參考文獻 |
[1] Z. Wang, Q. Dong, Y. Yan, Z. Fang, G. Mi, M. Pei, S. Wang, L. Zhang, J. Liu, and M. Chen, "Al2O3 nanoparticles as surface modifier enables deposition of high quality perovskite films for ultra-flexible photovoltaics," Advanced Powder Materials, vol. 3, no. 1, p. 100142, 2024.
[2] S. M. Park, M. Wei, J. Xu, H. R. Atapattu, F. T. Eickemeyer, K. Darabi, L. Grater, Y. Yang, C. Liu, and S. Teale, "Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells," Science, vol. 381, no. 6654, pp. 209-215, 2023.
[3] K.-M. Lee, W.-H. Chiu, Y.-H. Tsai, C.-S. Wang, Y.-T. Tao, and Y.-D. Lin, "High-performance perovskite solar cells based on dopant-free hole-transporting material fabricated by a thermal-assisted blade-coating method with efficiency exceeding 21%," Chemical Engineering Journal, vol. 427, p. 131609, 2022.
[4] M. I. Saleem, R. Choi, and J.-H. Lee, "Light outcoupling strategies in oriented perovskite light-emitting-diodes: recent trends, opportunities, and challenges toward innovation," Materials Chemistry Frontiers, vol. 7, no. 12, pp. 2316-2336, 2023.
[5] W. Chen, Z. Huang, H. Yao, Y. Liu, Y. Zhang, Z. Li, H. Zhou, P. Xiao, T. Chen, and H. Sun, "Highly bright and stable single-crystal perovskite light-emitting diodes," Nature Photonics, vol. 17, no. 5, pp. 401-407, 2023.
[6] D. Han, J. Wang, L. Agosta, Z. Zang, B. Zhao, L. Kong, H. Lu, I. Mosquera-Lois, V. Carnevali, and J. Dong, "Tautomeric mixture coordination enables efficient lead-free perovskite LEDs," Nature, vol. 622, no. 7983, pp. 493-498, 2023.
[7] J. Lee, H. Lee, U. Kim, W. J. Chung, and W. B. Im, "Flexible remote phosphor color converter based on ultra-thin glass and CsPbBr3 perovskite nanocrystal-embedded glass for a wide-color-gamut white LED," Journal of Materials Chemistry C, vol. 11, no. 3, pp. 898-902, 2023.
[8] Q. Wang, S. K. Abkenar, M. Cirignano, H. Yu, W. Wu, and G. Divitini, "Temperature-dependent photoluminescent behavior of millimeter-scale Cs4PbBr6/CsPbBr3 bulk crystals and their application to white light-emitting diodes," Journal of Materials Science & Technology, vol. 179, pp. 57-65, 2024.
[9] S. Chen, J. Lin, J. Huang, T. Pang, Q. Ye, Y. Zheng, X. Li, Y. Yu, B. Zhuang, and D. Chen, "CsPbBr3@ glass nanocomposite with green?emitting external quantum efficiency of 75% for backlit display," Advanced Functional Materials, vol. 34, no. 2, p. 2309293, 2024.
[10] K. Chen, Q. Zhang, Y. Liang, J. Song, C. Li, S. Chen, F. Li, and Q. Zhang, "Quasi-two dimensional Ruddlesden-Popper halide perovskites for laser applications," Frontiers of Physics, vol. 19, no. 2, p. 23502, 2024.
[11] J. H. Yoo, S. B. Kwon, J. Park, S. H. Choi, H. C. Yoo, B. K. Kang, Y. H. Song, S. Hong, and D. H. Yoon, "Potential usage of cesium manganese halide for multi-functional optoelectronic devices: Display & photodetector application," Chemical Engineering Journal, vol. 479, p. 147277, 2024.
[12] L. Su, "Room temperature growth of CsPbBr3 single crystal for asymmetric MSM structure photodetector," Journal of Materials Science & Technology, vol. 187, pp. 113-122, 2024.
[13] X. Zhang, X. Liu, Y. Huang, B. Sun, Z. Liu, G. Liao, and T. Shi, "Review on flexible perovskite photodetector: processing and applications," Frontiers of Mechanical Engineering, vol. 18, no. 2, p. 33, 2023.
[14] D. I. Markina, S. S. Anoshkin, M. A. Masharin, S. A. Khubezhov, I. Tzibizov, D. Dolgintsev, I. N. Terterov, S. V. Makarov, and A. P. Pushkarev, "Perovskite Nanowire Laser for Hydrogen Chloride Gas Sensing," ACS nano, vol. 17, no. 2, pp. 1570-1582, 2023.
[15] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," Journal of the american chemical society, vol. 131, no. 17, pp. 6050-6051, 2009.
[16] J. Park, J. Kim, H.-S. Yun, M. J. Paik, E. Noh, H. J. Mun, M. G. Kim, T. J. Shin, and S. I. Seok, "Controlled growth of perovskite layers with volatile alkylammonium chlorides," Nature, vol. 616, no. 7958, pp. 724-730, 2023.
[17] S. Ding, Q. Wang, W. Gu, Z. Tang, B. Zhang, C. Wu, X. Zhang, H. Chen, X. Zhang, and R. Cao, "Phase dimensions resolving of efficient and stable perovskite light-emitting diodes at high brightness," Nature Photonics, vol. 18, no. 4, pp. 1-8, 2024.
[18] S. ten Brinck, "A Computational Approach to Understanding Lead Halide Perovskite Nanocrystals," 2020.
[19] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, "Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut," Nano letters, vol. 15, no. 6, pp. 3692-3696, 2015.
[20] X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song, and H. Zeng, "CsPbX3 quantum dots for lighting and displays: room?temperature synthesis, photoluminescence superiorities, underlying origins and white light?emitting diodes," Advanced Functional Materials, vol. 26, no. 15, pp. 2435-2445, 2016.
