參考文獻 |
[1] D. Zeng, M. Wu, M. Yousaf, H. Song, Z. Wan, X. Gao, J. Shao, and Y. Tao, “Enhanced stability and electrochemical investigations of Ni/ZSM-5 catalyst layer on nickel-based anodes for ammonia-fed solid oxide fuel cells.” J. Power Sources, Vol 592, February 2024, pp. 233939.
[2] Y. Pan, J. Wang, Z. Lu, R. Wang, and Z. Xu, “A review on the application of magnetron sputtering technologies for solid oxide fuel cell in reduction of the operating temperature.” Int. J. Hydrog. Energy, Vol 50, January 2024, pp. 1179-1193.
[3] “High-temperature fuel cell achieves lifetime of more than 11 years”,2024年6月30日,取自https://www.fz-juelich.de/en/news/press-release/2019/2019-02-07-sofc-en。
[4] P. Dimitriou and R. Javaid, “A review of ammonia as a compression ignition engine fuel.” Int. J. Hydrog. Energy, Vol 45, February 2020, pp. 7098-7118.
[5] A. Valera-Medina, H. Xiao, M. Owen-Jones, W.I.F. David, and P.J. Bowen, “Ammonia for power.” Prog. Energy Combust. Sci., Vol 69, November 2018, pp. 63-102.
[6] S.S. Shy, V.T. Mai, Y.R. Chen, and H.Y. Hsieh, “Nanosecond repetitively pulsed discharges and conventional sparks of ammonia-air mixtures in a fan-stirred cruciform burner: Flammability limits and ignition transition.” Appl. Energy Combust. Sci., Vol 15, September 2023, pp. 100164.
[7] Y. Liu, Y. Xu, J. Liu, M. Xiang, B. Sun, Y. Ya, Z. Guo, and X. Cheng, “Effects of bipolar plate flow channel configuration on thermal-electric performance of direct ammonia solid oxide fuel cell: Part I - Numerical study of channel section geometry.” Int. J. Hydrog. Energy, Vol 50, January 2024, pp. 765-785.
[8] J. Yang, T. Akagi, T. Okanishi, H. Muroyama, T. Matsui, and K. Eguchi, “Catalytic influence of oxide component in Ni-based cermet anodes for ammonia-fueled solid oxide fuel cells.” Fuel Cells, Vol 15, February 2015, pp. 390-397.
[9] J. Yang, A.F.S. Molouk, T. Okanishi, H. Muroyama, T. Matsui, and K. Eguchi, “Electrochemical and catalytic properties of Ni/BaCe0.75Y0.25O3?δ anode for direct ammonia-fueled solid oxide fuel cells.” ACS Appl. Mater. Interfaces, Vol 7, March 2015, pp. 7406-7412.
[10] A.F.S. Molouk, J. Yang, T. Okanishi, H. Muroyama, T. Matsui, and K. Eguchi, “Comparative study on ammonia oxidation over Ni-based cermet anodes for solid oxide fuel cells.” J. Power Sources, Vol 305, February 2016, pp. 72-79.
[11] K. Miyazaki, T. Okanishi, H. Muroyama, T. Matsui, and K. Eguchi, “Development of Ni–Ba(Zr,Y)O3 cermet anodes for direct ammonia-fueled solid oxide fuel cells.” J. Power Sources, Vol 365, October 2017, pp. 148-154.
[12] K. Miyazaki, H. Muroyama, T. Matsui, and K. Eguchi, “Impact of the ammonia decomposition reaction over an anode on direct ammonia-fueled protonic ceramic fuel cells.” Sustain. Energy Fuels, Vol 4, September 2020, pp. 5238-5246.
[13] J. Yang, A.F.S. Molouk, T. Okanishi, H. Muroyama, T. Matsui, and K. Eguchi, “A stability study of Ni/Yttria-stabilized zirconia anode for direct ammonia solid oxide fuel cells.” ACS Appl. Mater. Interfaces, Vol 7, December 2015, pp. 28701-28707.
[14] P.C. Wu and S.S. Shy, “Cell performance, impedance, and various resistances measurements of an anode-supported button cell using a new pressurized solid oxide fuel cell rig at 1-5 atm and 750-850 °C.” J. Power Sources, Vol 362, September 2017, pp. 105-114.
[15] V.A.C. Haanappel and M.J. Smith, “A review of standardising SOFC measurement and quality assurance at FZJ.” J. Power Sources, Vol 171, September 2007, pp. 169-178.
