博碩士論文 110328004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.221.165.81
姓名 王品元(Pin-Yuan Wang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 高溫型質子交換膜燃料電池堆性能測試與熱管理研究
(Performance Test and Thermal Management of a High Temperature Proton Exchange Membrane Fuel Cell)
相關論文
★ 陰離子交換膜水電解電極觸媒塗佈之製程改善研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-30以後開放)
摘要(中) 近幾年來由於空氣污染造成的溫室效應以及極端氣候,使各國逐漸重視環保議題,氫能也被視為相當有潛力的能源,其中高溫質子交換膜燃料電池由於具有質子交換膜燃料電池與高溫操作的優點,吸引不少研究人員投入這方面的研究,本研究也針對高溫質子交換膜燃料電池堆熱管理以及改變陰極計量比對於電池堆性能影響進行探討,並透過溫度分佈量測與熱阻網絡模型來預測電池堆內部無法量測部件的溫度分佈。
本研究對高溫型質子交換膜燃料電池進行不同環境溫度以及不同計量比下的溫度分佈與性能量測,溫度分佈是在穩態時利用熱電偶進行電池堆不同位置與不同深度的量測,性能測試則是透過極化曲線測試與各級電壓量測來進行量測,並使用熱阻網絡模型與量測出的溫度數據對無法量測的電池部件溫度進行預測。
實驗結果顯示,此五級電池堆在、操作溫度160℃、氣體流率20 c.c/min/cell、陽極計量比1.2與陰極計量比2.0的情況下,環境溫度40℃時最高功率密度為991 mA/cm2,在環境溫度25℃時最高功率密度為931 mA/cm2。在不透過加熱系統進行加溫並利用定電流來使電池堆溫度達到穩態的情況下,溫度分佈結果顯示電池堆的最高溫度都會在電池堆第三級(中心)位置,且電池堆在環境溫度40℃時的平均溫度相較於電池堆在環境溫度25℃時的平均溫度高了約10℃,電池堆溫度隨著陰極計量比提高而有所下降,但性能反而有所上升。從各級電壓量測可以發現,在適當計量比內透過提高環境溫度所帶來的電壓上升會比提高計量比來的好。熱阻網絡模型所預測出的測量點溫度與實際測量出的溫度誤差小於5%,因此可證明此模型所做的預測具有一定的參考價值,由熱阻模型可以再對電池堆內部無法被量測的物件溫度進行估算。
摘要(英) In the recent years, air pollution has exacerbated the greenhouse effect and extreme weather conditions, prompting countries to increasingly prioritize environmental issues. Hydrogen energy has emerged as a highly promising energy source. Among various hydrogen energy technologies, high-temperature proton exchange membrane fuel cell (HT-PEMFCs) combines the advantages of proton exchange membrane fuel cells and high-temperature operation, drawing considerable interest from researchers. This study focuses on the thermal management of HT-PEMFC stacks and investigates the impact of varying the cathode side stoichiometric ratio on the stack performance and thermal characteristic. Additionally, it utilizes temperature distribution measurements and a thermal resistance network model to predict the temperature distribution of components within the fuel cell stack that cannot be directly measured.
This study examines the temperature distribution and performance of high-temperature proton exchange membrane fuel cells under different ambient temperatures and stoichiometric ratios. Temperature distribution measurements are conducted at steady state by measuring the temperature at various positions and depths within the fuel cell with thermocouple. Performance testing involves polarization curve tests and individual cell voltage measurements. A thermal resistance network model, along with the measured temperature data, is used to predict the temperatures of fuel cell components that cannot be directly measured.
Experimental results show that this five-cell battery stack achieved a maximum power density of 991 mA/cm2 at an ambient temperature of 40°C, with an operating temperature of 160°C, a gas flow rate of 20 c.c/min/cell, an anode stoichiometry of 1.2, and a cathode stoichiometry of 2.0. At an ambient temperature of 25°C, the maximum power density was 931 mA/cm2. Without using a heating system and utilizing a constant current to bring the battery stack to a steady-state temperature, the temperature distribution results indicate that the highest temperature of the battery stack occurs at the third cell (center) position. The average temperature of the battery stack at an ambient temperature of 40°C is approximately 10°C higher than that at 25°C. The battery stack temperature decreases with an increase in the cathode stoichiometry, but the performance improves. Voltage measurements of each cell reveal that within an appropriate stoichiometry range, the voltage increase due to higher ambient temperatures is more beneficial than that achieved by increasing the stoichiometry. The temperature error between the measured points predicted by the thermal resistance network model and the actual measurements is less than 5%, indicating that the model′s predictions have a certain reference value. This thermal resistance model can further estimate the temperatures of objects within the battery stack that cannot be measured directly.