[21] Y. B. Cao, D. Zhang, Q. Zhang, X. Qiu, Y. Zhou, S. Poddar, Y. Fu, Y. Zhu, J.-F. Liao, and L. Shu, "High-efficiency, flexible and large-area red/green/blue all-inorganic metal halide perovskite quantum wires-based light-emitting diodes," Nature Communications, vol. 14, no. 1, p. 4611, 2023.
[22] J. Huang, D. Zhou, H. Yan, C. Meng, Y. Yang, J. Liu, M. Wang, P. Xu, Z. Peng, and J. Chen, "A multiple-coordination framework for CsPbI2Br perovskite solar cells," Journal of Materials Chemistry C, vol. 12, no. 11, pp. 4112-4122, 2024.
[23] Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. Bednorz, and F. Lichtenberg, "Superconductivity in a layered perovskite without copper," nature, vol. 372, no. 6506, pp. 532-534, 1994.
[24] T. He, Q. Huang, A. Ramirez, Y. Wang, K. Regan, N. Rogado, M. Hayward, M. Haas, J. Slusky, and K. Inumara, "Superconductivity in the non-oxide perovskite MgCNi3," Nature, vol. 411, no. 6833, pp. 54-56, 2001.
[25] M. K. Shahzad, S. Hussain, M. U. Farooq, A. Abdullah, G. A. Ashraf, M. Riaz, and S. M. Ali, "First principle investigation of tungsten based cubic oxide perovskite materials for superconducting applications: A DFT study," Journal of Physics and Chemistry of Solids, vol. 186, p. 111813, 2024.
[26] D. Cox, B. Noheda, G. Shirane, Y. Uesu, K. Fujishiro, and Y. Yamada, "Universal phase diagram for high-piezoelectric perovskite systems," Applied Physics Letters, vol. 79, no. 3, pp. 400-402, 2001.
[27] T. Takenaka, H. Nagata, Y. Hiruma, Y. Yoshii, and K. Matumoto, "Lead-free piezoelectric ceramics based on perovskite structures," Journal of Electroceramics, vol. 19, pp. 259-265, 2007.
[28] M. Cheng, D. Zhang, Y. Yan, Z. Li, P. Wang, and R.-i. Murakami, "Optimizing piezoelectric performance of complex perovskite through increasing diversity of B-site cations," Journal of Materials Science & Technology, vol. 170, pp. 78-86, 2024.
[29] C. Homes, T. Vogt, S. Shapiro, S. Wakimoto, and A. Ramirez, "Optical response of high-dielectric-constant perovskite-related oxide," science, vol. 293, no. 5530, pp. 673-676, 2001.
[30] P. Davies, H. Wu, A. Borisevich, I. Molodetsky, and L. Farber, "Crystal chemistry of complex perovskites: new cation-ordered dielectric oxides," Annu. Rev. Mater. Res., vol. 38, pp. 369-401, 2008.
[31] J. Radhakrishnan, S. Subramani, and J. L. Ocana, "Cold sintering behaviors of barium titanates: Recent progress and impact on microstructure, densification and dielectric-ferroelectric response," Coordination Chemistry Reviews, vol. 502, p. 215621, 2024.
[32] P. Chenna, S. Gandi, S. Pookatt, and S. R. Parne, "Perovskite white light emitting diodes: a review," Materials Today Electronics, p. 100057, 2023.
[33] H. C. Wang, S. Y. Lin, A. C. Tang, B. P. Singh, H. C. Tong, C. Y. Chen, Y. C. Lee, T. L. Tsai, and R. S. Liu, "Mesoporous silica particles integrated with all?inorganic CsPbBr3 perovskite quantum?dot nanocomposites (MP?PQDs) with high stability and wide color gamut used for backlight display," Angewandte Chemie International Edition, vol. 55, no. 28, pp. 7924-7929, 2016.
[34] Y.-L. Liu, C.-H. Chiang, Y.-C. Chen, and M.-L. Tsai, "Highly Enhanced Photoluminescence Quantum Yield of Phenethylammonium Halide-Passivated Inorganic Perovskite/Cellulose Nanocrystal Films," ACS Sustainable Chemistry & Engineering, vol. 11, no. 12, pp. 4580-4587, 2023.
[35] W. Ma, H. Zhang, M. Hu, Y. Guo, and L. Yang, "Highly Crystalline CsPbBr3 Perovskite Nanoparticles for Liquid Crystal Displays," ACS Applied Nano Materials, vol. 6, no. 5, pp. 3974-3980, 2023.
[36] K. He, D. Chen, L. Yuan, J. Xu, K. Xu, J. Hu, S. Liang, and H. Zhu, "Crystallization engineering in PVDF enables ultrastable and highly efficient CsPbBr3 quantum dots film for wide color gamut Mini-LED backlight," Chemical Engineering Journal, vol. 480, p. 148066, 2024.
[37] E. Jang and H. Jang, "Quantum Dot Light-Emitting Diodes," Chemical Reviews, vol. 123, no. 8, pp. 4663-4692, 2023.
[38] S. Mei, J. Yin, Y. Xing, H. He, H. Gu, J. Xia, W. Zhang, C. Liang, G. Xing, and R. Guo, "Designing high-performance pure-red metal halide perovskite materials and light-emitting diodes for Rec. 2020 display," Nano Energy, vol. 122, p. 109339, 2024.
[39] X. Fan, X. Yang, X. Kong, T. Zhang, S. Wang, Y. Lin, and Z. Chen, "Recent progresses on perovskite quantum dots patterning techniques for color conversion layer in micro-LED displays," Next Nanotechnology, vol. 5, p. 100045, 2024.
[40] Z.-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, and D. Credgington, "Bright light-emitting diodes based on organometal halide perovskite," Nature nanotechnology, vol. 9, no. 9, pp. 687-692, 2014.
