參考文獻 |
1. Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R., & Witten, T. A. (1997).Capillary flow as the cause of ring stains from dried liquid drops. Nature, 389(6653), 827-829.
2. Sirringhaus, H., Kawase, T. A. K. E. O., Friend, R. H., Shimoda, T., Inbasekaran, M., Wu, W., & Woo, E. P. (2000). High-resolution inkjet printing of all-polymer transistor circuits. Science, 290(5499), 2123-2126.
3. Park, J., & Moon, J. (2006). Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing. Langmuir, 22(8), 3506-3513.
4. Singh, M., Haverinen, H. M., Dhagat, P., & Jabbour, G. E. (2010). Inkjet printing—process and its applications. Advanced materials, 22(6), 673-685.
5. Maleki, H., & Bertola, V. (2020). Recent advances and prospects of inkjet printing in heterogeneous catalysis. Catalysis Science & Technology, 10(10), 3140-3159.
6. De Gans, B. J., Duineveld, P. C., & Schubert, U. S. (2004). Inkjet printing of polymers: state of the art and future developments. Advanced materials, 16(3), 203-213.
7. Ipekci, H. H., Gozutok, Z., Celik, N., Onses, M. S., & Uzunoglu, A. (2021). Ink-jet printing of particle-free silver inks on fabrics with a superhydrophobic protection layer for fabrication of robust electrochemical sensors. Microchemical Journal, 164, 106038.
8. Dugas, V., Broutin, J., & Souteyrand, E. (2005). Droplet evaporation study applied to DNA chip manufacturing. Langmuir, 21(20), 9130-9136.
9. Wang, D., Liu, S., Trummer, B. J., Deng, C., & Wang, A. (2002). Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nature biotechnology, 20(3), 275-281.
10. Kawase, T., Sirringhaus, H., Friend, R. H., & Shimoda, T. (2001). Inkjet printed via?hole interconnections and resistors for all?polymer transistor circuits. Advanced Materials, 13(21), 1601-1605.
11. Layani, M., Gruchko, M., Milo, O., Balberg, I., Azulay, D., & Magdassi, S. (2009). 68 Transparent conductive coatings by printing coffee ring arrays obtained at room temperature. ACS nano, 3(11), 3537-3542.
12. Trantum, J. R., Wright, D. W., & Haselton, F. R. (2012). Biomarker-mediated disruption of coffee-ring formation as a low resource diagnostic indicator. Langmuir, 28(4), 2187-2193.
13. Wen, J. T., Ho, C. M., & Lillehoj, P. B. (2013). Coffee ring aptasensor for rapid protein detection. Langmuir, 29(26), 8440-8446.
14. Attinger, D., Moore, C., Donaldson, A., Jafari, A., & Stone, H. A. (2013). Fluid dynamics topics in bloodstain pattern analysis: Comparative review and research opportunities. Forensic science international, 231(1-3), 375-396.
15. Gelderblom, H., Diddens, C., & Marin, A. (2022). Evaporation-driven liquid flow in sessile droplets. Soft Matter, 18(45), 8535-8553.
16. Picknett, R. G., & Bexon, R. (1977). The evaporation of sessile or pendant drops in still air. Journal of colloid and Interface Science, 61(2), 336-350.
17. Parsa, M., Harmand, S., & Sefiane, K. (2018). Mechanisms of pattern formation from dried sessile drops. Advances in colloid and interface science, 254, 22-47.
18. Uno, K., Hayashi, K., Hayashi, T., Ito, K., & Kitano, H. (1998). Particle adsorption in evaporating droplets of polymer latex dispersions on hydrophilic and hydrophobic surfaces. Colloid and polymer science, 276, 810-815.
19. Shin, D. H., Lee, S. H., Jung, J. Y., & Yoo, J. Y. (2009). Evaporating characteristics of sessile droplet on hydrophobic and hydrophilic surfaces. Microelectronic Engineering, 86(4-6),1350-1353.
