參考文獻 |
[1] T. E. Faber, Fluid Dynamics for Physicists (Cambridge University Press, Cambridge, 1995).
[2] G. Falkovich, K. Gaw?dzki, and M. Vergassola, Particles and fields in fluid turbulence, Rev. Mod. Phys. 73, 913 (2001).
[3] P. Davidson, Turbulence: An Introduction for Scientists and Engineers (Oxford University Press, 2015).
[4] G. Boffetta and R. E. Ecke, Two-Dimensional Turbulence, Annu. Rev. Fluid Mech. 44(1), (2011).
[5] P.-C. Lin and L. I, Interacting Multiscale Acoustic Vortices as Coherent Excitations in Dust Acoustic Wave Turbulence, Phys. Rev. Lett. 120, 135004 (2018).
[6] J. F. Nye, M. V. Berry, and F. C. Frank, Dislocations in wave trains, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 336, 165 (1997).
[7] F. T. Arecchi, G. Giacomelli, P. L. Ramazza, and S. Residori, Vortices and defect statistics in two-dimensional optical chaos, Phys. Rev. Lett. 67, 3749 (1991).
[8] P. Z. Dashti, F. Alhassen, and H. P. Lee, Observation of Orbital Angular Momentum Transfer between Acoustic and Optical Vortices in Optical Fiber, Phys. Rev. Lett. 96, 043604 (2006).
[9] E. Hemsing, A. Knyazik, M. Dunning, D. Xiang, A. Marinelli, C. Hast, and J. B. Rosenzweig, Coherent optical vortices from relativistic electron beams, Nat. Phys. 9, 549 (2013).
[10] X. Wang, Z. Nie, Y. Liang, J. Wang, T. Li, and B. Jia, Recent advances on optical vortex generation, Nanophotonics 7, 1533 (2018).
[11] J.-L. Thomas and R. Marchiano, Pseudo Angular Momentum and Topological Charge Conservation for Nonlinear Acoustical Vortices, Phys. Rev. Lett. 91, 244302 (2003).
[12] K. Volke-Sepulveda, A. O. Santillan, and R. R. Boullosa, Transfer of Angular Momentum to Matter from Acoustical Vortices in Free Space, Phys. Rev. Lett. 100, 024302 (2008).
[13] S. Guo, Z. Ya, P. Wu, and M. Wan, A review on acoustic vortices: Generation, characterization, applications and perspectives, J. Appl. Phys. 132, 210701 (2022).
[14] Y.-Y. Tsai and L. I, Observation of self-excited acoustic vortices in defect-mediated dust acoustic wave turbulence, Phys. Rev. E 90, 013106 (2014).
[15] Y.-Y. Tsai, J.-Y. Tsai, and L. I, Generation of acoustic rogue waves in dusty plasmas through three-dimensional particle focusing by distorted waveforms, Nat. Phys. 12, 573 (2016).
[16] G. J. Chaplain, J. M. De Ponti, and T. A. Starkey, Elastic orbital angular momentum transfer from an elastic pipe to a fluid, Commun. Phys. 5, 1 (2022).
[17] N. Francois, H. Xia, H. Punzmann, P. W. Fontana, and M. Shats, Wave-based liquid-interface metamaterials, Nat. Commun. 8, 14325 (2017).
[18] D. A. Smirnova, F. Nori, and K. Y. Bliokh, Water-Wave Vortices and Skyrmions, Phys. Rev. Lett. 132, 054003 (2024).
[19] A. L. Fetter, Rotating trapped Bose-Einstein condensates, Rev. Mod. Phys. 81, 647 (2009).
[20] R. Panico, G. Macorini, L. Dominici, A. Gianfrate, A. Fieramosca, M. De Giorgi, G. Gigli, D. Sanvitto, A. S. Lanotte, and D. Ballarini, Dynamics of a Vortex Lattice in an Expanding Polariton Quantum Fluid, Phys. Rev. Lett. 127, 047401 (2021).
[21] A. Luski, Y. Segev, R. David, O. Bitton, H. Nadler, A. R. Barnea, A. Gorlach, O. Cheshnovsky, I. Kaminer, and E. Narevicius, Vortex beams of atoms and molecules, Science 373, 1105 (2021).
