博碩士論文 111328015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.137.210.133
姓名 林宏瑋(Hong-Wei Lin)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 親水膠體液滴的蒸發特性及沉積圖案:溫度與表面活性劑的影響
(Evaporation characteristic and deposition pattern of hydrophilic colloid droplet: the effect of temperature and surfactant.)
相關論文
★ 溫度調變對二元合金固液介面形態穩定的影響★ 濃度調變對二元合金固液介面形態穩定的影響
★ 圓錐平板型生物反應器週期性流場研究★ 圓錐平板型生物反應器二次週期流場研究
★ 圓錐平板型生物反應器脈動式流場研究★ 濃度調變對單向固化形態穩定的影響
★ 圓錐平板型生物反應器脈動式二次流場研究★ 模擬注流式生物反應器之流場及細胞生長
★ 週期式圓錐平板裝置之設計與量測★ 模擬注流式生物反應器之細胞培養研究
★ 軟骨細胞在組織工程支架之培養研究★ 細胞在組織工程支架之生長與遷移
★ 冷電漿沉積類鑽碳膜之製程模擬分析★ 格狀自動機探討組織工程細胞體外培養研究
★ 細胞在注流式生物反應器之生長研究★ 週期式圓錐平板裝置之流場分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-12-18以後開放)
摘要(中) 液滴蒸發在生活當中無所不在,而其中主要的現象「咖啡環效應」更是影響廣泛。
對於噴墨技術、表面塗層技術等領域,咖啡環效應會降低成品品質。因此本研究想要探
討溫度以及表面活性劑SDS(sodium dodecyl sulfate, SDS)兩種抑制咖啡環的因素,從而
獲得更加均勻的沉積圖案。在液滴蒸發的過程中,主要受到毛細流、表面張力梯度和溫
度梯度所引發的馬蘭戈尼流以及液滴擴展行為等因素的影響,從而改變液滴蒸發特性和
沉積圖案的結果。
本文實驗探討低於臨界膠束濃度(Critical micelle concentration,簡稱 CMC)下四種
SDS 濃度(0、0.025、0.05、0.15 wt%)以及四種基板溫度(25、35、40、50 °C)下進行實驗。
實驗結果顯示,在低SDS濃度(0、0.025 wt%)以及未加熱基板(25°C)條件下,沉積圖案
為咖啡環。而基板溫度上升後(35、40、50 °C),則形成咖啡眼的沉積圖案。在高SDS濃
度(0.05、0.15 wt%)以及未加熱條件(25°C)下,液滴蒸發初期會產生擴展行為,沉積圖案
面積增加。而基板溫度上升後(35、40、50 °C),液滴的擴展行為會減小。
摘要(英) Droplet evaporation is ubiquitous in daily life, and the main deposition phenomenon
"coffee ring " usually appears. However, coffee ring effect will lower the quality of the products
in some application like inject printing, surface coating, etc. Therefore, the effect of temperature
and surfactant SDS (sodium dodecyl sulfate, SDS) for suppressing coffee ring effect is
considered in this study. During the droplet evaporation process, droplet is mainly affected by
capillary flow, and Marangoni flow which is induced by the gradient of surface tension, etc.
These mechanisms change the results of droplet evaporation characteristic and deposition
pattern.
In this experiment, four kinds of SDS concentration (0, 0.025, 0.05, 0.15 wt%) below the
critical micelle concentration (CMC) and four kinds of substrate temperature (25, 35, 40, 50 °C)
is considered. Experiment results show in lower SDS concentration (0, 0.025 wt%) and non
heated substrate temperature (25°C) cases, deposition pattern reveals coffee ring. For heated
substrate cases (35, 40, 50 °C), deposition pattern reveals coffee eye. In higher SDS
concentration (0.05, 0.15 wt%) and non-heated substrate temperature cases (25°C), contact line
spreading behavior is observed at the early stage of the droplet evaporation, lead to a larger area
pattern. For the heated substrate cases (35, 40, 50 °C), the spreading behavior is weakened.
