博碩士論文 108328009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:18.221.87.167
姓名 葉冠奇(Kuan-Chi Yeh)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 結合單源氣相沉積與熱處理製程製備高品質全無機鈣鈦礦CsPbBr3光致發光薄膜暨發光二極體之研究
(The Study of Fabricating High-Quality All-Inorganic Perovskite CsPbBr3 Photoluminescence Films and Light-Emitting Diodes via Single-Source Vapor Deposition Combined with Heat Treatment)
相關論文
★ 奈微米球粗化基板技術 暨提升OLED元件出光效率研究★ 銀-聚苯乙烯殼核球於高分子分散液晶薄膜元件之應用
★ ITO 奈微米週期結構電極提升OLED 元件發光效率之研究★ 以CaTiO3應用於鈣鈦礦太陽能電池電子傳輸層之研究
★ 奈微米結構於鈣鈦礦太陽能電池光捕捉應用之研究★ 超薄類鑽碳膜之研究
★ 利用鈣/鈦複合物作為 鈣鈦礦太陽能電池介孔層之研究★ 在低溫製程下製作鈣/鈦複合物作為鈣鈦礦太陽能電池介孔層之研究
★ 氟摻雜氧化錫奈米週期結構電極應用於鈣/鈦複合物作為鈣鈦礦太陽能電池介孔層之研究★ 具奈米結構之氟摻雜氧化錫玻璃基板應用於鈣鈦礦太陽能電池之研究
★ 快速熱退火之石墨烯特性分析★ 利用光發射光譜儀監控高功率脈衝磁控濺鍍光學薄膜之研究
★ 利用馬倫哥尼效應製備高品質高效率鈣鈦礦太陽能電池★ 利用溶劑萃取法結合綠色溶劑製備鈣鈦礦太陽能電池
★ 奈米圖案化基板於白光有機發光二極體暨有機鈣鈦礦太陽能電池效率增益之研究★ 單源熱蒸鍍無機鈣鈦礦薄膜暨特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-2-1以後開放)
摘要(中) 鈣鈦礦材料憑藉卓越的光致發光效率、優異的色純度及低廉的製造成本,在照明與顯示領域展現出巨大潛力。本研究聚焦於CsPbBr3全無機綠光鈣鈦礦薄膜(Perovskite Film, PeFilm)的製備,透過單源氣相沉積(Single Source Vapor Deposition, SSVD)及結合熱退火處理製備高品質CsPbBr3薄膜,以及優化CsPbBr3鈣鈦礦發光二極體(Perovskite Light-Emitting Diode, PeLED)的結構,以提升PeLED發光效率。
通過SSVD 製備的CsPbBr3 PeFilm,在適當熱退火處理後成功從單斜晶相轉變為立方晶相並消除CsPbBr3的異質結構,此過程促進奧斯華擾化效應使晶粒生長與融合更加完整,顯著增強輻射復合能力。研究結果顯示光致發光量子產率 (Photoluminescence Quantum Yield, PLQY)從2.3%提升至52.1%,即使在大氣環境下存放100天PLQY仍能保持在52%以上,展現出卓越的穩定性。此外,將此PeFilm應用於未添加電子與電洞傳輸層的簡單結構PeLED中,元件在2.92 V的操作電壓下達到14,079 cd/m2的最高亮度。
在PeLED結構設計方面為了有效提升元件性能,本研究採用原子層沉積方式製備電子傳輸層ZnO以改善電子傳輸能力。同時,通過交替沉積CsBr與CsPbBr3製備發光層,使其產生具有寬能隙的Cs4PbBr6並形成類量子阱結構,有效限制載子移動並提升輻射復合效率。最終,性能最佳的PeLED在操作電壓2.78 V下最高亮度達到46,812 cd/m2、電流效率達到10.39 cd/A與4.10%的外部量子效率,而且相較於簡單結構的PeLED亮度提升了2.3倍。此外,經30天的大氣環境下進行耐候性測試元件仍能保持原始亮度的60%。值得注意的是,本研究製作的綠光PeLED僅需兩顆市售1.5 V電池即可啟動並達到最高亮度,成功克服普遍PeLED操作電壓偏高的問題,展現出良好的可行性與實用性,為PeLED的發展提供嶄新的製程方式。
摘要(英) Perovskite materials exhibit excellent photoluminescence efficiency, superior color purity, and low manufacturing cost, demonstrating significant potential in the fields of lighting and display technology. This study focuses on fabricating all-inorganic green-light CsPbBr3 perovskite film (PeFilm) using Single-Source Vapor Deposition (SSVD) combined with thermal annealing to produce high-quality CsPbBr3 films, and optimizing the structure of CsPbBr3 perovskite light-emitting diodes (PeLED) to enhance luminous efficiency.