關鍵字(中) ★ 高溫型質子交換膜燃料電池
★ 計量比
★ 熱阻模型
★ 熱管理
關鍵字(英)
論文目次 致謝 i
摘要 ii
Abstract iv
目錄 vii
圖目錄 x
表目錄 xiv
第一章 緒論 1
1.1研究背景 1
1.2研究動機 2
1.2.1燃料電池介紹以及種類 2
1.2.2高溫型質子交換膜燃料電池結構 3
1.2.3高溫型質子交換膜燃料電池運作原理 4
1.2.4高低溫型質子交換膜燃料電池比較 6
1.3探討問題 10
1.4解決方法 10
第二章 文獻回顧 11
2.1高溫型質子交換膜燃料電池 11
2.2質子交換膜燃料電池堆的熱管理 12
第三章 實驗設備及方法 14
3.1實驗設備 14
3.1.1高溫型質子交換膜燃料電池堆 14
3.1.2溫度數據擷取系統 17
3.1.3燃料電池測試機台 18
3.1.4加熱系統 19
3.1.5環境溫度模擬系統 20
3.2實驗流程及參數設定 21
3.2.1質子交換膜燃料電池極化現象 22
3.2.2熱阻網絡分析 24
第四章 結果與討論 29
4.1空白實驗測試 29
4.2電池堆性能測試 33
4.3電池堆熱管理 35
4.3.1定電流下不同環境溫度與陰極計量比對電池堆穩態溫度的影響 36
4.3.2定電流下不同計量比性能比較 51
4.4熱阻網絡模型 53
第五章 結論與未來研究 63
5.1結論 63
5.2未來研究 65
參考文獻 66
參考文獻 [1]Online resources: 全球力爭2050零碳排各國怎麼做?https://www.fugomedia.com.tw/Home/Info/News/5347
[2]Online resources: https://www.storm.mg/lifestyle/4814037
[3]溫武義編譯,燃料電池技術,全華科技圖書股份有限公司,1-12頁
[4]衣寶廉,燃料電池,五南圖書出版股份有限公司,76頁
[5]Allen, Frances I., et al. "Morphology of hydrated as-cast Nafion revealed through cryo electron tomography." ACS Macro Letters 4.1 (2015): 1-5.
[6]Li, Qingfeng, et al. "Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 C." Chemistry of materials 15.26 (2003): 4896-4915.
[7]Asensio, Juan Antonio, Salvador Borros, and Pedro Gomez-Romero. "Proton-conducting membranes based on poly (2, 5-benzimidazole)(ABPBI) and phosphoric acid prepared by direct acid casting." Journal of Membrane Science 241.1 (2004): 89-93.
[8]Gasteiger, Hubert A., et al. "Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs." Applied Catalysis B: Environmental 56.1-2 (2005): 9-35.
[9]Weber, Adam Z., and John Newman. "Coupled thermal and water management in polymer electrolyte fuel cells." Journal of The Electrochemical Society 153.12 (2006): A2205.
[10]Zhang, Lei, et al. "Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions." Journal of Power Sources 156.2 (2006): 171-182.
[11]Li, Qingfeng, et al. "The CO poisoning effect in PEMFCs operational at temperatures up to 200 C." Journal of the Electrochemical Society 150.12 (2003): A1599.
[12]Jung, Ho-Young, and Jung Won Kim. "Role of the glass transition temperature of Nafion 117 membrane in the preparation of the membrane electrode assembly in a direct methanol fuel cell (DMFC)." International Journal of Hydrogen Energy 37.17 (2012): 12580-12585.
[13]Yang, Chris, et al. "A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes." Journal of Membrane Science 237.1-2 (2004): 145-161.
[14]Hu, Jingwei, et al. "Performance degradation studies on PBI/H3PO4 high temperature PEMFC and one-dimensional numerical analysis." Electrochimica acta 52.2 (2006): 394-401.
