W. Fontana, and M. Shats, Wave-based liquid-interface metamaterials, Nat. Commun. 8, 14325 (2017).
[18] D. A. Smirnova, F. Nori, and K. Y. Bliokh, Water-Wave Vortices and Skyrmions, Phys. Rev. Lett. 132, 054003 (2024).
[19] A. L. Fetter, Rotating trapped Bose-Einstein condensates, Rev. Mod. Phys. 81, 647 (2009).
[20] R. Panico, G. Macorini, L. Dominici, A. Gianfrate, A. Fieramosca, M. De Giorgi, G. Gigli, D. Sanvitto, A. S. Lanotte, and D. Ballarini, Dynamics of a Vortex Lattice in an Expanding Polariton Quantum Fluid, Phys. Rev. Lett. 127, 047401 (2021).
[21] A. Luski, Y. Segev, R. David, O. Bitton, H. Nadler, A. R. Barnea, A. Gorlach, O. Cheshnovsky, I. Kaminer, and E. Narevicius, Vortex beams of atoms and molecules, Science 373, 1105 (2021).
[22] I. S. Aranson and L. Kramer, The world of the complex Ginzburg-Landau equation, Rev. Mod. Phys. 74, 99 (2002).
[23] S. Alonso, F. Sagues, and A. S. Mikhailov, Taming Winfree Turbulence of Scroll Waves in Excitable Media, Science 299, 1722 (2003).
[24] J.-Y. Tsai, P.-C. Lin, and L. I, Single to multiple acoustic vortex excitations in the transition to defect-mediated dust acoustic wave turbulence, Phys. Rev. E 101, 023210 (2020).
[25] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, 1976).
[26] C. Kittel, Introduction to Solid State Physics, 8. ed., [repr.] (Wiley, Hoboken, NJ, 20).
[27] Y. H. Y. Hayashi and K. T. K. Tachibana, Observation of Coulomb-Crystal Formation from Carbon Particles Grown in a Methane Plasma, Jpn. J. Appl. Phys. 33, L804 (1994).
[28] J. H. Chu and L. I, Direct observation of Coulomb crystals and liquids in strongly coupled rf dusty plasmas, Phys. Rev. Lett. 72, 4009 (1994).
[29] H. Thomas, G. E. Morfill, V. Demmel, J. Goree, B. Feuerbacher, and D. Mohlmann, Plasma Crystal: Coulomb Crystallization in a Dusty Plasma, Phys. Rev. Lett. 73, 652 (1994).
[30] L. I, W.-T. Juan, C.-H. Chiang, and J. H. Chu, Microscopic Particle Motions in Strongly Coupled Dusty Plasmas, Science 272, 1626 (1996).
[31] P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics, Plasma Phys. Control. Fusion 44, 395 (2002).
[32] Y.-J. Lai and L. I, Avalanche Excitations of Fast Particles in Quasi-2D Cold Dusty-Plasma Liquids, Phys. Rev. Lett. 89, 155002 (2002).
[33] S. Nunomura, S. Zhdanov, D. Samsonov, and G. Morfill, Wave Spectra in Solid and Liquid Complex (Dusty) Plasmas, Phys. Rev. Lett. 94, 045001 (2005).
[34] C.-L. Chan and L. I, Microstructural Evolution and Irreversibility in the Viscoelastic Response of Mesoscopic Dusty-Plasma Liquids, Phys. Rev. Lett. 98, 105002 (2007).
[35] Y. Feng, J. Goree, and B. Liu, Solid Superheating Observed in Two-Dimensional Strongly Coupled Dusty Plasma, Phys. Rev. Lett. 100, 205007 (2008).
[36] G. E. Morfill and A. V. Ivlev, Complex plasmas: An interdisciplinary research field, Rev. Mod. Phys. 81, 1353 (2009).
[37] L. Couedel, V. Nosenko, A. V. Ivlev, S. K. Zhdanov, H. M. Thomas, and G. E. Morfill, Direct Observation of Mode-Coupling Instability in Two-Dimensional Plasma Crystals, Phys. Rev. Lett. 104, 195001 (2010).
[38] B. Liu, J. Goree, and Y. Feng, Mode Coupling for Phonons in a Single-Layer Dusty Plasma Crystal, Phys. Rev. Lett. 105, 085004 (2010).
[39] P. Hartmann, A. Douglass, J. C. Reyes, L. S. Matthews, T. W. Hyde, A. Kovacs, and Z. Donko, Crystallization Dynamics of a Single Layer Complex Plasma, Phys. Rev. Lett. 105, 115004 (2010).
