博碩士論文 111328008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.225.95.155
姓名 林泰佑(LIN, TAI-YOU)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 氨/氫燃料固態氧化物燃料電池於不同溫度之性能與穩定性量測
(Ammonia/Hydrogen-Fueled Solid Oxide Fuel Cells: Cell Performance and Stability Measurements at 650℃~800℃)
相關論文
★ 預混紊流燃燒:火花引燃機制與加氫效應之定量量測★ 低氮氧化物燃燒器與加氫效應定量量測
★ 平板式SOFC電池堆流場可視化與均勻度之實驗模擬和分析★ 平板式SOFC單電池堆性能量測:棋盤狀流道尺寸效應
★ 實驗量測分析Kee's燃料電池堆流場分佈模式之可靠度★ 棋盤式雙極板尺寸效應對固態氧化物燃料電池性能之影響
★ 氫氣/一氧化碳合成氣於高壓層流與紊流環境下之燃燒速度量測★ 自我加速蜂巢結構球狀火焰及其局部自我相似性之量測與分析
★ 加壓型SOFC陽極支撐與電解質支撐單電池堆量測與分析★ 高壓預混紊流球狀擴張火焰之自我相似性和其火焰速率於不同Lewis數(Le < 1, Le ≈ 1, Le >1)
★ 實驗研究密度比效應對紊流火焰速率之影響★ 加壓型氨固態氧化物燃料電池之性能和穩定性量測
★ 平板式加壓型合成氣固態氧化物燃料電池實驗研究★ 雷射直寫系統最佳化及其單一細胞列印與光電醫學之應用
★ 加壓型合成氣固態氧化物燃料電池加氨之實驗研究: 電池性能與穩定性量測★ 高溫高壓甲苯參考燃料層流與紊流燃燒速度量測及其正規化分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-31以後開放)
摘要(中) 本論文使用實驗室已建立的雙腔體固態氧化物燃料電池(Solid Oxide Fuel Cell, SOFC)測試平台,量測鈕扣型陽極支撐電池(Ni-YSZ/YSZ/LSC-GDC)之電池性能及電化學阻抗頻譜。測試在四個不同溫度(T = 650、700、750、800℃)下進行,並使用了七種不同sccm比例之氨/氫/氮陽極燃料(NH3/H2/N2:0/130/70;40/70/50;45/63/47;50/55/45;55/48/42;60/40/40;87/0/26),陰極則全部使用200 sccm空氣,並且氨完全裂解為氫和氮之sccm比例為H2/N2:130/70。結果顯示:(1)當T ? 750℃時,各種燃料比例的性能十分接近,主要是氨在Ni-YSZ觸媒催化下,大於750℃時會完全裂解成氫與氮;(2)在T = 650℃,氨/氫/氮混合氣體中氫比例大於氨時,其性能表現會低於以純氨為燃料時的性能;(3)當T ? 700℃時,以氨為燃料的開路電壓(Open Circuit Voltage, OCV)明顯低於其他比例燃料;(4)三種比例燃料(NH3/H2/N2:40/70/50;60/40/40;87/0/26)經過120小時穩定性測試後,掃描式電子顯微鏡(Scanning Electron Microscope, SEM)影像顯示電池微結構無裂痕,僅在以純氨為燃料的電池陽極中發現氮化鎳的存在。本研究證實氨添加氫氣,有助於抑制鎳氮化的產生,其結果對於使用氨燃料的SOFC,有重要的參考價值。
摘要(英) This thesis applies a dual-chamber solid oxide fuel cell (SOFC) testing platform to measure the performance and electrochemical impedance spectroscopy of button-type anode-supported cells (Ni-YSZ/YSZ/LSC-GDC). Measurements are conducted at four different temperatures (T = 650, 700, 750, and 800℃) and with seven different anode NH3/H2/N2 fuel gas flow rates in unit of sccm: 0/130/70; 40/70/50; 45/63/47; 50/55/45; 55/48/42; 60/40/40; 87/0/26, where the same 200 sccm air volume flow rate in the cathode is used. If the complete dissociation of NH3 into H2 and N2 were assumed, the above mentioned seven NH3/H2/N2 anode gases have the same H2/N2 ratio of 130/70 sccm. The results indicate the following four points. (1) At T ? 750℃, the cell performances are very similar all seven different anode fuel ratios, because the complete dissociation of NH3 into H2 and N2 can be achieved for the Ni-based catalyst. (2) At T = 650℃, the cell performance of NH3/H2/N2 mixtures with higher H2 content than NH3 is lower than that of pure NH3 fuel. (3) At T ? 700℃, the open circuit voltage (OCV) of using pure NH3 fuel is significantly lower than those of the other NH3/H2/N2 fuel ratios. (4) After a 120-hour stability test at 650℃, the cell micro structures remain almost the same without any crack as observed by scanning electron microscope (SEM) for three tested fuel ratios (NH3/H2/N2: 40/70/50; 60/40/40; 87/0/26). However, the later case for the pure NH3 fuel (NH3/H2/N2: 87/0/26) has the detection of nickel nitride in the anode. Moreover, this study substantiates a fact that adding H2 to NH3 fuel can effectively suppress nickel nitridation, offering valuable insights for the application of ammonia-fueled SOFCs.