CsPbBr3 PeFilms fabricated via SSVD successfully transitioned from the monoclinic to the cubic crystalline phase after appropriate thermal annealing, eliminating heterostructures within the CsPbBr3 material. The process facilitated the Ostwald ripening effect, promoting more complete grain growth and fusion, which significantly enhanced radiative recombination efficiency. The study results showed that the photoluminescence quantum yield (PLQY) increased from 2.3% to 52.1%, and even after being stored in an air ambient environment for 100 days, the PLQY remained above 52%, demonstrating exceptional stability. Furthermore, when this PeFilm was applied in a simple PeLEDs structure without additional electron and hole transport layers, the device achieved a maximum brightness of 14,079 cd/m2 at a driving voltage of 2.92 V.
In the design of the PeLED structure, this study utilizes atomic layer deposition to fabricate a ZnO electron transport layer, enhancing electron transport capabilities. The emitting layer is also prepared by alternately depositing CsBr and CsPbBr3, forming a wide bandgap between Cs4PbBr6 and quantum well-like structure, effectively restricting carrier movement and improving radiation recombination efficiency. The optimized PeLED achieved a maximum brightness of 46,812 cd/m2, a current efficiency of 10.39 cd/A, and an external quantum efficiency of 4.10% at an operating voltage of 2.78 V, with Additionally, its brightness was 2.3 times higher compared to PeLEDs with a simpler structure. After 30 days of atmospheric durability testing, the device maintained 60% of its initial brightness. Notably, the green PeLED fabricated in this study can be powered by just two commercially available 1.5 V batteries to achieve its maximum brightness, successfully overcoming the common issue of high driving voltages in PeLEDs, and demonstrating excellent feasibility and practicality. It provides a novel manufacturing approach for advancing PeLED development.
關鍵字(中) ★ 單源氣相沉積
★ 熱處理
★ 鈣鈦礦CsPbBr3
★ CsPbBr3 發光二極體
★ CsPbBr3 光致發光薄膜
關鍵字(英) ★ Single-Source Vapor Deposition
★ Heat Treatment
★ Perovskite CsPbBr3
★ CsPbBr3 Light-Emitting Diodes
★ CsPbBr3 Photoluminescence Films
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 xiii
第1章 研究背景 1
1-1 鈣鈦礦材料介紹與分類 2
1-1-1 有機-無機鹵化物鈣鈦礦 3