關鍵字(中) ★ 液滴蒸發
★ 表面活性劑
★ 液滴擴展
★ 親水
★ 基板溫度
關鍵字(英) ★ droplet evaporation
★ surfactant
★ droplet spreading
★ hydrophilic
★ substrate temperature
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
第一章 緒論 1
1-1 研究動機 1
1-2 文獻回顧 2
1-2-1咖啡環的產生與抑制 5
1-2-2 液滴的擴展行為 12
1-3 研究目的 13
第二章 實驗系統 14
2-1 實驗裝置 14
2-1-1 注射系統 16
2-1-2 溫控系統 16
2-1-3 環境控制系統 16
2-1-4 影像系統 16
2-2 溶液調配 17
2-3 基板處理 18
2-4 實驗條件 18
2-5 數據測量 18
第三章 結果與討論 19
3-1 液滴的初始條件和蒸發時間 19
3-2 蒸發過程和沉積圖案 21
3-2-1 溫度效應 22
3-2-2 表面活性劑濃度效應 33
3-3 液滴表面溫度分布 60
3-3-1 未添加SDS 60
3-3-2 SDS濃度0.025、0.05、0.15 wt% 63
3-4 沉積圖案的表面粗糙度 70
3-5 沉積樣態圖 74
3-6 接觸線擴展行為的削弱 75
第四章 結論與未來展望 78
4-1 結論 78
4-2 未來展望 79
參考文獻 80
附錄 84
附錄A 溶液調配計算 84
附錄B 液滴接觸角的測量 86
附錄C 平均高度、平均粗糙度、均方根粗糙度的計算 88
參考文獻 1. Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R., & Witten, T. A. (1997).Capillary flow as the cause of ring stains from dried liquid drops. Nature, 389(6653), 827-829.
2. Sirringhaus, H., Kawase, T. A. K. E. O., Friend, R. H., Shimoda, T., Inbasekaran, M., Wu, W., & Woo, E. P. (2000). High-resolution inkjet printing of all-polymer transistor circuits. Science, 290(5499), 2123-2126.
3. Park, J., & Moon, J. (2006). Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing. Langmuir, 22(8), 3506-3513.
4. Singh, M., Haverinen, H. M., Dhagat, P., & Jabbour, G. E. (2010). Inkjet printing—process and its applications. Advanced materials, 22(6), 673-685.
5. Maleki, H., & Bertola, V. (2020). Recent advances and prospects of inkjet printing in heterogeneous catalysis. Catalysis Science & Technology, 10(10), 3140-3159.
6. De Gans, B. J., Duineveld, P. C., & Schubert, U. S. (2004). Inkjet printing of polymers: state of the art and future developments. Advanced materials, 16(3), 203-213.
7. Ipekci, H. H., Gozutok, Z., Celik, N., Onses, M. S., & Uzunoglu, A. (2021). Ink-jet printing of particle-free silver inks on fabrics with a superhydrophobic protection layer for fabrication of robust electrochemical sensors. Microchemical Journal, 164, 106038.
8. Dugas, V., Broutin, J., & Souteyrand, E. (2005). Droplet evaporation study applied to DNA chip manufacturing. Langmuir, 21(20), 9130-9136.
9. Wang, D., Liu, S., Trummer, B. J., Deng, C., & Wang, A. (2002). Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nature biotechnology, 20(3), 275-281.
10. Kawase, T., Sirringhaus, H., Friend, R. H., & Shimoda, T. (2001). Inkjet printed via?hole interconnections and resistors for all?polymer transistor circuits. Advanced Materials, 13(21), 1601-1605.
11. Layani, M., Gruchko, M., Milo, O., Balberg, I., Azulay, D., & Magdassi, S. (2009). 68 Transparent conductive coatings by printing coffee ring arrays obtained at room temperature. ACS nano, 3(11), 3537-3542.
12. Trantum, J. R., Wright, D. W., & Haselton, F. R. (2012). Biomarker-mediated disruption of coffee-ring formation as a low resource diagnostic indicator. Langmuir, 28(4), 2187-2193.
13. Wen, J. T., Ho, C. M., & Lillehoj, P. B. (2013). Coffee ring aptasensor for rapid protein detection. Langmuir, 29(26), 8440-8446.
14. Attinger, D., Moore, C., Donaldson, A., Jafari, A., & Stone, H. A. (2013). Fluid dynamics topics in bloodstain pattern analysis: Comparative review and research opportunities. Forensic science international, 231(1-3), 375-396.
15. Gelderblom, H., Diddens, C., & Marin, A. (2022). Evaporation-driven liquid flow in sessile droplets. Soft Matter, 18(45), 8535-8553.
16. Picknett, R. G., & Bexon, R. (1977). The evaporation of sessile or pendant drops in still air. Journal of colloid and Interface Science, 61(2), 336-350.
17. Parsa, M., Harmand, S., & Sefiane, K. (2018). Mechanisms of pattern formation from dried sessile drops. Advances in colloid and interface science, 254, 22-47.