[40] C. Yang, C.-W. Io, and L. I, Cooperative-Motion-Induced Structural Evolution in Dusty-Plasma Liquids with Microheterogeneity: Rupture, Rotation, Healing, and Growth of Ordered Domains, Phys. Rev. Lett. 109, 225003 (2012).
[41] N. P. Kryuchkov, E. V. Yakovlev, E. A. Gorbunov, L. Couedel, A. M. Lipaev, and S. O. Yurchenko, Thermoacoustic Instability in Two-Dimensional Fluid Complex Plasmas, Phys. Rev. Lett. 121, 075003 (2018).
[42] H.-W. Hu, W. Wang, and L. I, Multiscale Coherent Excitations in Microscopic Acoustic Wave Turbulence of Cold Dusty Plasma Liquids, Phys. Rev. Lett. 123, 065002 (2019).
[43] E. V. Yakovlev, N. P. Kryuchkov, P. V. Ovcharov, A. V. Sapelkin, V. V. Brazhkin, and S. O. Yurchenko, Direct Experimental Evidence of Longitudinal and Transverse Mode Hybridization and Anticrossing in Simple Model Fluids, J. Phys. Chem. Lett. 11, 1370 (2020).
[44] H.-W. Hu, Y.-C. Zhao, and L. I, Avalanche structural rearrangements in cold dusty plasma liquids through cascaded coherent excitations of heterogeneous multiscale thermal acoustic waves, Phys. Rev. Res. 4, 023116 (2022).
[45] S. Singh, P. Bandyopadhyay, K. Kumar, and A. Sen, Square Lattice Formation in a Monodisperse Complex Plasma, Phys. Rev. Lett. 129, 115003 (2022).
[46] J.-R. Yeh, J.-S. Shieh, and N. E. Huang, Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method, Adv. Adapt. Data Anal. 02, 135 (2010).
[47] M. V. Goldman, Strong turbulence of plasma waves, Rev. Mod. Phys. 56, 709 (1984).
[48] H. Punzmann, M. G. Shats, and H. Xia, Phase Randomization of Three-Wave Interactions in Capillary Waves, Phys. Rev. Lett. 103, 064502 (2009).
[49] P.-C. Lin, W.-J. Chen, and L. I, Percolating transition to acoustic wave turbulence in dusty plasmas, Physics of Plasmas 27, 010703 (2020).
[50] E. Falcon, C. Laroche, and S. Fauve, Observation of Gravity-Capillary Wave Turbulence, Phys. Rev. Lett. 98, 094503 (2007).
[51] Y.-Y. Tsai, M.-C. Chang, and L. I, Observation of multifractal intermittent dust-acoustic-wave turbulence, Phys. Rev. E 86, 045402 (2012).
[52] D. Pierangeli, F. Di Mei, G. Di Domenico, A. J. Agranat, C. Conti, and E. DelRe, Turbulent Transitions in Optical Wave Propagation, Phys. Rev. Lett. 117, 183902 (2016).
[53] P.-C. Lin and L. I, Synchronization of multiscale waveform focusing for rogue wave generation in dust acoustic wave turbulence, Phys. Rev. Res. 2, 023090 (2020).
[54] S. W. Lovesey, Theory of Neutron Scattering from Condensed Matter (Clarendon Press, United Kingdom, 1984).
[55] L. J. P. Ament, M. van Veenendaal, T. P. Devereaux, J. P. Hill, and J. van den Brink, Resonant inelastic x-ray scattering studies of elementary excitations, Rev. Mod. Phys. 83, 705 (2011).
[56] P. Keim, G. Maret, U. Herz, and H. H. Von Grunberg, Harmonic Lattice Behavior of Two-Dimensional Colloidal Crystals, Phys. Rev. Lett. 92, 215504 (2004).
[57] A. Ghosh, V. K. Chikkadi, P. Schall, J. Kurchan, and D. Bonn, Density of States of Colloidal Glasses, Phys. Rev. Lett. 104, 248305 (2010).
[58] D. Kaya, N. L. Green, C. E. Maloney, and M. F. Islam, Normal Modes and Density of States of Disordered Colloidal Solids, Science 329, 656 (2010).
[59] Y.-C. Hu and H. Tanaka, Origin of the boson peak in amorphous solids, Nat. Phys. 18, 669 (2022).
[60] Z. W. Wu, Y. Chen, W.-H. Wang, W. Kob, and L. Xu, Topology of vibrational modes predicts plastic events in glasses, Nat. Commun. 14, 2955 (2023).
[61] S. Alexander, Amorphous solids: their structure, lattice dynamics and elasticity, Phys. Rep. 296, 65 (1998).
[62] A. Widmer-Cooper, H. Perry, P. Harrowell, and D. R. Reichman, Irreversible reorganization in a supercooled liquid originates from localized soft modes, Nat. Phys. 4, 711 (2008).