1-1-2全無機鹵化物鈣鈦礦 5
1-2 鈣鈦礦材料在顯示技術應用 8
1-2-1 鈣鈦礦彩色濾光片 8
1-2-2 CsPbBr3 PeLED 11
1-3 溶液法製備PeFilm及應用 15
1-3-1 旋轉塗佈法 16
1-3-2噴墨列印法 18
1-3-3刮塗法 20
1-4蒸鍍法製備PeFilm及應用 22
1-4-1 雙源與多源共蒸鍍法 22
1-4-2 逐步蒸鍍法 24
1-4-3 單源蒸鍍法 26
1-5 熱退火改善PeFilm 28
1-6 CsPbBr3 PeLED的結構組成 30
1-6-1 PeLED之發光層 30
1-6-2 PeLED之電子傳輸層 36
1-6-3 PeLED之電洞傳輸層 38
1-7 研究動機與目的 43
第2章 實驗方法 44
2-1 實驗材料及儀器 44
2-1-1 實驗材料 44
2-1-2 實驗儀器 44
2-2 實驗步驟 46
2-2-1 玻璃與ITO基板清洗 46
2-2-2原子層沉積ZnO電子傳輸層 47
2-2-3蒸鍍鈣鈦礦 CsPbBr3發光層 47
2-2-4 發光層熱退火處理 47
2-2-5 碳膠電極刮塗 48
2-2-6 PeLED元件量測 48
2-3 本研究儀器分析方式 48
2-3-1 UV-vis分析及量測方式 48
2-3-2 XRD分析及量測方式 48
2-3-3 SEM分析及量測方式 48
2-3-4 UPS分析及量測方式 49
2-3-5 HR-TEM分析及量測方式 49
2-3-6 積分球與光譜儀分析及量測方式 49
2-3-7 輝度計分析及量測方式 49
第3章 利用SSVD 製備CsPbBr3 PeFilm之研究 50
3-1 CsBr/PbBr2混合粉末與CsPbBr3粉末比較 51
3-2熱退火製程提升CsPbBr3薄膜結晶品質 56
3-3 PeFilm的PL和耐候性分析 61
第4章 簡單結構CsPbBr3 PeLED之研究 65
4-1熱退火對CsPbBr3 發光層的分析 66
4-2熱退火處理後的CsPbBr3薄膜形貌及功函數分析 71
4-3熱退火製程對 CsPbBr3 PeLED性能的影響 75
第5章 發光層及ETL厚度對PeLED效率之研究 79
5-1不同厚度CsPbBr3發光層分析 80
5-2 PeLED的發光層厚度對電流-電壓-亮度性能的影響 82
5-3 利用ALD製備ETL ZnO薄膜探討與分析 85
5-4不同循環次數的ZnO ETL對PeLED性能影響 90
第6章 類量子阱結構發光層之PeLED 93
6-1 透過類量子阱結構改善CsPbBr3 PeLED元件性能 94
6-2 不同對數的CsBr+CsPbBr3複合薄膜分析 96
6-3 複合薄膜熱處理前後的微觀變化 103
6-4 不同對數發光層的PeLED性能 107
第7章 結論 114
參考文獻 117
發表文獻 131
參考文獻 [1] Z. Wang, Q. Dong, Y. Yan, Z. Fang, G. Mi, M. Pei, S. Wang, L. Zhang, J. Liu, and M. Chen, "Al2O3 nanoparticles as surface modifier enables deposition of high quality perovskite films for ultra-flexible photovoltaics," Advanced Powder Materials, vol. 3, no. 1, p. 100142, 2024.
[2] S. M. Park, M. Wei, J. Xu, H. R. Atapattu, F. T. Eickemeyer, K. Darabi, L. Grater, Y. Yang, C. Liu, and S. Teale, "Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells," Science, vol. 381, no. 6654, pp. 209-215, 2023.
[3] K.-M. Lee, W.-H. Chiu, Y.-H. Tsai, C.-S. Wang, Y.-T. Tao, and Y.-D. Lin, "High-performance perovskite solar cells based on dopant-free hole-transporting material fabricated by a thermal-assisted blade-coating method with efficiency exceeding 21%," Chemical Engineering Journal, vol. 427, p. 131609, 2022.
[4] M. I. Saleem, R. Choi, and J.-H. Lee, "Light outcoupling strategies in oriented perovskite light-emitting-diodes: recent trends, opportunities, and challenges toward innovation," Materials Chemistry Frontiers, vol. 7, no. 12, pp. 2316-2336, 2023.