[22] I. S. Aranson and L. Kramer, The world of the complex Ginzburg-Landau equation, Rev. Mod. Phys. 74, 99 (2002).
[23] S. Alonso, F. Sagues, and A. S. Mikhailov, Taming Winfree Turbulence of Scroll Waves in Excitable Media, Science 299, 1722 (2003).
[24] J.-Y. Tsai, P.-C. Lin, and L. I, Single to multiple acoustic vortex excitations in the transition to defect-mediated dust acoustic wave turbulence, Phys. Rev. E 101, 023210 (2020).
[25] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, 1976).
[26] C. Kittel, Introduction to Solid State Physics, 8. ed., [repr.] (Wiley, Hoboken, NJ, 20).
[27] Y. H. Y. Hayashi and K. T. K. Tachibana, Observation of Coulomb-Crystal Formation from Carbon Particles Grown in a Methane Plasma, Jpn. J. Appl. Phys. 33, L804 (1994).
[28] J. H. Chu and L. I, Direct observation of Coulomb crystals and liquids in strongly coupled rf dusty plasmas, Phys. Rev. Lett. 72, 4009 (1994).
[29] H. Thomas, G. E. Morfill, V. Demmel, J. Goree, B. Feuerbacher, and D. Mohlmann, Plasma Crystal: Coulomb Crystallization in a Dusty Plasma, Phys. Rev. Lett. 73, 652 (1994).
[30] L. I, W.-T. Juan, C.-H. Chiang, and J. H. Chu, Microscopic Particle Motions in Strongly Coupled Dusty Plasmas, Science 272, 1626 (1996).
[31] P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics, Plasma Phys. Control. Fusion 44, 395 (2002).
[32] Y.-J. Lai and L. I, Avalanche Excitations of Fast Particles in Quasi-2D Cold Dusty-Plasma Liquids, Phys. Rev. Lett. 89, 155002 (2002).
[33] S. Nunomura, S. Zhdanov, D. Samsonov, and G. Morfill, Wave Spectra in Solid and Liquid Complex (Dusty) Plasmas, Phys. Rev. Lett. 94, 045001 (2005).
[34] C.-L. Chan and L. I, Microstructural Evolution and Irreversibility in the Viscoelastic Response of Mesoscopic Dusty-Plasma Liquids, Phys. Rev. Lett. 98, 105002 (2007).
[35] Y. Feng, J. Goree, and B. Liu, Solid Superheating Observed in Two-Dimensional Strongly Coupled Dusty Plasma, Phys. Rev. Lett. 100, 205007 (2008).
[36] G. E. Morfill and A. V. Ivlev, Complex plasmas: An interdisciplinary research field, Rev. Mod. Phys. 81, 1353 (2009).
[37] L. Couedel, V. Nosenko, A. V. Ivlev, S. K. Zhdanov, H. M. Thomas, and G. E. Morfill, Direct Observation of Mode-Coupling Instability in Two-Dimensional Plasma Crystals, Phys. Rev. Lett. 104, 195001 (2010).
[38] B. Liu, J. Goree, and Y. Feng, Mode Coupling for Phonons in a Single-Layer Dusty Plasma Crystal, Phys. Rev. Lett. 105, 085004 (2010).
[39] P. Hartmann, A. Douglass, J. C. Reyes, L. S. Matthews, T. W. Hyde, A. Kovacs, and Z. Donko, Crystallization Dynamics of a Single Layer Complex Plasma, Phys. Rev. Lett. 105, 115004 (2010).
[40] C. Yang, C.-W. Io, and L. I, Cooperative-Motion-Induced Structural Evolution in Dusty-Plasma Liquids with Microheterogeneity: Rupture, Rotation, Healing, and Growth of Ordered Domains, Phys. Rev. Lett. 109, 225003 (2012).
[41] N. P. Kryuchkov, E. V. Yakovlev, E. A. Gorbunov, L. Couedel, A. M. Lipaev, and S. O. Yurchenko, Thermoacoustic Instability in Two-Dimensional Fluid Complex Plasmas, Phys. Rev. Lett. 121, 075003 (2018).
[42] H.-W. Hu, W. Wang, and L. I, Multiscale Coherent Excitations in Microscopic Acoustic Wave Turbulence of Cold Dusty Plasma Liquids, Phys. Rev. Lett. 123, 065002 (2019).