關鍵字(中) ★ 無碳燃料
★ 固態氧化物燃料電池
★ 溫度效應
★ 電池性能與電化學阻抗頻譜
★ 穩定性測試
關鍵字(英) ★ Carbon-free Fuel
★ Solid Oxide Fuel Cell
★ Temperature Effect
★ Cell Performance and Electrochemical Impedance Spectrum
★ Stability Test
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 vii
符號說明 viii
第一章 前言 1
1.1 研究動機 1
1.2 問題所在 3
1.3 研究方法 4
1.4 論文綱要 5
第二章 文獻回顧 6
2.1 SOFC基本介紹 6
2.2 SOFC運行原理與極化阻抗 10
2.2.1 歐姆阻抗 13
2.2.2 活化極化 14
2.2.3 濃度極化 15
2.3 電化學阻抗頻譜與等效電路模組 17
2.3.1 電化學阻抗頻譜 17
2.3.2 等效電路模組 21
2.4 以氨作為燃料的SOFC 22
2.4.1 改變材料對氨SOFC影響 24
2.4.2 改變操作溫度對氨SOFC影響 31
第三章 實驗設備與量測方法 36
3.1 SOFC實驗設備 36
3.1.1 高溫高壓雙腔體SOFC測試平台 36
3.1.2 鈕扣型電池載台與電池片 38
3.1.3 XRD繞射儀與SEM掃描式電子顯微鏡 41
3.2 實驗流程與量測方法 42
第四章 結果與討論 46
4.1 使用氫氣或氨氣為燃料於不同溫度下性能與阻抗頻譜比較 46
4.2 使用氨/氫/氮混合氣體於不同溫度下性能與阻抗頻譜比較 51
4.3 不同比例氨/氫/氮混合氣體對於SOFC穩定性的影響 58
第五章 結論與未來工作 62
5.1 結論 62
5.2 未來工作 63
參考文獻 65
參考文獻 [1] D. Zeng, M. Wu, M. Yousaf, H. Song, Z. Wan, X. Gao, J. Shao, and Y. Tao, “Enhanced stability and electrochemical investigations of Ni/ZSM-5 catalyst layer on nickel-based anodes for ammonia-fed solid oxide fuel cells.” J. Power Sources, Vol 592, February 2024, pp. 233939.
[2] Y. Pan, J. Wang, Z. Lu, R. Wang, and Z. Xu, “A review on the application of magnetron sputtering technologies for solid oxide fuel cell in reduction of the operating temperature.” Int. J. Hydrog. Energy, Vol 50, January 2024, pp. 1179-1193.
[3] “High-temperature fuel cell achieves lifetime of more than 11 years”,2024年6月30日,取自https://www.fz-juelich.de/en/news/press-release/2019/2019-02-07-sofc-en。
[4] P. Dimitriou and R. Javaid, “A review of ammonia as a compression ignition engine fuel.” Int. J. Hydrog. Energy, Vol 45, February 2020, pp. 7098-7118.
[5] A. Valera-Medina, H. Xiao, M. Owen-Jones, W.I.F. David, and P.J. Bowen, “Ammonia for power.” Prog. Energy Combust. Sci., Vol 69, November 2018, pp. 63-102.