[5] W. Chen, Z. Huang, H. Yao, Y. Liu, Y. Zhang, Z. Li, H. Zhou, P. Xiao, T. Chen, and H. Sun, "Highly bright and stable single-crystal perovskite light-emitting diodes," Nature Photonics, vol. 17, no. 5, pp. 401-407, 2023.
[6] D. Han, J. Wang, L. Agosta, Z. Zang, B. Zhao, L. Kong, H. Lu, I. Mosquera-Lois, V. Carnevali, and J. Dong, "Tautomeric mixture coordination enables efficient lead-free perovskite LEDs," Nature, vol. 622, no. 7983, pp. 493-498, 2023.
[7] J. Lee, H. Lee, U. Kim, W. J. Chung, and W. B. Im, "Flexible remote phosphor color converter based on ultra-thin glass and CsPbBr3 perovskite nanocrystal-embedded glass for a wide-color-gamut white LED," Journal of Materials Chemistry C, vol. 11, no. 3, pp. 898-902, 2023.
[8] Q. Wang, S. K. Abkenar, M. Cirignano, H. Yu, W. Wu, and G. Divitini, "Temperature-dependent photoluminescent behavior of millimeter-scale Cs4PbBr6/CsPbBr3 bulk crystals and their application to white light-emitting diodes," Journal of Materials Science & Technology, vol. 179, pp. 57-65, 2024.
[9] S. Chen, J. Lin, J. Huang, T. Pang, Q. Ye, Y. Zheng, X. Li, Y. Yu, B. Zhuang, and D. Chen, "CsPbBr3@ glass nanocomposite with green?emitting external quantum efficiency of 75% for backlit display," Advanced Functional Materials, vol. 34, no. 2, p. 2309293, 2024.
[10] K. Chen, Q. Zhang, Y. Liang, J. Song, C. Li, S. Chen, F. Li, and Q. Zhang, "Quasi-two dimensional Ruddlesden-Popper halide perovskites for laser applications," Frontiers of Physics, vol. 19, no. 2, p. 23502, 2024.
[11] J. H. Yoo, S. B. Kwon, J. Park, S. H. Choi, H. C. Yoo, B. K. Kang, Y. H. Song, S. Hong, and D. H. Yoon, "Potential usage of cesium manganese halide for multi-functional optoelectronic devices: Display & photodetector application," Chemical Engineering Journal, vol. 479, p. 147277, 2024.
[12] L. Su, "Room temperature growth of CsPbBr3 single crystal for asymmetric MSM structure photodetector," Journal of Materials Science & Technology, vol. 187, pp. 113-122, 2024.
[13] X. Zhang, X. Liu, Y. Huang, B. Sun, Z. Liu, G. Liao, and T. Shi, "Review on flexible perovskite photodetector: processing and applications," Frontiers of Mechanical Engineering, vol. 18, no. 2, p. 33, 2023.
[14] D. I. Markina, S. S. Anoshkin, M. A. Masharin, S. A. Khubezhov, I. Tzibizov, D. Dolgintsev, I. N. Terterov, S. V. Makarov, and A. P. Pushkarev, "Perovskite Nanowire Laser for Hydrogen Chloride Gas Sensing," ACS nano, vol. 17, no. 2, pp. 1570-1582, 2023.
[15] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," Journal of the american chemical society, vol. 131, no. 17, pp. 6050-6051, 2009.
[16] J. Park, J. Kim, H.-S. Yun, M. J. Paik, E. Noh, H. J. Mun, M. G. Kim, T. J. Shin, and S. I. Seok, "Controlled growth of perovskite layers with volatile alkylammonium chlorides," Nature, vol. 616, no. 7958, pp. 724-730, 2023.
[17] S. Ding, Q. Wang, W. Gu, Z. Tang, B. Zhang, C. Wu, X. Zhang, H. Chen, X. Zhang, and R. Cao, "Phase dimensions resolving of efficient and stable perovskite light-emitting diodes at high brightness," Nature Photonics, vol. 18, no. 4, pp. 1-8, 2024.