[43] E. V. Yakovlev, N. P. Kryuchkov, P. V. Ovcharov, A. V. Sapelkin, V. V. Brazhkin, and S. O. Yurchenko, Direct Experimental Evidence of Longitudinal and Transverse Mode Hybridization and Anticrossing in Simple Model Fluids, J. Phys. Chem. Lett. 11, 1370 (2020).
[44] H.-W. Hu, Y.-C. Zhao, and L. I, Avalanche structural rearrangements in cold dusty plasma liquids through cascaded coherent excitations of heterogeneous multiscale thermal acoustic waves, Phys. Rev. Res. 4, 023116 (2022).
[45] S. Singh, P. Bandyopadhyay, K. Kumar, and A. Sen, Square Lattice Formation in a Monodisperse Complex Plasma, Phys. Rev. Lett. 129, 115003 (2022).
[46] J.-R. Yeh, J.-S. Shieh, and N. E. Huang, Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method, Adv. Adapt. Data Anal. 02, 135 (2010).
[47] M. V. Goldman, Strong turbulence of plasma waves, Rev. Mod. Phys. 56, 709 (1984).
[48] H. Punzmann, M. G. Shats, and H. Xia, Phase Randomization of Three-Wave Interactions in Capillary Waves, Phys. Rev. Lett. 103, 064502 (2009).
[49] P.-C. Lin, W.-J. Chen, and L. I, Percolating transition to acoustic wave turbulence in dusty plasmas, Physics of Plasmas 27, 010703 (2020).
[50] E. Falcon, C. Laroche, and S. Fauve, Observation of Gravity-Capillary Wave Turbulence, Phys. Rev. Lett. 98, 094503 (2007).
[51] Y.-Y. Tsai, M.-C. Chang, and L. I, Observation of multifractal intermittent dust-acoustic-wave turbulence, Phys. Rev. E 86, 045402 (2012).
[52] D. Pierangeli, F. Di Mei, G. Di Domenico, A. J. Agranat, C. Conti, and E. DelRe, Turbulent Transitions in Optical Wave Propagation, Phys. Rev. Lett. 117, 183902 (2016).
[53] P.-C. Lin and L. I, Synchronization of multiscale waveform focusing for rogue wave generation in dust acoustic wave turbulence, Phys. Rev. Res. 2, 023090 (2020).
[54] S. W. Lovesey, Theory of Neutron Scattering from Condensed Matter (Clarendon Press, United Kingdom, 1984).
[55] L. J. P. Ament, M. van Veenendaal, T. P. Devereaux, J. P. Hill, and J. van den Brink, Resonant inelastic x-ray scattering studies of elementary excitations, Rev. Mod. Phys. 83, 705 (2011).
[56] P. Keim, G. Maret, U. Herz, and H. H. Von Grunberg, Harmonic Lattice Behavior of Two-Dimensional Colloidal Crystals, Phys. Rev. Lett. 92, 215504 (2004).
[57] A. Ghosh, V. K. Chikkadi, P. Schall, J. Kurchan, and D. Bonn, Density of States of Colloidal Glasses, Phys. Rev. Lett. 104, 248305 (2010).
[58] D. Kaya, N. L. Green, C. E. Maloney, and M. F. Islam, Normal Modes and Density of States of Disordered Colloidal Solids, Science 329, 656 (2010).
[59] Y.-C. Hu and H. Tanaka, Origin of the boson peak in amorphous solids, Nat. Phys. 18, 669 (2022).
[60] Z. W. Wu, Y. Chen, W.-H. Wang, W. Kob, and L. Xu, Topology of vibrational modes predicts plastic events in glasses, Nat. Commun. 14, 2955 (2023).
[61] S. Alexander, Amorphous solids: their structure, lattice dynamics and elasticity, Phys. Rep. 296, 65 (1998).
[62] A. Widmer-Cooper, H. Perry, P. Harrowell, and D. R. Reichman, Irreversible reorganization in a supercooled liquid originates from localized soft modes, Nat. Phys. 4, 711 (2008).
[63] K. Chen, M. L. Manning, P. J. Yunker, W. G. Ellenbroek, Z. Zhang, A. J. Liu, and A. G. Yodh, Measurement of Correlations between Low-Frequency Vibrational Modes and Particle Rearrangements in Quasi-Two-Dimensional Colloidal Glasses, Phys. Rev. Lett. 107, 108301 (2011).