[41] K. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang, and C. Yan, "Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent," Nature, vol. 562, no. 7726, pp. 245-248, 2018.
[42] J. K. Park, J. H. Heo, H. J. Lee, B. W. Kim, S. W. Park, K.-H. Hong, and S. H. Im, "Energy-well band structure for enhanced exciton confinement effect in perovskite light-emitting diodes via spray-coating," Journal of Alloys and Compounds, vol. 965, p. 171499, 2023.
[43] Q. Wan, W. Zheng, C. Zou, F. Carulli, C. Zhang, H. Song, M. Liu, Q. Zhang, L. Y. Lin, and L. Kong, "Ultrathin Light-Emitting Diodes with External Efficiency over 26% Based on Resurfaced Perovskite Nanocrystals," ACS Energy Letters, vol. 8, no. 2, pp. 927-934, 2023.
[44] A. Liu, P. Lu, M. Lu, X. Chai, Y. Liu, G. Guan, Y. Gao, Z. Wu, X. Bai, and J. Hu, "Multiple phase regulation enables efficient and bright quasi-2D perovskite light-emitting diodes," Nano Letters, vol. 23, no. 23, pp. 11082-11090, 2023.
[45] V. R. Schroder, N. Fratzscher, F. Mathies, E. R. Nandayapa, F. Hermerschmidt, E. L. Unger, and E. J. List-Kratochvil, "Large area inkjet-printed metal halide perovskite LEDs enabled by gas flow assisted drying and crystallization," Nanoscale, vol. 15, no. 12, pp. 5649-5654, 2023.
[46] P. Du, J. Li, L. Wang, L. Sun, X. Wang, X. Xu, L. Yang, J. Pang, W. Liang, and J. Luo, "Efficient and large-area all vacuum-deposited perovskite light-emitting diodes via spatial confinement," Nature Communications, vol. 12, no. 1, p. 4751, 2021.
[47] S. Sun, D. Yuan, Y. Xu, A. Wang, and Z. Deng, "Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature," ACS nano, vol. 10, no. 3, pp. 3648-3657, 2016.
[48] T. W. Kang, S. Lee, Y. J. Park, G. J. Jeong, J. S. Kim, B. Bae, J. Hwang, and S. W. Kim, "Enhancement of the optical properties of CsPbBr3 perovskite nanocrystals using three different solvents," Optics Letters, vol. 45, no. 18, pp. 4972-4975, 2020.
[49] A. Kirakosyan, Y. Kim, M. R. Sihn, M. G. Jeon, J. R. Jeong, and J. Choi, "Solubility?Controlled Room?Temperature Synthesis of Cesium Lead Halide Perovskite Nanocrystals," ChemNanoMat, vol. 6, no. 12, pp. 1863-1869, 2020.
[50] N. Yantara, S. Bhaumik, F. Yan, D. Sabba, H. A. Dewi, N. Mathews, P. P. Boix, H. V. Demir, and S. Mhaisalkar, "Inorganic halide perovskites for efficient light-emitting diodes," The journal of physical chemistry letters, vol. 6, no. 21, pp. 4360-4364, 2015.
[51] S. Seth and A. Samanta, "A facile methodology for engineering the morphology of CsPbX3 perovskite nanocrystals under ambient condition," Scientific reports, vol. 6, no. 1, p. 37693, 2016.
[52] T. H. Han, J. W. Lee, Y. J. Choi, C. Choi, S. Tan, S. J. Lee, Y. Zhao, Y. Huang, D. Kim, and Y. Yang, "Surface?2D/bulk?3D heterophased perovskite nanograins for long?term?stable light?emitting diodes," Advanced Materials, vol. 32, no. 1, p. 1905674, 2020.
[53] C.-H. Tien, Y.-T. Chen, and L.-C. Chen, "Dual-functionalized poly (ethylene oxide) for interface modification and addition of rubidium-doped CsPbBr3 perovskite composite emission layer to enhance brightness of perovskite light-emitting diodes," Results in Physics, vol. 53, p. 106982, 2023.
[54] F.-C. Liang, Z.-L. Yan, D. L. Busipalli, J.-S. Benas, Z.-X. Zhang, S.-T. Han, Y. Zhou, J.-C. Jiang, and C.-C. Kuo, "Enhancing the stability of the polymeric Lewis-base-assisted dual-phase 3D CsPbBr3–Cs4PbBr6 perovskite by molecular engineering and self-passivation," Journal of Materials Chemistry C, vol. 11, no. 1, pp. 307-320, 2023.
[55] C.-H. Tien, H.-H. Tsai, and L.-C. Chen, "Double-stranded ligand modification of plasmonic nano-Au: CsPbBr3 perovskite nanocomposite for reinforced light-emitting performance," Journal of Materials Research and Technology, vol. 19, pp. 3842-3851, 2022.
[56] L.-C. Chen, Y.-S. Wei, and M. Zhang, "Double buffer of MAPbBr3 QDs using a bulk crystal source by the LARP method and MABr modifier for CsPbBr3 perovskite light-emitting diodes," Journal of Physics D: Applied Physics, vol. 56, no. 46, p. 465102, 2023.
[57] F. Hermerschmidt, F. Mathies, V. R. Schroder, C. Rehermann, N. Z. Morales, E. L. Unger, and E. J. List-Kratochvil, "Finally, inkjet-printed metal halide perovskite LEDs–utilizing seed crystal templating of salty PEDOT: PSS," Materials Horizons, vol. 7, no. 7, pp. 1773-1781, 2020.
[58] G. Vescio, J. L. Frieiro, A. F. Gualdron?Reyes, S. Hernandez, I. Mora?Sero, B. Garrido, and A. Cirera, "High Quality Inkjet Printed?Emissive Nanocrystalline Perovskite CsPbBr3 Layers for Color Conversion Layer and LEDs Applications," Advanced Materials Technologies, vol. 7, no. 7, p. 2101525, 2022.