[18] S. ten Brinck, "A Computational Approach to Understanding Lead Halide Perovskite Nanocrystals," 2020.
[19] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, "Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut," Nano letters, vol. 15, no. 6, pp. 3692-3696, 2015.
[20] X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song, and H. Zeng, "CsPbX3 quantum dots for lighting and displays: room?temperature synthesis, photoluminescence superiorities, underlying origins and white light?emitting diodes," Advanced Functional Materials, vol. 26, no. 15, pp. 2435-2445, 2016.
[21] Y. B. Cao, D. Zhang, Q. Zhang, X. Qiu, Y. Zhou, S. Poddar, Y. Fu, Y. Zhu, J.-F. Liao, and L. Shu, "High-efficiency, flexible and large-area red/green/blue all-inorganic metal halide perovskite quantum wires-based light-emitting diodes," Nature Communications, vol. 14, no. 1, p. 4611, 2023.
[22] J. Huang, D. Zhou, H. Yan, C. Meng, Y. Yang, J. Liu, M. Wang, P. Xu, Z. Peng, and J. Chen, "A multiple-coordination framework for CsPbI2Br perovskite solar cells," Journal of Materials Chemistry C, vol. 12, no. 11, pp. 4112-4122, 2024.
[23] Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. Bednorz, and F. Lichtenberg, "Superconductivity in a layered perovskite without copper," nature, vol. 372, no. 6506, pp. 532-534, 1994.
[24] T. He, Q. Huang, A. Ramirez, Y. Wang, K. Regan, N. Rogado, M. Hayward, M. Haas, J. Slusky, and K. Inumara, "Superconductivity in the non-oxide perovskite MgCNi3," Nature, vol. 411, no. 6833, pp. 54-56, 2001.
[25] M. K. Shahzad, S. Hussain, M. U. Farooq, A. Abdullah, G. A. Ashraf, M. Riaz, and S. M. Ali, "First principle investigation of tungsten based cubic oxide perovskite materials for superconducting applications: A DFT study," Journal of Physics and Chemistry of Solids, vol. 186, p. 111813, 2024.
[26] D. Cox, B. Noheda, G. Shirane, Y. Uesu, K. Fujishiro, and Y. Yamada, "Universal phase diagram for high-piezoelectric perovskite systems," Applied Physics Letters, vol. 79, no. 3, pp. 400-402, 2001.
[27] T. Takenaka, H. Nagata, Y. Hiruma, Y. Yoshii, and K. Matumoto, "Lead-free piezoelectric ceramics based on perovskite structures," Journal of Electroceramics, vol. 19, pp. 259-265, 2007.
[28] M. Cheng, D. Zhang, Y. Yan, Z. Li, P. Wang, and R.-i. Murakami, "Optimizing piezoelectric performance of complex perovskite through increasing diversity of B-site cations," Journal of Materials Science & Technology, vol. 170, pp. 78-86, 2024.
[29] C. Homes, T. Vogt, S. Shapiro, S. Wakimoto, and A. Ramirez, "Optical response of high-dielectric-constant perovskite-related oxide," science, vol. 293, no. 5530, pp. 673-676, 2001.
[30] P. Davies, H. Wu, A. Borisevich, I. Molodetsky, and L. Farber, "Crystal chemistry of complex perovskites: new cation-ordered dielectric oxides," Annu. Rev. Mater. Res., vol. 38, pp. 369-401, 2008.
[31] J. Radhakrishnan, S. Subramani, and J. L. Ocana, "Cold sintering behaviors of barium titanates: Recent progress and impact on microstructure, densification and dielectric-ferroelectric response," Coordination Chemistry Reviews, vol. 502, p. 215621, 2024.