[63] K. Chen, M. L. Manning, P. J. Yunker, W. G. Ellenbroek, Z. Zhang, A. J. Liu, and A. G. Yodh, Measurement of Correlations between Low-Frequency Vibrational Modes and Particle Rearrangements in Quasi-Two-Dimensional Colloidal Glasses, Phys. Rev. Lett. 107, 108301 (2011).
[64] L. Wang, G. Szamel, and E. Flenner, Low-Frequency Excess Vibrational Modes in Two-Dimensional Glasses, Phys. Rev. Lett. 127, 248001 (2021).
[65] C. Scalliet, B. Guiselin, and L. Berthier, Thirty Milliseconds in the Life of a Supercooled Liquid, Phys. Rev. X 12, 041028 (2022).
[66] H. Mizuno, H. Shiba, and A. Ikeda, Continuum limit of the vibrational properties of amorphous solids, Proc. Natl. Acad. Sci. U.S.A. 114, (2017).
[67] W.-T. Juan and L. I, Anomalous Diffusion in Strongly Coupled Quasi-2D Dusty Plasmas, Phys. Rev. Lett. 80, 3073 (1998).
[68] Y.-J. Lai and L. I, Avalanche Excitations of Fast Particles in Quasi-2D Cold Dusty-Plasma Liquids, Phys. Rev. Lett. 89, 155002 (2002).
[69] W.-Y. Woon and L. I, Defect Turbulence in Quasi-2D Creeping Dusty-Plasma Liquids, Phys. Rev. Lett. 92, 065003 (2004).
[70] C. Yang, C.-W. Io, and L. I, Cooperative-Motion-Induced Structural Evolution in Dusty-Plasma Liquids with Microheterogeneity: Rupture, Rotation, Healing, and Growth of Ordered Domains, Phys. Rev. Lett. 109, 225003 (2012).
[71] W. Wang, H.-W. Hu, and L. I, Surface-Induced Layering of Quenched 3D Dusty Plasma Liquids: Micromotion and Structural Rearrangement, Phys. Rev. Lett. 124, 165001 (2020).
[72] C.-T. Liao, L.-W. Teng, C.-Y. Tsai, C.-W. Io, and L. I, Lagrangian-Eulerian Micromotion and Wave Heating in Nonlinear Self-Excited Dust-Acoustic Waves, Phys. Rev. Lett. 100, 185004 (2008).
[73] L.-W. Teng, M.-C. Chang, Y.-P. Tseng, and L. I, Wave-Particle Dynamics of Wave Breaking in the Self-Excited Dust Acoustic Wave, Phys. Rev. Lett. 103, 245005 (2009).
[74] S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys. 117, 1 (1995).
[75] K. Zahn, R. Lenke, and G. Maret, Two-Stage Melting of Paramagnetic Colloidal Crystals in Two Dimensions, Phys. Rev. Lett. 82, 2721 (1999).
[76] M. Durand and J. Heu, Thermally Driven Order-Disorder Transition in Two-Dimensional Soft Cellular Systems, Phys. Rev. Lett. 123, 188001 (2019).
[77] P. Huang, T. Schonenberger, M. Cantoni, L. Heinen, A. Magrez, A. Rosch, F. Carbone, and H. M. Ronnow, Melting of a skyrmion lattice to a skyrmion liquid via a hexatic phase, Nat. Nanotechnol. 15, 761 (2020).
[78] Y. Chiu, H.-W. Hu, Y.-X. Zhang, and L. I, Multiscale defect cluster excitations in the melting transitions of two-dimensional Yukawa systems, Phys. Rev. Res. 6, 013288 (2024).
[79] B. I. Halperin and D. R. Nelson, Theory of Two-Dimensional Melting, Phys. Rev. Lett. 41, 121 (1978).
[80] A. P. Young, Melting and the vector Coulomb gas in two dimensions, Phys. Rev. B 19, 1855 (1979).
[81] D. R. Nelson and B. I. Halperin, Dislocation-mediated melting in two dimensions, Phys. Rev. B 19, 2457 (1979).
[82] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences (1998).
[83] J.-L. Jou, W.-S. Lo, and L. I, Rogue wave generation in wind-driven water wave turbulence through multiscale phase-amplitude coupling, phase synchronization, and self-focusing by curved crests, Physics of Fluids 33, 102105 (2021).
[84] W.-S. Lo, C.-Y. Siao, Y.-C. Zhao, and L. I, Observation of multiscale vorticity waves and vorticity wave vortices in thermally driven two-dimensional crystals, submitted to Nature Communications.
指導教授 伊林(Lin I) 審核日期 2025-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明