[15]Oono, Yuka, et al. "Influence of operating temperature on cell performance and endurance of high temperature proton exchange membrane fuel cells." Journal of Power Sources 195.4 (2010): 1007-1014.
[16]Xia, Lingchao, et al. "Investigation of parameter effects on the performance of high-temperature PEM fuel cell." International Journal of Hydrogen Energy 43.52 (2018): 23441-23449.
[17]Wang, Lixia, et al. "Polylaminate TaN/Ta coating modified ferritic stainless steel bipolar plate for high temperature proton exchange membrane fuel cell." Journal of Power Sources 399 (2018): 343-349.Chen, Chen-Yu, and Sheng-Chun Su. "Development and performance evaluation of a high temperature proton exchange membrane fuel cell with stamped 304 stainless steel bipolar plates." International Journal of Hydrogen Energy 43.29 (2018): 13430-13439
[18]Yusof, M. S. M., et al. "Effect of Pt–Pd/C coupled catalyst loading and polybenzimidazole ionomer binder on oxygen reduction reaction in high-temperature PEMFC." International Journal of Hydrogen Energy 44.37 (2019): 20760-20769.
[19]Khalid, Saifuddin, et al. "Thermal–electrical–hydraulic properties of Al_2 O_3- SiO_2 hybrid nanofluids for advanced PEM fuel cell thermal management." Journal of Thermal Analysis and Calorimetry 143 (2021): 1555-1567.
[20]Khalid, Saifuddin, et al. "Thermal–electrical–hydraulic properties of Al_2 O_3- SiO_2 hybrid nanofluids for advanced PEM fuel cell thermal management." Journal of Thermal Analysis and Calorimetry 143 (2021): 1555-1567.
[21]Xia, Lingchao, et al. "Optimization of gas diffusion layer in high temperature PEMFC with the focuses on thickness and porosity." Applied Energy 300 (2021): 117357.
[22]Nanadegani, Fereshteh Salimi, Ebrahim Nemati Lay, and Bengt Sunden. "Effects of an MPL on water and thermal management in a PEMFC." International Journal of Energy Research 43.1 (2019): 274-296.
[23]Nishimura, Akira, et al. "Heat and mass transfer analysis in single cell of PEFC using different PEM and GDL at higher temperature." International Journal of Hydrogen Energy 44.56 (2019): 29631-29640.
[24]Yan, Wei-Mon, et al. "Performance improvement of air-breathing proton exchange membrane fuel cell stacks by thermal management." International Journal of Hydrogen Energy 45.42 (2020): 22324-22339.
[25]Zhao, Jing, Qifei Jian, and Zipeng Huang. "Experimental study on heat transfer performance of vapor chambers with potential applications in thermal management of proton exchange membrane fuel cells." Applied Thermal Engineering 180 (2020): 115847.
[26]Peng, Yimeng, et al. "Effects of flow field on thermal management in proton exchange membrane fuel cell stacks: A numerical study." International Journal of Energy Research 45.5 (2021): 7617-7630.
[27]黃鎮江,燃料電池(第三版),蒼海書局,69頁
[28]Online resources: Supplier Data - Polybenzimidazole (PBI) https://www.azom.com/article.aspx?ArticleID=1866
[29]Zhe Huang , Qifei Jian , Lizhong Luo , Bi Huang , Xingying Bai , Deqiang Li "Rapid thermal response and sensitivity analysis of proton exchange membrane fuel cell stack with ultra-thin vapor chambers, "Applied Thermal Engineering Volume 199, 117526, 2021
[30]Holman, Jack Philip. Heat transfer. McGraw Hill, 1986.
[31]Incropera, Frank P., et al. "Principles of heat and mass transfer." (No Title) (2013).
[32]千輝淳二,復漢出版社,實用傳熱計算。
[33]Muzychka, Y. S., and M. M. Yovanovich. "Laminar forced convection heat transfer in the combined entry region of non-circular ducts." J. Heat Transfer 126.1 (2004): 54-61.
[34]Sadeghifar, Hamidreza, Ned Djilali, and Majid Bahrami. "Thermal conductivity of a graphite bipolar plate (BPP) and its thermal contact resistance with fuel cell gas diffusion layers: Effect of compression, PTFE, micro porous layer (MPL), BPP out-of-flatness and cyclic load." Journal of Power Sources 273 (2015): 96-104
指導教授 陳震宇(Chen-Yu Chen) 審核日期 2024-10-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明