[59] H. Liu, G. Shi, R. Khan, S. Chu, Z. Huang, T. Shi, H. Sun, Y. Li, H. Zhou, and P. Xiao, "Large?Area Flexible Perovskite Light?Emitting Diodes Enabled by Inkjet Printing," Advanced Materials, p. 2309921, 2023.
[60] F. Schackmar, F. Laufer, R. Singh, A. Farag, H. Eggers, S. Gharibzadeh, B. Abdollahi Nejand, U. Lemmer, G. Hernandez?Sosa, and U. W. Paetzold, "In Situ Process Monitoring and Multichannel Imaging for Vacuum?Assisted Growth Control of Inkjet?Printed and Blade?Coated Perovskite Thin?Films," Advanced Materials Technologies, vol. 8, no. 5, p. 2201331, 2023.
[61] G. Shi, Z. Huang, R. Qiao, W. Chen, Z. Li, Y. Li, K. Mu, T. Si, and Z. Xiao, "Manipulating solvent fluidic dynamics for large-area perovskite film-formation and white light-emitting diodes," Nature Communications, vol. 15, no. 1, p. 1066, 2024.
[62] M. Liu, M. B. Johnston, and H. J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, vol. 501, no. 7467, pp. 395-398, 2013.
[63] T. Antrack, M. Kroll, L. Merten, M. Albaladejo?Siguan, A. Hinderhofer, O. V. Konovalov, M. Jankowski, J. Benduhn, F. Schreiber, and Y. Vaynzof, "Enhancing luminescence efficiency by controlled island formation of CsPbBr3 perovskite," Advanced Optical Materials, vol. 11, no. 3, p. 2201408, 2023.
[64] C. A. Hsieh, G. H. Tan, Y. T. Chuang, H. C. Lin, P. T. Lai, P. E. Jan, B. H. Chen, C. H. Lu, S. D. Yang, and K. Y. Hsiao, "Vacuum?Deposited Inorganic Perovskite Light?Emitting Diodes with External Quantum Efficiency Exceeding 10% via Composition and Crystallinity Manipulation of Emission Layer under High Vacuum," Advanced Science, vol. 10, no. 10, p. 2206076, 2023.
[65] A. M. Igual-Munoz, J. Navarro-Alapont, C. Dreessen, F. Palazon, M. Sessolo, and H. J. Bolink, "Room-temperature vacuum deposition of CsPbI2Br perovskite films from multiple sources and mixed halide precursors," Chemistry of Materials, vol. 32, no. 19, pp. 8641-8652, 2020.
[66] J. Yan, J. Zhao, H. Wang, M. Kerklaan, L. J. Bannenberg, B. Ibrahim, T. J. Savenije, L. Mazzarella, and O. Isabella, "Crystallization Process for High-Quality Cs0.15FA0.85PbI2.85Br0.15 Film Deposited via Simplified Sequential Vacuum Evaporation," ACS Applied Energy Materials, vol. 6, no. 20, pp. 10265-10273, 2023.
[67] K. L. Heinze, T. Schulz, R. Scheer, and P. Pistor, "Structural Evolution of Sequentially Evaporated (Cs, FA) Pb(I,Br)3 Perovskite Thin Films via In Situ X?Ray Diffraction," physica status solidi (a), vol. 221, no. 3, p. 2300690, 2024.
[68] Y. Fu, Q. Zhang, D. Zhang, Y. Tang, L. Shu, Y. Zhu, and Z. Fan, "Scalable All?Evaporation Fabrication of Efficient Light?Emitting Diodes with Hybrid 2D–3D Perovskite Nanostructures," Advanced Functional Materials, vol. 30, no. 39, p. 2002913, 2020.
[69] J. Li, R. Gao, F. Gao, J. Lei, H. Wang, X. Wu, J. Li, H. Liu, X. Hua, and S. F. Liu, "Fabrication of efficient CsPbBr3 perovskite solar cells by single-source thermal evaporation," Journal of alloys and compounds, vol. 818, p. 152903, 2020.
[70] Y. El Ajjouri, F. Palazon, M. Sessolo, and H. J. Bolink, "Single-source vacuum deposition of mechanosynthesized inorganic halide perovskites," Chemistry of materials, vol. 30, no. 21, pp. 7423-7427, 2018.
[71] N. A. Merdad, Y. Wang, O. Alkhazragi, Z. O. Mohammed, P. Maity, L. Gutierrez-Arzaluz, H. Yang, R. Naphade, C. H. Kang, and T. K. Ng, "Visible-light communication using thermally evaporated CsPbBr3 perovskite thin films," AIP Advances, vol. 13, no. 5, 2023.
[72] P.-N. Tran, H.-H. Phan, T.-N. Luu, Q.-H. Tran, and T.-T. Duong, "Optimizing the single-source flash thermal evaporation process of Zn-doped CsPbBr3 films for enhanced performance in perovskite LEDs," Applied Physics A, vol. 130, no. 1, p. 20, 2024.
[73] S. n. Caicedo-Da?vila, R. Gunder, J. A. Marquez, S. Levcenko, K. Schwarzburg, T. Unold, and D. Abou-Ras, "Effects of postdeposition annealing on the luminescence of mixed-phase CsPb2Br5/CsPbBr3 thin films," The Journal of Physical Chemistry C, vol. 124, no. 36, pp. 19514-19521, 2020.
[74] T. Xiang, Y. Zhang, H. Wu, J. Li, L. Yang, K. Wang, J. Xia, Z. Deng, J. Xiao, and W. Li, "Universal defects elimination for high performance thermally evaporated CsPbBr3 perovskite solar cells," Solar energy materials and solar cells, vol. 206, p. 110317, 2020.