[32] P. Chenna, S. Gandi, S. Pookatt, and S. R. Parne, "Perovskite white light emitting diodes: a review," Materials Today Electronics, p. 100057, 2023.
[33] H. C. Wang, S. Y. Lin, A. C. Tang, B. P. Singh, H. C. Tong, C. Y. Chen, Y. C. Lee, T. L. Tsai, and R. S. Liu, "Mesoporous silica particles integrated with all?inorganic CsPbBr3 perovskite quantum?dot nanocomposites (MP?PQDs) with high stability and wide color gamut used for backlight display," Angewandte Chemie International Edition, vol. 55, no. 28, pp. 7924-7929, 2016.
[34] Y.-L. Liu, C.-H. Chiang, Y.-C. Chen, and M.-L. Tsai, "Highly Enhanced Photoluminescence Quantum Yield of Phenethylammonium Halide-Passivated Inorganic Perovskite/Cellulose Nanocrystal Films," ACS Sustainable Chemistry & Engineering, vol. 11, no. 12, pp. 4580-4587, 2023.
[35] W. Ma, H. Zhang, M. Hu, Y. Guo, and L. Yang, "Highly Crystalline CsPbBr3 Perovskite Nanoparticles for Liquid Crystal Displays," ACS Applied Nano Materials, vol. 6, no. 5, pp. 3974-3980, 2023.
[36] K. He, D. Chen, L. Yuan, J. Xu, K. Xu, J. Hu, S. Liang, and H. Zhu, "Crystallization engineering in PVDF enables ultrastable and highly efficient CsPbBr3 quantum dots film for wide color gamut Mini-LED backlight," Chemical Engineering Journal, vol. 480, p. 148066, 2024.
[37] E. Jang and H. Jang, "Quantum Dot Light-Emitting Diodes," Chemical Reviews, vol. 123, no. 8, pp. 4663-4692, 2023.
[38] S. Mei, J. Yin, Y. Xing, H. He, H. Gu, J. Xia, W. Zhang, C. Liang, G. Xing, and R. Guo, "Designing high-performance pure-red metal halide perovskite materials and light-emitting diodes for Rec. 2020 display," Nano Energy, vol. 122, p. 109339, 2024.
[39] X. Fan, X. Yang, X. Kong, T. Zhang, S. Wang, Y. Lin, and Z. Chen, "Recent progresses on perovskite quantum dots patterning techniques for color conversion layer in micro-LED displays," Next Nanotechnology, vol. 5, p. 100045, 2024.
[40] Z.-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, and D. Credgington, "Bright light-emitting diodes based on organometal halide perovskite," Nature nanotechnology, vol. 9, no. 9, pp. 687-692, 2014.
[41] K. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang, and C. Yan, "Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent," Nature, vol. 562, no. 7726, pp. 245-248, 2018.
[42] J. K. Park, J. H. Heo, H. J. Lee, B. W. Kim, S. W. Park, K.-H. Hong, and S. H. Im, "Energy-well band structure for enhanced exciton confinement effect in perovskite light-emitting diodes via spray-coating," Journal of Alloys and Compounds, vol. 965, p. 171499, 2023.
[43] Q. Wan, W. Zheng, C. Zou, F. Carulli, C. Zhang, H. Song, M. Liu, Q. Zhang, L. Y. Lin, and L. Kong, "Ultrathin Light-Emitting Diodes with External Efficiency over 26% Based on Resurfaced Perovskite Nanocrystals," ACS Energy Letters, vol. 8, no. 2, pp. 927-934, 2023.
[44] A. Liu, P. Lu, M. Lu, X. Chai, Y. Liu, G. Guan, Y. Gao, Z. Wu, X. Bai, and J. Hu, "Multiple phase regulation enables efficient and bright quasi-2D perovskite light-emitting diodes," Nano Letters, vol. 23, no. 23, pp. 11082-11090, 2023.