[6] S.S. Shy, V.T. Mai, Y.R. Chen, and H.Y. Hsieh, “Nanosecond repetitively pulsed discharges and conventional sparks of ammonia-air mixtures in a fan-stirred cruciform burner: Flammability limits and ignition transition.” Appl. Energy Combust. Sci., Vol 15, September 2023, pp. 100164.
[7] Y. Liu, Y. Xu, J. Liu, M. Xiang, B. Sun, Y. Ya, Z. Guo, and X. Cheng, “Effects of bipolar plate flow channel configuration on thermal-electric performance of direct ammonia solid oxide fuel cell: Part I - Numerical study of channel section geometry.” Int. J. Hydrog. Energy, Vol 50, January 2024, pp. 765-785.
[8] J. Yang, T. Akagi, T. Okanishi, H. Muroyama, T. Matsui, and K. Eguchi, “Catalytic influence of oxide component in Ni-based cermet anodes for ammonia-fueled solid oxide fuel cells.” Fuel Cells, Vol 15, February 2015, pp. 390-397.
[9] J. Yang, A.F.S. Molouk, T. Okanishi, H. Muroyama, T. Matsui, and K. Eguchi, “Electrochemical and catalytic properties of Ni/BaCe0.75Y0.25O3?δ anode for direct ammonia-fueled solid oxide fuel cells.” ACS Appl. Mater. Interfaces, Vol 7, March 2015, pp. 7406-7412.
[10] A.F.S. Molouk, J. Yang, T. Okanishi, H. Muroyama, T. Matsui, and K. Eguchi, “Comparative study on ammonia oxidation over Ni-based cermet anodes for solid oxide fuel cells.” J. Power Sources, Vol 305, February 2016, pp. 72-79.
[11] K. Miyazaki, T. Okanishi, H. Muroyama, T. Matsui, and K. Eguchi, “Development of Ni–Ba(Zr,Y)O3 cermet anodes for direct ammonia-fueled solid oxide fuel cells.” J. Power Sources, Vol 365, October 2017, pp. 148-154.
[12] K. Miyazaki, H. Muroyama, T. Matsui, and K. Eguchi, “Impact of the ammonia decomposition reaction over an anode on direct ammonia-fueled protonic ceramic fuel cells.” Sustain. Energy Fuels, Vol 4, September 2020, pp. 5238-5246.
[13] J. Yang, A.F.S. Molouk, T. Okanishi, H. Muroyama, T. Matsui, and K. Eguchi, “A stability study of Ni/Yttria-stabilized zirconia anode for direct ammonia solid oxide fuel cells.” ACS Appl. Mater. Interfaces, Vol 7, December 2015, pp. 28701-28707.
[14] P.C. Wu and S.S. Shy, “Cell performance, impedance, and various resistances measurements of an anode-supported button cell using a new pressurized solid oxide fuel cell rig at 1-5 atm and 750-850 °C.” J. Power Sources, Vol 362, September 2017, pp. 105-114.
[15] V.A.C. Haanappel and M.J. Smith, “A review of standardising SOFC measurement and quality assurance at FZJ.” J. Power Sources, Vol 171, September 2007, pp. 169-178.
[16] A.A. Sinha, K. Srivastava, A.S. Rajpoot, T. Choudhary, S.P. Pandey, and Sanjay, “A thermodynamic approach to analyze energy, exergy, emission, and sustainability (3E-S) performance by utilizing low temperature waste heat in SOFC-CHP-TEG system.” Int. J. Hydrog. Energy, Vol 63, April 2024, pp. 1088-1104.
[17] R. O′Hayre, S. Cha, W. Colella, and F.B. Prinz, Fuel Cell Fundamentals, 3rd Edition, New York: John Wiley & Sons Inc., 2016.
[18] M. Hami and J. Mahmoudimehr, “A comprehensive comparison of performances of anode-supported, cathode-supported, and electrolyte-supported solid oxide fuel cells during warming-up process.” Int. J. Heat Mass Transfer, Vol 230, September 2024, pp. 125779.
[19] R. Chen, Y. Gao, J. Gao, H. Zhang, M. Motola, M.B. Hanif, and C. Li, “From concept to commercialization: A review of tubular solid oxide fuel cell technology.” J. Energy Chem., Vol 97, October 2024, pp. 79-109.