[75] L. Zhang, F. Yuan, H. Dong, B. Jiao, W. Zhang, X. Hou, S. Wang, Q. Gong, and Z. Wu, "One-step co-evaporation of all-inorganic perovskite thin films with room-temperature ultralow amplified spontaneous emission threshold and air stability," ACS applied materials & interfaces, vol. 10, no. 47, pp. 40661-40671, 2018.
[76] T. Bai, S. Wang, K. Zhang, C. Chu, Y. Sun, and L. Yi, "High stability and strong luminescence CsPbBr3–Cs4PbBr6 thin films for all-inorganic perovskite light-emitting diodes," RSC advances, vol. 13, no. 35, pp. 24413-24422, 2023.
[77] H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, and S. Yoo, "Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes," Science, vol. 350, no. 6265, pp. 1222-1225, 2015.
[78] Y. Hu, Q. Wang, Y.-L. Shi, M. Li, L. Zhang, Z.-K. Wang, and L.-S. Liao, "Vacuum-evaporated all-inorganic cesium lead bromine perovskites for high-performance light-emitting diodes," Journal of Materials Chemistry C, vol. 5, no. 32, pp. 8144-8149, 2017.
[79] J. H. Warby, B. Wenger, A. J. Ramadan, R. D. Oliver, H. C. Sansom, A. R. Marshall, and H. J. Snaith, "Revealing factors influencing the operational stability of perovskite light-emitting diodes," ACS nano, vol. 14, no. 7, pp. 8855-8865, 2020.
[80] M. Shin, H. S. Lee, Y. C. Sim, Y.-H. Cho, K. Cheol Choi, and B. Shin, "Modulation of growth kinetics of vacuum-deposited CsPbBr3 films for efficient light-emitting diodes," ACS applied materials & interfaces, vol. 12, no. 1, pp. 1944-1952, 2019.
[81] S. Xie, A. Osherov, and V. Bulovi?, "All-vacuum-deposited inorganic cesium lead halide perovskite light-emitting diodes," APL Materials, vol. 8, no. 5, p. 051113, 2020.
[82] L. Nasi, D. Calestani, F. Mezzadri, F. Mariano, A. Listorti, P. Ferro, M. Mazzeo, and R. Mosca, "All-inorganic CsPbBr3 perovskite films prepared by single source thermal ablation," Frontiers in chemistry, vol. 8, p. 313, 2020.
[83] C.-Y. Huang, S.-H. Huang, C.-L. Wu, Z.-H. Wang, and C.-C. Yang, "Cs4PbBr6/CsPbBr3 nanocomposites for all-inorganic electroluminescent perovskite light-emitting diodes," ACS Applied Nano Materials, vol. 3, no. 12, pp. 11760-11768, 2020.
[84] J. Li, P. Du, Q. Guo, L. Sun, Z. Shen, J. Zhu, C. Dong, L. Wang, X. Zhang, and L. Li, "Efficient all-thermally evaporated perovskite light-emitting diodes for active-matrix displays," Nature Photonics, vol. 17, no. 5, pp. 435-441, 2023.
[85] S.-R. Bae, M. J. Seol, and S. Y. Kim, "CsPbBr3 and Cs4PbBr6 perovskite light-emitting diodes using a thermally evaporated host–dopant system," Nanoscale, vol. 15, no. 21, pp. 9533-9542, 2023.
[86] B. Han, Q. Shan, F. Zhang, J. Song, and H. Zeng, "Giant efficiency and color purity enhancement in multicolor inorganic perovskite light-emitting diodes via heating-assisted vacuum deposition," Journal of Semiconductors, vol. 41, no. 5, p. 052205, 2020.
[87] C. Chen, T.-H. Han, S. Tan, J. Xue, Y. Zhao, Y. Liu, H. Wang, W. Hu, C. Bao, and M. Mazzeo, "Efficient flexible inorganic perovskite light-emitting diodes fabricated with CsPbBr3 emitters prepared via low-temperature in situ dynamic thermal crystallization," Nano letters, vol. 20, no. 6, pp. 4673-4680, 2020.
[88] Z. Liu, H. Jung, M. Sotome, and T. Kondo, "Substrate temperature dependence of vapor phase deposition of all-inorganic lead-free CsSnBr3 perovskite thin films," Japanese Journal of Applied Physics, vol. 63, no. 2, p. 02SP23, 2024.
[89] S. H. Chin, D. Cortecchia, M. Forzatti, C. S. Wu, A. L. Alvarado?Leanos, G. Folpini, A. Treglia, I. A. Kalluvila Justin, A. Paliwal, and C. Cho, "Stabilizing Single?Source Evaporated Perovskites with Organic Interlayers for Amplified Spontaneous Emission," Advanced Optical Materials, vol. 12, no. 13,p. 2302701, 2024.
[90] L. R. White, F. U. Kosasih, M. P. Sherburne, N. Mathews, S. Mhaisalkar, and A. Bruno, "Perovskite Multiple Quantum Well Superlattices: Potentials and Challenges," ACS Energy Letters, vol. 9, pp. 835-842, 2024.
[91] T. Antrack, M. Kroll, M. Sudzius, C. Cho, P. Imbrasas, M. Albaladejo?Siguan, J. Benduhn, L. Merten, A. Hinderhofer, and F. Schreiber, "Optical properties of perovskite?organic multiple quantum wells," Advanced Science, vol. 9, no. 24, p. 2200379, 2022.
[92] L.-C. Chen and C.-H. Kao, "Improved extraction efficiency of CsPbBr3 perovskite light-emitting diodes due to anodic aluminum oxide nanopore structure," Scientific Reports, vol. 12, no. 1, p. 14750, 2022.