[64] L. Wang, G. Szamel, and E. Flenner, Low-Frequency Excess Vibrational Modes in Two-Dimensional Glasses, Phys. Rev. Lett. 127, 248001 (2021).
[65] C. Scalliet, B. Guiselin, and L. Berthier, Thirty Milliseconds in the Life of a Supercooled Liquid, Phys. Rev. X 12, 041028 (2022).
[66] H. Mizuno, H. Shiba, and A. Ikeda, Continuum limit of the vibrational properties of amorphous solids, Proc. Natl. Acad. Sci. U.S.A. 114, (2017).
[67] W.-T. Juan and L. I, Anomalous Diffusion in Strongly Coupled Quasi-2D Dusty Plasmas, Phys. Rev. Lett. 80, 3073 (1998).
[68] Y.-J. Lai and L. I, Avalanche Excitations of Fast Particles in Quasi-2D Cold Dusty-Plasma Liquids, Phys. Rev. Lett. 89, 155002 (2002).
[69] W.-Y. Woon and L. I, Defect Turbulence in Quasi-2D Creeping Dusty-Plasma Liquids, Phys. Rev. Lett. 92, 065003 (2004).
[70] C. Yang, C.-W. Io, and L. I, Cooperative-Motion-Induced Structural Evolution in Dusty-Plasma Liquids with Microheterogeneity: Rupture, Rotation, Healing, and Growth of Ordered Domains, Phys. Rev. Lett. 109, 225003 (2012).
[71] W. Wang, H.-W. Hu, and L. I, Surface-Induced Layering of Quenched 3D Dusty Plasma Liquids: Micromotion and Structural Rearrangement, Phys. Rev. Lett. 124, 165001 (2020).
[72] C.-T. Liao, L.-W. Teng, C.-Y. Tsai, C.-W. Io, and L. I, Lagrangian-Eulerian Micromotion and Wave Heating in Nonlinear Self-Excited Dust-Acoustic Waves, Phys. Rev. Lett. 100, 185004 (2008).
[73] L.-W. Teng, M.-C. Chang, Y.-P. Tseng, and L. I, Wave-Particle Dynamics of Wave Breaking in the Self-Excited Dust Acoustic Wave, Phys. Rev. Lett. 103, 245005 (2009).
[74] S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys. 117, 1 (1995).
[75] K. Zahn, R. Lenke, and G. Maret, Two-Stage Melting of Paramagnetic Colloidal Crystals in Two Dimensions, Phys. Rev. Lett. 82, 2721 (1999).
[76] M. Durand and J. Heu, Thermally Driven Order-Disorder Transition in Two-Dimensional Soft Cellular Systems, Phys. Rev. Lett. 123, 188001 (2019).
[77] P. Huang, T. Schonenberger, M. Cantoni, L. Heinen, A. Magrez, A. Rosch, F. Carbone, and H. M. Ronnow, Melting of a skyrmion lattice to a skyrmion liquid via a hexatic phase, Nat. Nanotechnol. 15, 761 (2020).
[78] Y. Chiu, H.-W. Hu, Y.-X. Zhang, and L. I, Multiscale defect cluster excitations in the melting transitions of two-dimensional Yukawa systems, Phys. Rev. Res. 6, 013288 (2024).
[79] B. I. Halperin and D. R. Nelson, Theory of Two-Dimensional Melting, Phys. Rev. Lett. 41, 121 (1978).
[80] A. P. Young, Melting and the vector Coulomb gas in two dimensions, Phys. Rev. B 19, 1855 (1979).
[81] D. R. Nelson and B. I. Halperin, Dislocation-mediated melting in two dimensions, Phys. Rev. B 19, 2457 (1979).
[82] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences (1998).
[83] J.-L. Jou, W.-S. Lo, and L. I, Rogue wave generation in wind-driven water wave turbulence through multiscale phase-amplitude coupling, phase synchronization, and self-focusing by curved crests, Physics of Fluids 33, 102105 (2021).
[84] W.-S. Lo, C.-Y. Siao, Y.-C. Zhao, and L. I, Observation of multiscale vorticity waves and vorticity wave vortices in thermally driven two-dimensional crystals, submitted to Nature Communications. |