[20] H. Zhang, T. Chen, Z. Huang, G. Hu, J. Zhou, and S. Wang, “A cathode-supported solid oxide fuel cell prepared by the phase-inversion tape casting and impregnating method.” Int. J. Hydrog. Energy, Vol 47, May 2022, pp. 18810-18819.
[21] M.E. Chelmehsara and J. Mahmoudimehr, “Techno-economic comparison of anode-supported, cathode-supported, and electrolyte-supported SOFCs.” Int. J. Hydrog. Energy, Vol 43, August 2018, pp. 15521-15530.
[22] W. Li, S. Wu, J. Zhu, W. Zhang, W. Guan, and J. Li, “Real-time deformation and stress response of the planar SOFC during sintering.” J. Eur. Ceram. Soc., Vol 44, April 2024, pp. 2242-2250.
[23] B. Timurkutluk, S. Onbilgin, T. Altan, and C. Timurkutluk, “Manufacturability of bolt-microtubular anode supports for solid oxide fuel cells.” J. Power Sources, Vol 592, February 2024, pp. 233971.
[24] L. Hu, R. Zhang, M. Guo, and Z. Yang, “Glass-diopside composite sealing material for planar solid oxide fuel cells.” Int. J. Hydrog. Energy, Vol 50, January 2024, pp. 1341-1346.
[25] Z. Zeng, Y. Qian, Y. Zhang, C. Hao, D. Dan, and W. Zhuge, “A review of heat transfer and thermal management methods for temperature gradient reduction in solid oxide fuel cell (SOFC) stacks.” Appl. Energy, Vol 280, December 2020, pp. 115899.
[26] A.N. Zainon, M.R. Somalu, A.M.K. Bahrain, A. Muchtar, N.A. Baharuddin, M.A. S.A, N. Osman, A.A. Samat, A.K. Azad, and N.P. Brandon, “Challenges in using perovskite-based anode materials for solid oxide fuel cells with various fuels: a review.” Int. J. Hydrog. Energy, Vol 48, June 2023, pp. 20441-20464.
[27] A. Leonide, Y. Apel, and E. Ivers-Tiffee, “SOFC modeling and parameter identification by means of impedance spectroscopy.” ECS Trans., Vol 19, October 2009, pp. 81-109.
[28] A.B. Stambouli, “Fuel cells: The expectations for an environmental-friendly and sustainable source of energy.” Renew. Sust. Energ. Rev., Vol 15, December 2011, pp. 4507-4520.
[29] S.C. Singhal and K. Kendall, High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, Amsterdam: Elsevier Science, 2003.
[30] Y.D. Hsieh, Y.H. Chan, and S.S. Shy, “Effects of pressurization and temperature on power generating characteristics and impedances of anode-supported and electrolyte-supported planar solid oxide fuel cells.” J. Power Sources, Vol 299, December 2015, pp. 1-10.
[31] S.S. Shy, Y.D. Hsieh, and J. Liang, “The impact of pressurization on anode-supported and electrolyte-supported planar solid oxide fuel cells at 750℃ ~ 850℃.” ECS Trans., Vol 68, July 2015, pp. 2169-2178.
[32] A.V. Virkar, J. Chen, C.W. Tanner, and J. Kim, “The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells.” Solid State Ion., Vol 131, June 2000, pp. 189-198.
[33] S.H. Chan, K.A. Khor, and Z.T. Xia, “A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness.” J. Power Sources, Vol 93, February 2001, pp. 130-140.
[34] H. Shimada, T. Suzuki, T. Yamaguchi, H. Sumi, K. Hamamoto, and Y. Fujishiro, “Challenge for lowering concentration polarization in solid oxide fuel cells.” J. Power Sources, Vol 302, January 2016, pp. 53-60.
[35] M. Ni, M.K.H. Leung, and D.Y.C. Leung, “Parametric study of solid oxide fuel cell performance.” Energy Convers. Manag., Vol 48, May 2007, pp. 1525-1535.
[36] A.V. Akkaya, “Electrochemical model for performance analysis of a tubular SOFC.” Int. J. Energy Res., Vol 31, August 2006, pp. 79-98.