[93] Y. K. Lin, C. H. Chen, Y. Y. Wang, M. H. Yu, J. W. Yang, I. C. Ni, B. H. Lin, I. S. Zhidkov, E. Z. Kurmaev, and Y. J. Lu, "Realizing High Brightness Quasi?2D Perovskite Light?Emitting Diodes with Reduced Efficiency Roll?Off via Multifunctional Interface Engineering," Advanced Science, vol. 10, no. 26, p. 2302232, 2023.
[94] Y. Zhao, W. Feng, M. Li, J. Lu, X. Qin, K. Lin, J. Luo, W.-H. Zhang, E. L. Lim, and Z. Wei, "Efficient perovskite light-emitting diodes with chemically bonded contact and regulated charge behavior," Nano Letters, vol. 23, no. 18, pp. 8560-8567, 2023.
[95] F.-B. Chiu, Y.-W. Wu, and S.-H. Yang, "Surface Modification of ZnO Nanocrystals with Conjugated Polyelectrolytes Carrying Different Counterions for Inverted Perovskite Light-Emitting Diodes," ACS omega, vol. 8, no. 21, pp. 19109-19118, 2023.
[96] Q. Khan, A. Subramanian, G. Yu, K. Maaz, D. Li, R. U. R. Sagar, K. Chen, W. Lei, B. Shabbir, and Y. Zhang, "Structure optimization of perovskite quantum dot light-emitting diodes," Nanoscale, vol. 11, no. 11, pp. 5021-5029, 2019.
[97] G. Simkus, S. Sanders, D. Stummler, A. Vescan, H. Kalisch, and M. Heuken, "High-intensity CsPbBr3 perovskite LED using poly (bis (4-phenyl)(2, 4, 6-trimethylphenyl) amine) as hole transport and electron-blocking layer," MRS Advances, vol. 5, no. 8-9, pp. 411-419, 2020.
[98] Q. Wan, Q. Zhang, J. Guo, M. Liu, W. Zhan, X. Liao, C. Yuan, M. He, W. Zheng, and C. Zhang, "Inverted semitransparent perovskite nanocrystal light-emitting diodes with a conjugated polymer as an electron transport layer," Nanoscale, vol. 15, no. 12, pp. 5720-5725, 2023.
[99] G.-i. Kim, Y. Mo, H. Na, S. J. Lee, S. Choi, H. Choi, and J. Lee, "Optimizing Green Perovskite Light-Emitting Diodes through a Solution-Processed Triple-Layer HTL Strategy," IEEE Electron Device Letters, vol. 45, no. 6, pp. 5 1028-1031,2024.
[100] P.-H. Huang, S.-A. Chen, L.-W. Chao, J.-X. Xie, C.-Y. Liao, Z.-L. Tseng, and S.-H. Chen, "Efficient CsPbBr3 quantum-dot light-emitting diodes using sputtered NiO films as hole injection layers," Materials, vol. 16, no. 17, p. 6060, 2023.
[101] H. Liu, G. Shi, R. Khan, S. Chu, Z. Huang, T. Shi, H. Sun, Y. Li, H. Zhou, and P. Xiao, "Large?Area Flexible Perovskite Light?Emitting Diodes Enabled by Inkjet Printing," Advanced Materials, vol. 36, no. 8, p. 2309921, 2024.
[102] F. Jin, B. Zhao, B. Chu, H. Zhao, Z. Su, W. Li, and F. Zhu, "Morphology control towards bright and stable inorganic halide perovskite light-emitting diodes," Journal of Materials Chemistry C, vol. 6, no. 6, pp. 1573-1578, 2018.
[103] I. S. Zhidkov, A. F. Akbulatov, A. I. Poteryaev, A. I. Kukharenko, A. V. Rasmetyeva, L. A. Frolova, P. A. Troshin, and E. Z. Kurmaev, "The Photochemical Stability of PbI2 and PbBr2: Optical and XPS and DFT Studies," Coatings, vol. 13, no. 4, p. 784, 2023.
[104] S. Caicedo-Davila, H. Funk, R. Lovrincic, C. Mu?ller, M. Sendner, O. Cojocaru-Miredin, F. Lehmann, R. Gunder, A. Franz, and S. Levcenco, "Spatial phase distributions in solution-based and evaporated Cs–Pb–Br thin films," The Journal of Physical Chemistry C, vol. 123, no. 29, pp. 17666-17677, 2019.
[105] O. Torres, G. Gordillo, M. Plazas, D. Landinez Tellez, and J. Roa-Rojas, "Optical features of PbBr2 semiconductor thin films for radiation attenuation application," Journal of Materials Science: Materials in Electronics, vol. 32, no. 12, pp. 16937-16944, 2021.
[106] L.-C. Chen, C.-H. Tien, K.-Y. Lee, and Z.-C. Zhan, "Enhancing device performance of CsPbBr3 perovskite light-emitting diodes with Cs2CO3 modification layer and dual additives," Materials Science in Semiconductor Processing, vol. 148, p. 106815, 2022.
[107] W. B. Gunnarsson, Z. Xu, N. K. Noel, and B. P. Rand, "Improved charge balance in green perovskite light-emitting diodes with atomic-layer-deposited Al2O3," ACS Applied Materials & Interfaces, vol. 14, no. 30, pp. 34247-34252, 2022.
[108] S. Ding, Q. Wang, W. Gu, Z. Tang, B. Zhang, C. Wu, X. Zhang, H. Chen, X. Zhang, and R. Cao, "Phase dimensions resolving of efficient and stable perovskite light-emitting diodes at high brightness," Nature Photonics, vol. 18, no. 4, pp. 363-370, 2024.
[109] M. Marra, C. Provenzano, M. Cesaria, R. Cataldo, A. G. Monteduro, and A. P. Caricato, "CsPbBr3 films grown by pulsed laser deposition: Impact of oxygen on morphological evolution and properties," Processes, vol. 11, no. 9, p. 2514, 2023.