[16] A.A. Sinha, K. Srivastava, A.S. Rajpoot, T. Choudhary, S.P. Pandey, and Sanjay, “A thermodynamic approach to analyze energy, exergy, emission, and sustainability (3E-S) performance by utilizing low temperature waste heat in SOFC-CHP-TEG system.” Int. J. Hydrog. Energy, Vol 63, April 2024, pp. 1088-1104.
[17] R. O′Hayre, S. Cha, W. Colella, and F.B. Prinz, Fuel Cell Fundamentals, 3rd Edition, New York: John Wiley & Sons Inc., 2016.
[18] M. Hami and J. Mahmoudimehr, “A comprehensive comparison of performances of anode-supported, cathode-supported, and electrolyte-supported solid oxide fuel cells during warming-up process.” Int. J. Heat Mass Transfer, Vol 230, September 2024, pp. 125779.
[19] R. Chen, Y. Gao, J. Gao, H. Zhang, M. Motola, M.B. Hanif, and C. Li, “From concept to commercialization: A review of tubular solid oxide fuel cell technology.” J. Energy Chem., Vol 97, October 2024, pp. 79-109.
[20] H. Zhang, T. Chen, Z. Huang, G. Hu, J. Zhou, and S. Wang, “A cathode-supported solid oxide fuel cell prepared by the phase-inversion tape casting and impregnating method.” Int. J. Hydrog. Energy, Vol 47, May 2022, pp. 18810-18819.
[21] M.E. Chelmehsara and J. Mahmoudimehr, “Techno-economic comparison of anode-supported, cathode-supported, and electrolyte-supported SOFCs.” Int. J. Hydrog. Energy, Vol 43, August 2018, pp. 15521-15530.
[22] W. Li, S. Wu, J. Zhu, W. Zhang, W. Guan, and J. Li, “Real-time deformation and stress response of the planar SOFC during sintering.” J. Eur. Ceram. Soc., Vol 44, April 2024, pp. 2242-2250.
[23] B. Timurkutluk, S. Onbilgin, T. Altan, and C. Timurkutluk, “Manufacturability of bolt-microtubular anode supports for solid oxide fuel cells.” J. Power Sources, Vol 592, February 2024, pp. 233971.
[24] L. Hu, R. Zhang, M. Guo, and Z. Yang, “Glass-diopside composite sealing material for planar solid oxide fuel cells.” Int. J. Hydrog. Energy, Vol 50, January 2024, pp. 1341-1346.
[25] Z. Zeng, Y. Qian, Y. Zhang, C. Hao, D. Dan, and W. Zhuge, “A review of heat transfer and thermal management methods for temperature gradient reduction in solid oxide fuel cell (SOFC) stacks.” Appl. Energy, Vol 280, December 2020, pp. 115899.
[26] A.N. Zainon, M.R. Somalu, A.M.K. Bahrain, A. Muchtar, N.A. Baharuddin, M.A. S.A, N. Osman, A.A. Samat, A.K. Azad, and N.P. Brandon, “Challenges in using perovskite-based anode materials for solid oxide fuel cells with various fuels: a review.” Int. J. Hydrog. Energy, Vol 48, June 2023, pp. 20441-20464.
[27] A. Leonide, Y. Apel, and E. Ivers-Tiffee, “SOFC modeling and parameter identification by means of impedance spectroscopy.” ECS Trans., Vol 19, October 2009, pp. 81-109.
[28] A.B. Stambouli, “Fuel cells: The expectations for an environmental-friendly and sustainable source of energy.” Renew. Sust. Energ. Rev., Vol 15, December 2011, pp. 4507-4520.
[29] S.C. Singhal and K. Kendall, High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, Amsterdam: Elsevier Science, 2003.
[30] Y.D. Hsieh, Y.H. Chan, and S.S. Shy, “Effects of pressurization and temperature on power generating characteristics and impedances of anode-supported and electrolyte-supported planar solid oxide fuel cells.” J. Power Sources, Vol 299, December 2015, pp. 1-10.
[31] S.S. Shy, Y.D. Hsieh, and J. Liang, “The impact of pressurization on anode-supported and electrolyte-supported planar solid oxide fuel cells at 750℃ ~ 850℃.” ECS Trans., Vol 68, July 2015, pp. 2169-2178.
[32] A.V. Virkar, J. Chen, C.W. Tanner, and J. Kim, “The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells.” Solid State Ion., Vol 131, June 2000, pp. 189-198.
[33] S.H. Chan, K.A. Khor, and Z.T. Xia, “A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness.” J. Power Sources, Vol 93, February 2001, pp. 130-140.