18. Uno, K., Hayashi, K., Hayashi, T., Ito, K., & Kitano, H. (1998). Particle adsorption in evaporating droplets of polymer latex dispersions on hydrophilic and hydrophobic surfaces. Colloid and polymer science, 276, 810-815.
19. Shin, D. H., Lee, S. H., Jung, J. Y., & Yoo, J. Y. (2009). Evaporating characteristics of sessile droplet on hydrophobic and hydrophilic surfaces. Microelectronic Engineering, 86(4-6),1350-1353.
20. Bormashenko, E., Musin, A., & Zinigrad, M. (2011). Evaporation of droplets on strongly and weakly pinning surfaces and dynamics of the triple line. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 385(1-3), 235-240. Patil, N. D., Bange, P. G., Bhardwaj, R., & Sharma, A. (2016). Effects of substrate heating and wettability on evaporation dynamics and deposition patterns for a sessile water droplet containing colloidal particles. Langmuir, 32(45), 11958-11972.
21. Deegan, R. D. (2000). Pattern formation in drying drops. Physical review E, 61(1), 475.
22. Denkov, N. D., Velev, O. D., Kralchevsky, P. A., Ivanov, I. B., Yoshimura, H., & Nagayama, K. (1993). Two-dimensional crystallization. Nature, 361(6407), 26-26.
23. Hu, H., & Larson, R. G. (2002). Evaporation of a sessile droplet on a substrate. The Journal of Physical Chemistry B, 106(6), 1334-1344.
24. Lama, H., & Mondal, R. (2020). The physics of drying of colloidal dispersion: Pattern formation and desiccation cracks. arXiv preprint arXiv:2011.14029.
25. Zhang, N., & Yang, W. J. (1982). Natural convection in evaporating minute drops.
26. Savino, R., Paterna, D., & Favaloro, N. (2002). Buoyancy and Marangoni effects in an evaporating drop. Journal of thermophysics and heat transfer, 16(4), 562-574.
27. Hu, H., & Larson, R. G. (2005). Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir, 21(9), 3972-3980.
28. Li, Y., Lv, C., Li, Z., Quere, D., & Zheng, Q. (2015). From coffee rings to coffee eyes. Soft matter, 11(23), 4669-4673.
29. Patil, N. D., Bange, P. G., Bhardwaj, R., & Sharma, A. (2016). Effects of substrate heating and wettability on evaporation dynamics and deposition patterns for a sessile water droplet containing colloidal particles. Langmuir, 32(45), 11958-11972.
30. Chatterjee, S., Kumar, M., Murallidharan, J. S., & Bhardwaj, R. (2020). Evaporation of initially heated sessile droplets and the resultant dried colloidal deposits on substrates held at ambient temperature. Langmuir, 36(29), 8407-8421.
31. Kajiya, T., Kobayashi, W., Okuzono, T., & Doi, M. (2009). Controlling the drying and film formation processes of polymer solution droplets with addition of small amount of surfactants. The Journal of Physical Chemistry B, 113(47), 15460-15466.
32. Still, T., Yunker, P. J., & Yodh, A. G. (2012). Surfactant-induced Marangoni eddies alter the coffee-rings of evaporating colloidal drops. Langmuir, 28(11), 4984-4988.
33. Hu, H., & Larson, R. G. (2006). Marangoni effect reverses coffee-ring depositions. The Journal of Physical Chemistry B, 110(14), 7090-7094.
34. Stoebe, T., Lin, Z., Hill, R. M., Ward, M. D., & Davis, H. T. (1996). Surfactant-enhanced spreading. Langmuir, 12(2), 337-344.
35. Bennacer, R., & Ma, X. (2022). Effect of temperature and surfactants on evaporation and contact line dynamics of sessile drops. Heliyon, 8(11).
36. 陳育澤 (2023)。奈米流體親水液滴的蒸發沉積圖案: 溫度與表面活性劑的作用。碩士論文。國立中央大學。
37. Optris, (2024). Optris infrared measurements BASIC PRINCIPLES of non-contact temperature measurement.[online]Available at: https://optris.com/wp-content/uploads/2024/09/Infrared-Basics.pdf
38. Nguyen, T. A., Nguyen, A. V., Hampton, M. A., Xu, Z. P., Huang, L., & Rudolph, V. (2012). Theoretical and experimental analysis of droplet evaporation on solid surfaces. Chemical engineering science, 69(1), 522-529.
39. 賴美蓁 (2023)。奈米流體親水液滴於蒸發初期的流場模擬:表面活性劑的影響。碩士論文。國立中央大學。
指導教授 鍾志昂(Chih-Ang Chung) 審核日期 2024-12-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明