博碩士論文 111222036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:18.117.101.130
姓名 古佳文(Jia-Wen Gu)  查詢紙本館藏   畢業系所 物理學系
論文名稱 用於雷射驅動高階諧波研究之頻域干涉儀的發展
(Development of the Frequency-Domain Interferometry for the Research of Laser-Driven High-Order Harmonic Generation)
相關論文
★ 利用X光光電子能譜儀進行氬原子團簇游離能的研究★ 發展利用對撞光學拍頻脈衝波產生准相位匹配高階諧波
★ X光探測紅外線激發氬原子團簇產生奈米電漿球振盪現象之相關研究★ 在Pt(111)表面上研究雷射輔助光電效應
★ Preliminary Experiment for the Control of Cluster Vibration★ 釔鋇銅氧高溫超導薄膜的成長及診斷
★ 高階諧波產生極紫外光的脈衝時寬量測★ 建造準相位匹配高階諧波產生的拍波脈衝串
★ 相位匹配之極紫外光高階諧波產生★ 一百兆瓦雷射系統之建造與在結構化電漿波導之應用
★ 超短極紫外線脈衝之單發式波形強度量測★ 利用不同波長脈衝雷射產生高階諧波並最佳化相位匹配條件
★ 經由高強度雷射引發尾場所產生的非熱效 應電子加速★ 雷射電漿中無碰撞激震波的全域與局域量測
★ 極紫外光與近紅外光在電漿中四波混頻的前期實驗★ High-Harmonic Generation beyond the Traditional Phase-Matching Cutoff Energy
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在高階諧波產生研究中,相位匹配佔有很重要的地位。實現相位匹配需要對實驗條件進行精確的測量與控制,特別是測量由超短雷射脈衝所產生的電漿密度。本論文聚焦在發展頻域干涉技術來測量毛細管光波導內的電漿密度。基於此技術,我們成功診斷了高階諧波產生過程中所生成的瞬態電漿。這些結果有助於實現高階諧波產生的相位匹配,進而提升短波長輸出的效率。
摘要(英) In high-harmonic generation research, phase matching plays a crucial role. Achieving phase matching requires precise characterization and careful control of experimental con-
ditions, particularly in measuring the plasma density produced by ultrashort laser pulses. This thesis focuses on the development of the frequency-domain interferometry for the measurement of the plasma density in a capillary waveguide. Based on this technique, we successfully diagnose the transient state of the plasma generated in the high-harmonic generation process. These results are beneficial for achieving phase matching of higher-harmonic generation, leading to e?icient output at shorter wavelengths.
關鍵字(中) ★ 高階諧波產生
★ 電漿
★ 波導
★ 頻域干涉儀
★ 縱向診斷
關鍵字(英) ★ high-order harmonic generation
★ plasma
★ waveguide
★ frequency-domain interferometry
★ longitudinal diagnosis
論文目次 摘要 ix
Abstract xi
Contents xiii
List of Figures xv
List of Tables xvii
Abbreviation Table xix

1 Introduction 1
1.1 Three-Step Model ............................................................. 2
1.2 Phase-Mismatch in High-order Harmonic Generation........................ 3
1.2.1 Wavenumber Mismatch due to Neutral Gas Dispersion .............. 5
1.2.2 Wavenumber Mismatch due to Plasma Dispersion ................... 6
1.2.3 Phase Mismatch due to Intrinsic Dipole Phase ....................... 6
1.2.4 Phase Mismatch due to Geometrical Phase Shift..................... 7
1.2.5 HHG with Gas-Filled Waveguide...................................... 8
1.3 Longitudinal Diagnosis........................................................ 9

2 Frequency-Domain Interferometry (FDI) 11
2.1 Principle....................................................................... 11

3 Method 17
3.1 Experimental Setup ........................................................... 17
3.1.1 Capillary ............................................................... 17
3.1.2 Driving Beam .......................................................... 18
3.1.3 Probe Beam............................................................ 19
3.1.4 Diagnostic System ..................................................... 24
3.2 FDI Parameter Design ........................................................ 27
3.2.1 Polarization ............................................................ 27
3.2.2 Pulse Duration......................................................... 27
3.2.3 Delay................................................................... 27
3.2.4 Environment ........................................................... 28
3.3 Temporal Alignment .......................................................... 28
3.3.1 Coarse Tuning ......................................................... 28
3.3.2 Fine Tuning with Frequency-Domain Interferometry ................. 29
3.3.3 Fine Tuning with Sum-Frequency Generation ........................ 29