20. Bormashenko, E., Musin, A., & Zinigrad, M. (2011). Evaporation of droplets on strongly and weakly pinning surfaces and dynamics of the triple line. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 385(1-3), 235-240. Patil, N. D., Bange, P. G., Bhardwaj, R., & Sharma, A. (2016). Effects of substrate heating and wettability on evaporation dynamics and deposition patterns for a sessile water droplet containing colloidal particles. Langmuir, 32(45), 11958-11972.
21. Deegan, R. D. (2000). Pattern formation in drying drops. Physical review E, 61(1), 475.
22. Denkov, N. D., Velev, O. D., Kralchevsky, P. A., Ivanov, I. B., Yoshimura, H., & Nagayama, K. (1993). Two-dimensional crystallization. Nature, 361(6407), 26-26.
23. Hu, H., & Larson, R. G. (2002). Evaporation of a sessile droplet on a substrate. The Journal of Physical Chemistry B, 106(6), 1334-1344.
24. Lama, H., & Mondal, R. (2020). The physics of drying of colloidal dispersion: Pattern formation and desiccation cracks. arXiv preprint arXiv:2011.14029.
25. Zhang, N., & Yang, W. J. (1982). Natural convection in evaporating minute drops.
26. Savino, R., Paterna, D., & Favaloro, N. (2002). Buoyancy and Marangoni effects in an evaporating drop. Journal of thermophysics and heat transfer, 16(4), 562-574.
27. Hu, H., & Larson, R. G. (2005). Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir, 21(9), 3972-3980.
28. Li, Y., Lv, C., Li, Z., Quere, D., & Zheng, Q. (2015). From coffee rings to coffee eyes. Soft matter, 11(23), 4669-4673.
29. Patil, N. D., Bange, P. G., Bhardwaj, R., & Sharma, A. (2016). Effects of substrate heating and wettability on evaporation dynamics and deposition patterns for a sessile water droplet containing colloidal particles. Langmuir, 32(45), 11958-11972.
30. Chatterjee, S., Kumar, M., Murallidharan, J. S., & Bhardwaj, R. (2020). Evaporation of initially heated sessile droplets and the resultant dried colloidal deposits on substrates held at ambient temperature. Langmuir, 36(29), 8407-8421.
31. Kajiya, T., Kobayashi, W., Okuzono, T., & Doi, M. (2009). Controlling the drying and film formation processes of polymer solution droplets with addition of small amount of surfactants. The Journal of Physical Chemistry B, 113(47), 15460-15466.
32. Still, T., Yunker, P. J., & Yodh, A. G. (2012). Surfactant-induced Marangoni eddies alter the coffee-rings of evaporating colloidal drops. Langmuir, 28(11), 4984-4988.
33. Hu, H., & Larson, R. G. (2006). Marangoni effect reverses coffee-ring depositions. The Journal of Physical Chemistry B, 110(14), 7090-7094.
34. Stoebe, T., Lin, Z., Hill, R. M., Ward, M. D., & Davis, H. T. (1996). Surfactant-enhanced spreading. Langmuir, 12(2), 337-344.
35. Bennacer, R., & Ma, X. (2022). Effect of temperature and surfactants on evaporation and contact line dynamics of sessile drops. Heliyon, 8(11).
36. 陳育澤 (2023)。奈米流體親水液滴的蒸發沉積圖案: 溫度與表面活性劑的作用。碩士論文。國立中央大學。
37. Optris, (2024). Optris infrared measurements BASIC PRINCIPLES of non-contact temperature measurement.[online]Available at: https://optris.com/wp-content/uploads/2024/09/Infrared-Basics.pdf
38. Nguyen, T. A., Nguyen, A. V., Hampton, M. A., Xu, Z. P., Huang, L., & Rudolph, V. (2012). Theoretical and experimental analysis of droplet evaporation on solid surfaces. Chemical engineering science, 69(1), 522-529.
39. 賴美蓁 (2023)。奈米流體親水液滴於蒸發初期的流場模擬:表面活性劑的影響。碩士論文。國立中央大學。 |