[34] H. Shimada, T. Suzuki, T. Yamaguchi, H. Sumi, K. Hamamoto, and Y. Fujishiro, “Challenge for lowering concentration polarization in solid oxide fuel cells.” J. Power Sources, Vol 302, January 2016, pp. 53-60.
[35] M. Ni, M.K.H. Leung, and D.Y.C. Leung, “Parametric study of solid oxide fuel cell performance.” Energy Convers. Manag., Vol 48, May 2007, pp. 1525-1535.
[36] A.V. Akkaya, “Electrochemical model for performance analysis of a tubular SOFC.” Int. J. Energy Res., Vol 31, August 2006, pp. 79-98.
[37] A.C. Lazanas and M.I. Prodromidis, “Electrochemical impedance spectroscopy-A tutorial.” ACS Meas. Sci. Au, Vol 3, March 2023, pp. 162-193.
[38] S. Wang, J. Zhang, O. Gharbi, V. Vivier, M. Gao, and M.E. Orazem, “Electrochemical impedance spectroscopy.” Nat. Rev. Methods Primers, Vol 1, June 2021, pp. 41.
[39] M. Kishimoto, H. Onaka, H. Iwai, M. Saito, and H. Yoshida, “Physicochemical impedance modeling of solid oxide fuel cell anode as an alternative tool for equivalent circuit fitting.” J. Power Sources, Vol 431, August 2019, pp. 153-161.
[40] V. Suboti?, C. Schluckner, J. Strasser, V. Lawlor, J. Mathe, J. Rechberger, H. Schroettner, and C. Hochenauer, “In-situ electrochemical characterization methods for industrial-sized planar solid oxide fuel cells Part I: Methodology, qualification and detection of carbon deposition.” Electrochim. Acta, Vol 207, July 2016, pp. 224-236.
[41] A. Fuerte, R.X. Valenzuela, M.J. Escudero, and L. Daza, “Ammonia as efficient fuel for SOFC.” J. Power Sources, Vol 192, July 2009, pp. 170-174.
[42] J. Yang, A.F.S. Molouk, T. Okanishi, H. Muroyama, T. Matsui, and K. Eguchi, “Electrochemical and catalytic properties of Ni/BaCe0.75Y0.25O3?δ anode for direct ammonia-fueled solid oxide fuel cells.” ACS Appl. Mater. Interfaces, Vol 7, March 2015, pp. 7406-7412.
[43] Y. Wang, Y. Gu, H. Zhang, J. Yang, J. Wang, W. Guan, J. Chen, B. Chi, L. Jia, H. Muroyama, T. Matsui, K. Eguchi, and Z. Zhong, “Efficient and durable ammonia power generation by symmetric flat-tube solid oxide fuel cells.” Appl. Energy, Vol 270, July 2020, pp. 115185.
[44] Y. Wang, J. Yang, J. Wang, W. Guan, B. Chi, L. Jia, J. Chen, H. Muroyama, T. Matsui, and K. Eguchi, “Low–temperature ammonia decomposition catalysts for direct ammonia solid oxide fuel cells.” J. Electrochem. Soc., Vol 167, March 2020, pp. 064501.
[45] Y. Song, H. Li, M. Xu, G. Yang, W. Wang, R. Ran, W. Zhou, and Z. Shao, “Infiltrated NiCo alloy nanoparticle decorated perovskite oxide: A highly active, stable, and antisintering anode for direct-ammonia solid oxide fuel cells.” Small, Vol 16, June 2020, pp. 2001859.
[46] A.C. Chien, W.Y. Chen, and M.S. Zheng, “Direct conversion of ammonia to electricity on a PCFC and an SOFC.” J. Electrochem. Soc., Vol 170, April 2023, pp. 044505.
[47] W. Akimoto, T. Fujimoto, M. Saito, M. Inaba, H. Yoshida, and T. Inagaki, “Ni–Fe/Sm-doped CeO2 anode for ammonia-fueled solid oxide fuel cells.” Solid State Ion., Vol 256, March 2014, pp. 1-4.
[48] M. Hashinokuchi, R. Yokochi, W. Akimoto, T. Doi, M. Inaba, and J. Kugai, “Enhancement of anode activity at Ni/Sm-doped CeO2 cermet anodes by Mo addition in NH3-fueled solid oxide fuel cells.” Solid State Ion., Vol 285, February 2016, pp. 222-226.
[49] M. Hashinokuchi, M. Zhang, T. Doi, and M. Inaba, “Enhancement of anode activity and stability by Cr addition at Ni/Sm-doped CeO2 cermet anodes in NH3-fueled solid oxide fuel cells.” Solid State Ion., Vol 319, June 2018, pp. 180-185.