[37] A.C. Lazanas and M.I. Prodromidis, “Electrochemical impedance spectroscopy-A tutorial.” ACS Meas. Sci. Au, Vol 3, March 2023, pp. 162-193.
[38] S. Wang, J. Zhang, O. Gharbi, V. Vivier, M. Gao, and M.E. Orazem, “Electrochemical impedance spectroscopy.” Nat. Rev. Methods Primers, Vol 1, June 2021, pp. 41.
[39] M. Kishimoto, H. Onaka, H. Iwai, M. Saito, and H. Yoshida, “Physicochemical impedance modeling of solid oxide fuel cell anode as an alternative tool for equivalent circuit fitting.” J. Power Sources, Vol 431, August 2019, pp. 153-161.
[40] V. Suboti?, C. Schluckner, J. Strasser, V. Lawlor, J. Mathe, J. Rechberger, H. Schroettner, and C. Hochenauer, “In-situ electrochemical characterization methods for industrial-sized planar solid oxide fuel cells Part I: Methodology, qualification and detection of carbon deposition.” Electrochim. Acta, Vol 207, July 2016, pp. 224-236.
[41] A. Fuerte, R.X. Valenzuela, M.J. Escudero, and L. Daza, “Ammonia as efficient fuel for SOFC.” J. Power Sources, Vol 192, July 2009, pp. 170-174.
[42] J. Yang, A.F.S. Molouk, T. Okanishi, H. Muroyama, T. Matsui, and K. Eguchi, “Electrochemical and catalytic properties of Ni/BaCe0.75Y0.25O3?δ anode for direct ammonia-fueled solid oxide fuel cells.” ACS Appl. Mater. Interfaces, Vol 7, March 2015, pp. 7406-7412.
[43] Y. Wang, Y. Gu, H. Zhang, J. Yang, J. Wang, W. Guan, J. Chen, B. Chi, L. Jia, H. Muroyama, T. Matsui, K. Eguchi, and Z. Zhong, “Efficient and durable ammonia power generation by symmetric flat-tube solid oxide fuel cells.” Appl. Energy, Vol 270, July 2020, pp. 115185.
[44] Y. Wang, J. Yang, J. Wang, W. Guan, B. Chi, L. Jia, J. Chen, H. Muroyama, T. Matsui, and K. Eguchi, “Low–temperature ammonia decomposition catalysts for direct ammonia solid oxide fuel cells.” J. Electrochem. Soc., Vol 167, March 2020, pp. 064501.
[45] Y. Song, H. Li, M. Xu, G. Yang, W. Wang, R. Ran, W. Zhou, and Z. Shao, “Infiltrated NiCo alloy nanoparticle decorated perovskite oxide: A highly active, stable, and antisintering anode for direct-ammonia solid oxide fuel cells.” Small, Vol 16, June 2020, pp. 2001859.
[46] A.C. Chien, W.Y. Chen, and M.S. Zheng, “Direct conversion of ammonia to electricity on a PCFC and an SOFC.” J. Electrochem. Soc., Vol 170, April 2023, pp. 044505.
[47] W. Akimoto, T. Fujimoto, M. Saito, M. Inaba, H. Yoshida, and T. Inagaki, “Ni–Fe/Sm-doped CeO2 anode for ammonia-fueled solid oxide fuel cells.” Solid State Ion., Vol 256, March 2014, pp. 1-4.
[48] M. Hashinokuchi, R. Yokochi, W. Akimoto, T. Doi, M. Inaba, and J. Kugai, “Enhancement of anode activity at Ni/Sm-doped CeO2 cermet anodes by Mo addition in NH3-fueled solid oxide fuel cells.” Solid State Ion., Vol 285, February 2016, pp. 222-226.
[49] M. Hashinokuchi, M. Zhang, T. Doi, and M. Inaba, “Enhancement of anode activity and stability by Cr addition at Ni/Sm-doped CeO2 cermet anodes in NH3-fueled solid oxide fuel cells.” Solid State Ion., Vol 319, June 2018, pp. 180-185.
[50] B. Stoeckl, V. Suboti?, M. Preininger, M. Schwaiger, N. Evic, H. Schroettner, and C. Hochenauer, “Characterization and performance evaluation of ammonia as fuel for solid oxide fuel cells with Ni/YSZ anodes.” Electrochim. Acta, Vol 298, March 2019, pp. 874-883.