4 Result 33
4.1 Phase and Group Delay Retrieval Process ................................... 33
4.2 Validity of FDI ................................................................ 35
4.2.1 Relationship between Spectral Modulation and Delay................ 35
4.2.2 Phase Measurement ................................................... 36
4.3 Guiding Quality of the Driving Beam ........................................ 40
4.4 Plasma Diagnostics Inside the Capillary ..................................... 43
4.4.1 Plasma Diagnostics with Argon ....................................... 46
4.5 Measurement of High-Density Plasma........................................ 48

5 Discussion and Conclusion 51
5.1 Discussion ..................................................................... 51
5.1.1 Extinction Ratio and Interference between the Driving Beam and
the Probe Beam ............................................................... 51
5.1.2 Probe Beam Ionize Gas ............................................... 51
5.2 Conclusion..................................................................... 52

參考文獻 53
參考文獻 [1] W. P. Leemans et al., “GeV electron beams from a centimetre-scale accelerator,” Nature
Physics, vol. 2, no. 10, pp. 696–699, Oct. 2006, issn: 1745-2473, 1745-2481. doi: 10.
1038/nphys418. Accessed: Nov. 18, 2024. [Online]. Available: https://www.nature.com/
articles/nphys418.
[2] T. Mocek et al., “Dramatic enhancement of xuv laser output using a multimode gas-filled
capillary waveguide,” Physical Review A, vol. 71, no. 1, p. 013 804, Jan. 7, 2005, issn:
1050-2947, 1094-1622. doi: 10.1103/PhysRevA.71.013804. Accessed: Nov. 18, 2024.
[Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.71.013804.
[3] E. A. Gibson et al., “High-order harmonic generation up to 250 eV from highly ionized
argon,” Physical Review Letters, vol. 92, no. 3, p. 033 001, Jan. 21, 2004, issn: 0031-9007,
1079-7114. doi: 10.1103/PhysRevLett.92.033001. Accessed: Nov. 18, 2024. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevLett.92.033001.
[4] Y.-L. Liu, J. Wang, and H.-h. Chu, “Ion-based high-order harmonic generation from water
window to keV region with a transverse disruptive pulse for quasi-phase-matching,” Optics
Express, vol. 30, no. 2, pp. 1365–1380, Jan. 17, 2022, Publisher: Optica Publishing Group,
issn: 1094-4087. doi: 10.1364/OE.447796. Accessed: Nov. 18, 2024. [Online]. Available:
https://opg.optica.org/oe/abstract.cfm?uri=oe-30-2-1365.
[5] Y. Tamaki, J. Itatani, Y. Nagata, M. Obara, and K. Midorikawa, “Highly e?icient, phase-
matched high-harmonic generation by a self-guided laser beam,” Physical Review Letters,
vol. 82, no. 7, pp. 1422–1425, Feb. 15, 1999, issn: 0031-9007, 1079-7114. doi: 10.1103/
PhysRevLett.82.1422. Accessed: Oct. 24, 2024. [Online]. Available: https://link.aps.
org/doi/10.1103/PhysRevLett.82.1422.
[6] A. Pirati et al., “EUV lithography performance for manufacturing: Status and outlook,”
presented at the SPIE Advanced Lithography, E. M. Panning and K. A. Goldberg, Eds.,
San Jose, California, United States, Mar. 18, 2016, 97760A. doi: 10.1117/12.2220423.
Accessed: Dec. 18, 2024. [Online]. Available: http://proceedings.spiedigitallibrary.
org/proceeding.aspx?doi=10.1117/12.2220423.
[7] S. Heinrich et al., “Attosecond intra-valence band dynamics and resonant-photoemission
delays in w(110),” Nature Communications, vol. 12, no. 1, p. 3404, Jun. 7, 2021, Publisher:
Nature Publishing Group, issn: 2041-1723. doi: 10.1038/s41467-021-23650-7. Ac-
cessed: Jul. 11, 2024. [Online]. Available: https://www.nature.com/articles/s41467-
021-23650-7.