[110] C. Tenailleau, S. Aharon, B.-E. Cohen, and L. Etgar, "Cell refinement of CsPbBr 3 perovskite nanoparticles and thin films," Nanoscale Advances, vol. 1, no. 1, pp. 147-153, 2019.
[111] M. Cesaria, G. Quarta, M. R. Guascito, M. Mazzeo, M. Marra, C. Provenzano, M. R. Aziz, M. Martino, L. Calcagnile, and A. P. Caricato, "CsPbBr3 deposited by laser ablation: Effects of post-growth aging, oxygen adsorption and annealing on film properties," Applied Physics A, vol. 128, no. 11, p. 950, 2022.
[112] Y. Yang, Y. Li, W. Gong, H. Guo, and X. Niu, "Cobalt-doped CsPbBr3 perovskite quantum dots for photoelectrocatalytic hydrogen production via efficient charge transport," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 663, p. 131083, 2023.
[113] X. Liu, Z. Luo, W. Yin, A. P. Litvin, A. V. Baranov, J. Zhang, W. Liu, X. Zhang, and W. Zheng, "Methanol-induced fast CsBr release results in phase-pure CsPbBr 3 perovskite nanoplatelets," Nanoscale Advances, vol. 2, no. 5, pp. 1973-1979, 2020.
[114] J. Li, X. Shan, S. G. R. Bade, T. Geske, Q. Jiang, X. Yang, and Z. Yu, "Single-layer halide perovskite light-emitting diodes with sub-band gap turn-on voltage and high brightness," The journal of physical chemistry letters, vol. 7, no. 20, pp. 4059-4066, 2016.
[115] H. Kim, J. S. Kim, J.-M. Heo, M. Pei, I.-H. Park, Z. Liu, H. J. Yun, M.-H. Park, S.-H. Jeong, and Y.-H. Kim, "Proton-transfer-induced 3D/2D hybrid perovskites suppress ion migration and reduce luminance overshoot," Nature communications, vol. 11, no. 1, p. 3378, 2020.
[116] C.-T. Li, K.-L. Lee, S.-F. Wang, and L.-C. Chen, "Low turn-on voltage CsPbBr3 perovskite light-emitting diodes with regrowth crystal MAPbBr3 hole transport layer," Journal of Materials Research and Technology, vol. 22, pp. 375-381, 2023.
[117] G. Mandal and R. Choudhary, "Solution processed PANI-rGO-SiO2 nanocomposite with inflated electron injection and transport capabilities as ETL for OLED applications," Materials Science and Engineering: B, vol. 300, p. 117118, 2024.
[118] G. Mandal, R. B. Choudhary, B. A. Al-Asbahi, and A. A. A. Ahmed, "WS2 incorporated PANI-rGO nanocomposites tailored for inflated thermal, optical and electrical properties used as ETL for OLEDs," Optical Materials, vol. 146, p. 114379, 2023.
[119] P. Maurya and A. Kannaujiya, "Controlled ETL thickness modulation for performance optimization of organic light-emitting diode," Journal of Optics, pp. 1-11, 2024.
[120] F. Cao, Q. Wu, W. Li, S. Wang, L. Kong, J. Zhang, X. Zhang, H. Li, W. Hua, and A. L. Rogach, "Core/Shell ZnO/ZnS Nanoparticle Electron Transport Layers Enable Efficient All?Solution?Processed Perovskite Light?Emitting Diodes," Small, vol. 19, no. 16, p. 2207260, 2023.
[121] G. Vescio, G. Mathiazhagan, S. Gonzalez-Torres, J. Sanchez-Diaz, A. Villaueva-Antoli, R. S. Sanchez, A. F. Gualdron–Reyes, M. Oszajca, F. Linardi, and A. Hauser, "Fully Inkjet?Printed Green?Emitting PEDOT: PSS/NiO/Colloidal CsPbBr3/SnO2 Perovskite Light?Emitting Diode on Rigid and Flexible Substrates," Advanced Engineering Materials, vol. 25, no. 21, p. 2300927, 2023.
[122] A. Tsukazaki, A. Ohtomo, and M. Kawasaki, "High-mobility electronic transport in ZnO thin films," Applied physics letters, vol. 88, no. 15, 2006.
[123] S. Panda and C. Jacob, "Preparation of transparent ZnO thin films and their application in UV sensor devices," Solid-State Electronics, vol. 73, pp. 44-50, 2012.
[124] T. Amakali, L. Daniel, V. Uahengo, N. Y. Dzade, and N. H. De Leeuw, "Structural and optical properties of ZnO thin films prepared by molecular precursor and sol–gel methods," Crystals, vol. 10, no. 2, p. 132, 2020.
[125] M. Lal, P. Sharma, and C. Ram, "Optical, structural properties and photocatalytic potential of Nd-ZnO nanoparticles synthesized by hydrothermal method," Results in Optics, vol. 10, p. 100371, 2023.
[126] A. C. Badgujar, B. S. Yadav, G. K. Jha, and S. R. Dhage, "Room temperature sputtered aluminum-doped ZnO thin film transparent electrode for application in solar cells and for low-band-gap optoelectronic devices," ACS omega, vol. 7, no. 16, pp. 14203-14210, 2022.
[127] J. Kruszy?ska, J. Ostapko, V. Ozkaya, B. Surucu, O. Szawcow, K. Nikiforow, M. Ho?dy?ski, M. M. Tavakoli, P. Yadav, and M. Kot, "Atomic Layer Engineering of Aluminum?Doped Zinc Oxide Films for Efficient and Stable Perovskite Solar Cells," Advanced Materials Interfaces, vol. 9, no. 17, p. 2200575, 2022.
[128] S. Sahu, T. Debnath, and K. Sahu, "Reversible CsPbBr3?CsPb2Br5 Transformation via Reverse Micellar Aqueous Solution," The Journal of Physical Chemistry Letters, vol. 15, no. 13, pp. 3677-3682, 2024.