[51] Y. Luo, S. Liao, S. Chen, H. Fang, F. Zhong, L. Lin, C. Zhou, C. Chen, G. Cai, C.T. Au, and L. Jiang, “Optimized coupling of ammonia decomposition and electrochemical oxidation in a tubular direct ammonia solid oxide fuel cell for high-efficiency power generation.” Appl. Energy, Vol 307, February 2022, pp. 118158.
[52] N. Jantakananuruk, J.R. Page, C.D. Armstrong, J. Persky, R. Datta, and A.R. Teixeira, “Integrated thermal reforming and electro-oxidation in ammonia-fueled tubular solid oxide fuel cells toward autothermal operation.” J. Power Sources, Vol 548, November 2022, pp. 231999.
[53] P.V. Hendriksen, F. Mondi, X. Sun, R. Caldogno, H.L. Frandsen, O.B. Rizvandi, J.V.T. Hogh, and J.B. Hansen, “Ammonia as an SOFC fuel.” ECS Trans., Vol 111, May 2023, pp. 2085-2096.
[54] H. Kim, J. Lee, A.A. Gokbayrak, Y. Seo, S. Oh, M.J. Oh, Y. Jun, J. Son, and S. Yang, “Characterization of direct-ammonia solid oxide fuel cells (DA-SOFCs) at 650–750 °C in a single-repeating unit stack: Effects of metallic components and residual ammonia.” Int. J. Hydrog. Energy, Vol 68, May 2024, pp. 1312-1321.
[55] 游政泓,「陰極氧濃度效應於不同溫度甲烷固態氧化物燃料電池影響之實驗研究」,國立中央大學,碩士論文,2022。
[56] “X光粉末繞射儀(XRD)”,2025年1月6日,取自https://www.ec.ncu.edu.tw/pages/102-%EF%BD%98%E5%85%89%E7%B2%89%E6%9C%AB%E7%B9%9E%E5%B0%84%E5%84%80%28XRD%29。
[57] “低真空掃描式電子顯微鏡 (LV-SEM)”,2025年1月6日,取自https://www.ec.ncu.edu.tw/pages/113-%E4%BD%8E%E7%9C%9F%E7%A9%BA%E6%8E%83%E6%8F%8F%E5%BC%8F%E9%9B%BB%E5%AD%90%E9%A1%AF%E5%BE%AE%E9%8F%A1%20%28LV-SEM%29。
[58] “D2 PHASER”,2025年1月6日,取自https://www.bruker.com/zh/products-and-solutions/diffractometers-and-x-ray-microscopes/x-ray-diffractometers/d2-phaser.html。
[59] “HITACHI S-3500N | Electron Microscopy”,2025年1月6日,取自https://micro.icm.csic.es/en/site-page/hitachi-s-3500n。
[60] S. Sayas, N. Morlanes, S.P. Katikaneni, A. Harale, B. Solami, and J. Gascon, “High pressure ammonia decomposition on Ru–K/CaO catalysts.” Catal. Sci. Technol., Vol 10, June 2020, pp. 5027-5035.
[61] R. Antunes, R. Steiner, L. Marot, and E. Meyer, “Decomposition studies of NH3 and ND3 in presence of H2 and D2 with Pt/Al2O3 and Ru/Al2O3 catalysts.” Int. J. Hydrog. Energy, Vol 47, April 2022, pp. 14130-14140.
[62] X. Gao, X. Liu, W. Zang, H. Dong, Y. Pang, Z. Kou, P. Wang, Z. Pan, S. Wei, S. Mu, J. Wang, “Synergizing in-grown Ni3N/Ni heterostructured core and ultrathin Ni3N surface shell enables self-adaptive surface reconfiguration and efficient oxygen evolution reaction.” Nano Energy, Vol 78, December 2020, pp. 105355.
[63] C. Gong, Y. Jia, X. Zhao, H. Liu, X. Lv, L. Yu, J. Zhang, J. Zhou, “Ni3N/Ni composites with in-situ growth heterogeneous interfaces as microwave absorbing materials.” Appl. Phys. Lett., Vol 107, October 2015, pp. 153905.
指導教授 施聖洋(Shy, Shenqyang(Steven)) 審核日期 2025-1-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明