[8] J. Li et al., “Attosecond science based on high harmonic generation from gases and solids,”
Nature Communications, vol. 11, no. 1, p. 2748, Jun. 2, 2020, issn: 2041-1723. doi: 10.
1038/s41467-020-16480-6. Accessed: Dec. 18, 2024. [Online]. Available: https://www.
nature.com/articles/s41467-020-16480-6.
[9] Y.-L. Liu, S.-C. Kao, Y.-Y. Ou Yang, Z.-M. Zhang, J. Wang, and H.-h. Chu, “Tomographic
analysis of high-order harmonic generation by integrating a phase-matching profile mea-
surement with disruptive interaction-length control,” Physical Review A, vol. 104, no. 2,
p. 023 112, Aug. 26, 2021, issn: 2469-9926, 2469-9934. doi: 10.1103/PhysRevA.104.
023112. Accessed: Dec. 18, 2024. [Online]. Available: https://link.aps.org/doi/10.
1103/PhysRevA.104.023112.
[10] L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” in Selected Papers
of Leonid V Keldysh. WORLD SCIENTIFIC, Nov. 2023, pp. 56–63, isbn: 9789811279454
9789811279461. doi: 10.1142/9789811279461_0008. Accessed: Jul. 11, 2024. [Online].
Available: https://www.worldscientific.com/doi/10.1142/9789811279461_0008.
[11] E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long
distance optical transmission and lasers,” Bell System Technical Journal, vol. 43, no. 4,
pp. 1783–1809, Jul. 1964, issn: 00058580. doi: 10.1002/j.1538-7305.1964.tb04108.x.
Accessed: Jul. 28, 2024. [Online]. Available: https://ieeexplore.ieee.org/document/
6773550.
[12] C. Froehly, A. Lacourt, and J. C. Vienot, “Time impulse response and time frequency
response of optical pupils.:experimental confirmations and applications,” Nouvelle Revue
d’Optique, vol. 4, no. 4, pp. 183–196, Jul. 1973, issn: 0335-7368. doi: 10.1088/0335-
7368/4/4/301. Accessed: Jun. 15, 2024. [Online]. Available: https://iopscience.iop.
org/article/10.1088/0335-7368/4/4/301.
[13] E. Tokunaga, A. Terasaki, and T. Kobayashi, “Frequency-domain interferometer for fem-
tosecond time-resolved phase spectroscopy,” Optics Letters, vol. 17, no. 16, pp. 1131–1133,
Aug. 15, 1992, Publisher: Optica Publishing Group, issn: 1539-4794. doi: 10.1364/OL.
17.001131. Accessed: Jun. 10, 2024. [Online]. Available: https://opg.optica.org/ol/
abstract.cfm?uri=ol-17-16-1131.
[14] R. R. Tamming, J. M. Hodgkiss, and K. Chen, “Frequency domain interferometry for
measuring ultrafast refractive index modulation and surface deformation,” Advances in
Physics: X, vol. 7, no. 1, p. 2 065 218, Dec. 31, 2022, Publisher: Taylor & Francis _eprint:
https://doi.org/10.1080/23746149.2022.2065218, issn: null. doi: 10.1080/23746149.
2022.2065218. Accessed: Jun. 15, 2024. [Online]. Available: https://doi.org/10.1080/
23746149.2022.2065218.
[15] J. van Tilborg, A. J. Gonsalves, E. Esarey, C. B. Schroeder, and W. P. Leemans, “High-
sensitivity plasma density retrieval in a common-path second-harmonic interferometer
through simultaneous group and phase velocity measurement,” Physics of Plasmas, vol. 26,
no. 2, p. 023 106, Feb. 13, 2019, issn: 1070-664X. doi: 10.1063/1.5080269. Accessed:
Jun. 15, 2024. [Online]. Available: https://doi.org/10.1063/1.5080269.
[16] M. V. Ammosov and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic
ions in an alternating electromagnetic field,”
[17] G. D. Tsibidis and E. Stratakis, “Ionization dynamics and damage conditions in fused
silica irradiated with mid-infrared femtosecond pulses,” Applied Physics Letters, vol. 122,
no. 4, p. 043 501, Jan. 23, 2023, issn: 0003-6951, 1077-3118. doi: 10.1063/5.0130934.
Accessed: Dec. 31, 2024. [Online]. Available: https://pubs.aip.org/apl/article/122/
4/043501/2870092/Ionization-dynamics-and-damage-conditions-in-fused.
指導教授 朱旭新(Hsu-hsin Chu) 審核日期 2025-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明