[129] J. C. Dahl, X. Wang, X. Huang, E. M. Chan, and A. P. Alivisatos, "Elucidating the weakly reversible Cs–Pb–Br perovskite nanocrystal reaction network with high-throughput maps and transformations," Journal of the American Chemical Society, vol. 142, no. 27, pp. 11915-11926, 2020.
[130] H. Luo, W. Zhang, M. Li, Y. Yang, M. Guo, S.-W. Tsang, and S. Chen, "Origin of subthreshold turn-on in quantum-dot light-emitting diodes," ACS nano, vol. 13, no. 7, pp. 8229-8236, 2019.
[131] B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, and S. Coe-Sullivan, "High-efficiency quantum-dot light-emitting devices with enhanced charge injection," Nature photonics, vol. 7, no. 5, pp. 407-412, 2013.
[132] L. Qian, Y. Zheng, K. R. Choudhury, D. Bera, F. So, J. Xue, and P. H. Holloway, "Electroluminescence from light-emitting polymer/ZnO nanoparticle heterojunctions at sub-bandgap voltages," Nano Today, vol. 5, no. 5, pp. 384-389, 2010.
[133] H. Xu, X. Wang, Y. Li, L. Cai, Y. Tan, G. Zhang, Y. Wang, R. Li, D. Liang, and T. Song, "Prominent heat dissipation in perovskite light-emitting diodes with reduced efficiency droop for silicon-based display," The Journal of Physical Chemistry Letters, vol. 11, no. 9, pp. 3689-3698, 2020.
[134] S. H. Chin, D. Cortecchia, M. Forzatti, C. S. Wu, A. L. Alvarado?Leanos, G. Folpini, A. Treglia, I. A. Kalluvila Justin, A. Paliwal, and C. Cho, "Stabilizing Single?Source Evaporated Perovskites with Organic Interlayers for Amplified Spontaneous Emission," Advanced Optical Materials, vol. 12, no. 13, p. 2302701, 2024.
[135] W. Li, T. Li, Y. Tong, H. Qi, Y. Zhang, Y. Guo, H. Wang, H. Wang, K. Wang, and H. Wang, "Fabrication of highly luminescent quasi two-dimensional CsPbBr3 perovskite films in high humidity air for light-emitting diodes," ACS Applied Materials & Interfaces, vol. 15, no. 30, pp. 36602-36610, 2023.
[136] Y. Cheng, H. Wan, E. H. Sargent, and D. Ma, "Reduced?Dimensional Perovskites: Quantum Well Thickness Distribution and Optoelectronic Properties," Advanced Materials, p. 2410633, 2024.
[137] H. Xiao, R. Li, W. Cai, and Z. Zang, "Development of Quasi-Two-Dimensional Perovskites and Their Application in Light-Emitting Diodes," Inorganic Chemistry, vol. 63, no. 6, pp. 2853-2876, 2024.
[138] A. J. Ramadan, W. H. Jeong, R. D. Oliver, J. Jiang, A. Dasgupta, Z. Yuan, J. Smith, J. E. Lee, S. G. Motti, and O. Gough, "The Role of the Organic Cation in Developing Efficient Green Perovskite LEDs Based on Quasi?2D Perovskite Heterostructures," Advanced Functional Materials, vol. 34, no. 14, p. 2309653, 2024.
[139] B. Kang and K. Biswas, "Exploring polaronic, excitonic structures and luminescence in Cs4PbBr6/CsPbBr3," The Journal of Physical Chemistry Letters, vol. 9, no. 4, pp. 830-836, 2018.
[140] M. I. Saidaminov, J. Almutlaq, S. Sarmah, I. Dursun, A. A. Zhumekenov, R. Begum, J. Pan, N. Cho, O. F. Mohammed, and O. M. Bakr, "Pure Cs4PbBr6: highly luminescent zero-dimensional perovskite solids," ACS Energy Letters, vol. 1, no. 4, pp. 840-845, 2016.
[141] J. Cao, X. Zeng, W. Li, L. Lv, C. Yan, H. Huang, J. Lu, and W. Yang, "Water-induced construction of Cs4PbBr6/CsPbBr3 heterojunction for efficient perovskite light-emitting diode," Applied Materials Today, vol. 30, p. 101733, 2023.
[142] C. Wang, L. Yan, J. Si, T. Huo, and X. Hou, "Strongly luminescent and highly stable CsPbBr3/Cs4PbBr6 core/shell nanocrystals and their ultrafast carrier dynamics," Journal of Alloys and Compounds, vol. 946, p. 169272, 2023.
[143] L. Liu, S.-E. Yang, P. Liu, and Y. Chen, "High-quality and full-coverage CsPbBr3 thin films via electron beam evaporation with post-annealing treatment for all-inorganic perovskite solar cells," Solar Energy, vol. 232, pp. 320-327, 2022.
[144] D. Chen, Z. Wan, X. Chen, Y. Yuan, and J. Zhong, "Large-scale room-temperature synthesis and optical properties of perovskite-related Cs4PbBr6 fluorophores," Journal of Materials Chemistry C, vol. 4, no. 45, pp. 10646-10653, 2016.
[145] J. Byun, H. Cho, C. Wolf, M. Jang, A. Sadhanala, R. H. Friend, H. Yang, and T.-W. Lee, "Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes," Advanced Materials (Deerfield Beach, Fla.), vol. 28, no. 34, pp. 7515-7520, 2016.
[146] T. L. Leung, I. Ahmad, A. A. Syed, A. M. C. Ng, J. Popovi?, and A. B. Djuri?i?, "Stability of 2D and quasi-2D perovskite materials and devices," Communications materials, vol. 3, no. 1, p. 63, 2022. |