[50] B. Stoeckl, V. Suboti?, M. Preininger, M. Schwaiger, N. Evic, H. Schroettner, and C. Hochenauer, “Characterization and performance evaluation of ammonia as fuel for solid oxide fuel cells with Ni/YSZ anodes.” Electrochim. Acta, Vol 298, March 2019, pp. 874-883.
[51] Y. Luo, S. Liao, S. Chen, H. Fang, F. Zhong, L. Lin, C. Zhou, C. Chen, G. Cai, C.T. Au, and L. Jiang, “Optimized coupling of ammonia decomposition and electrochemical oxidation in a tubular direct ammonia solid oxide fuel cell for high-efficiency power generation.” Appl. Energy, Vol 307, February 2022, pp. 118158.
[52] N. Jantakananuruk, J.R. Page, C.D. Armstrong, J. Persky, R. Datta, and A.R. Teixeira, “Integrated thermal reforming and electro-oxidation in ammonia-fueled tubular solid oxide fuel cells toward autothermal operation.” J. Power Sources, Vol 548, November 2022, pp. 231999.
[53] P.V. Hendriksen, F. Mondi, X. Sun, R. Caldogno, H.L. Frandsen, O.B. Rizvandi, J.V.T. Hogh, and J.B. Hansen, “Ammonia as an SOFC fuel.” ECS Trans., Vol 111, May 2023, pp. 2085-2096.
[54] H. Kim, J. Lee, A.A. Gokbayrak, Y. Seo, S. Oh, M.J. Oh, Y. Jun, J. Son, and S. Yang, “Characterization of direct-ammonia solid oxide fuel cells (DA-SOFCs) at 650–750 °C in a single-repeating unit stack: Effects of metallic components and residual ammonia.” Int. J. Hydrog. Energy, Vol 68, May 2024, pp. 1312-1321.
[55] 游政泓,「陰極氧濃度效應於不同溫度甲烷固態氧化物燃料電池影響之實驗研究」,國立中央大學,碩士論文,2022。
[56] “X光粉末繞射儀(XRD)”,2025年1月6日,取自https://www.ec.ncu.edu.tw/pages/102-%EF%BD%98%E5%85%89%E7%B2%89%E6%9C%AB%E7%B9%9E%E5%B0%84%E5%84%80%28XRD%29。
[57] “低真空掃描式電子顯微鏡 (LV-SEM)”,2025年1月6日,取自https://www.ec.ncu.edu.tw/pages/113-%E4%BD%8E%E7%9C%9F%E7%A9%BA%E6%8E%83%E6%8F%8F%E5%BC%8F%E9%9B%BB%E5%AD%90%E9%A1%AF%E5%BE%AE%E9%8F%A1%20%28LV-SEM%29。
[58] “D2 PHASER”,2025年1月6日,取自https://www.bruker.com/zh/products-and-solutions/diffractometers-and-x-ray-microscopes/x-ray-diffractometers/d2-phaser.html。
[59] “HITACHI S-3500N | Electron Microscopy”,2025年1月6日,取自https://micro.icm.csic.es/en/site-page/hitachi-s-3500n。
[60] S. Sayas, N. Morlanes, S.P. Katikaneni, A. Harale, B. Solami, and J. Gascon, “High pressure ammonia decomposition on Ru–K/CaO catalysts.” Catal. Sci. Technol., Vol 10, June 2020, pp. 5027-5035.
[61] R. Antunes, R. Steiner, L. Marot, and E. Meyer, “Decomposition studies of NH3 and ND3 in presence of H2 and D2 with Pt/Al2O3 and Ru/Al2O3 catalysts.” Int. J. Hydrog. Energy, Vol 47, April 2022, pp. 14130-14140.
[62] X. Gao, X. Liu, W. Zang, H. Dong, Y. Pang, Z. Kou, P. Wang, Z. Pan, S. Wei, S. Mu, J. Wang, “Synergizing in-grown Ni3N/Ni heterostructured core and ultrathin Ni3N surface shell enables self-adaptive surface reconfiguration and efficient oxygen evolution reaction.” Nano Energy, Vol 78, December 2020, pp. 105355.
[63] C. Gong, Y. Jia, X. Zhao, H. Liu, X. Lv, L. Yu, J. Zhang, J. Zhou, “Ni3N/Ni composites with in-situ growth heterogeneous interfaces as microwave absorbing materials.” Appl. Phys. Lett., Vol 107, October 2015, pp. 153905. |