[45] V. R. Schroder, N. Fratzscher, F. Mathies, E. R. Nandayapa, F. Hermerschmidt, E. L. Unger, and E. J. List-Kratochvil, "Large area inkjet-printed metal halide perovskite LEDs enabled by gas flow assisted drying and crystallization," Nanoscale, vol. 15, no. 12, pp. 5649-5654, 2023.
[46] P. Du, J. Li, L. Wang, L. Sun, X. Wang, X. Xu, L. Yang, J. Pang, W. Liang, and J. Luo, "Efficient and large-area all vacuum-deposited perovskite light-emitting diodes via spatial confinement," Nature Communications, vol. 12, no. 1, p. 4751, 2021.
[47] S. Sun, D. Yuan, Y. Xu, A. Wang, and Z. Deng, "Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature," ACS nano, vol. 10, no. 3, pp. 3648-3657, 2016.
[48] T. W. Kang, S. Lee, Y. J. Park, G. J. Jeong, J. S. Kim, B. Bae, J. Hwang, and S. W. Kim, "Enhancement of the optical properties of CsPbBr3 perovskite nanocrystals using three different solvents," Optics Letters, vol. 45, no. 18, pp. 4972-4975, 2020.
[49] A. Kirakosyan, Y. Kim, M. R. Sihn, M. G. Jeon, J. R. Jeong, and J. Choi, "Solubility?Controlled Room?Temperature Synthesis of Cesium Lead Halide Perovskite Nanocrystals," ChemNanoMat, vol. 6, no. 12, pp. 1863-1869, 2020.
[50] N. Yantara, S. Bhaumik, F. Yan, D. Sabba, H. A. Dewi, N. Mathews, P. P. Boix, H. V. Demir, and S. Mhaisalkar, "Inorganic halide perovskites for efficient light-emitting diodes," The journal of physical chemistry letters, vol. 6, no. 21, pp. 4360-4364, 2015.
[51] S. Seth and A. Samanta, "A facile methodology for engineering the morphology of CsPbX3 perovskite nanocrystals under ambient condition," Scientific reports, vol. 6, no. 1, p. 37693, 2016.
[52] T. H. Han, J. W. Lee, Y. J. Choi, C. Choi, S. Tan, S. J. Lee, Y. Zhao, Y. Huang, D. Kim, and Y. Yang, "Surface?2D/bulk?3D heterophased perovskite nanograins for long?term?stable light?emitting diodes," Advanced Materials, vol. 32, no. 1, p. 1905674, 2020.
[53] C.-H. Tien, Y.-T. Chen, and L.-C. Chen, "Dual-functionalized poly (ethylene oxide) for interface modification and addition of rubidium-doped CsPbBr3 perovskite composite emission layer to enhance brightness of perovskite light-emitting diodes," Results in Physics, vol. 53, p. 106982, 2023.
[54] F.-C. Liang, Z.-L. Yan, D. L. Busipalli, J.-S. Benas, Z.-X. Zhang, S.-T. Han, Y. Zhou, J.-C. Jiang, and C.-C. Kuo, "Enhancing the stability of the polymeric Lewis-base-assisted dual-phase 3D CsPbBr3–Cs4PbBr6 perovskite by molecular engineering and self-passivation," Journal of Materials Chemistry C, vol. 11, no. 1, pp. 307-320, 2023.
[55] C.-H. Tien, H.-H. Tsai, and L.-C. Chen, "Double-stranded ligand modification of plasmonic nano-Au: CsPbBr3 perovskite nanocomposite for reinforced light-emitting performance," Journal of Materials Research and Technology, vol. 19, pp. 3842-3851, 2022.
[56] L.-C. Chen, Y.-S. Wei, and M. Zhang, "Double buffer of MAPbBr3 QDs using a bulk crystal source by the LARP method and MABr modifier for CsPbBr3 perovskite light-emitting diodes," Journal of Physics D: Applied Physics, vol. 56, no. 46, p. 465102, 2023.
[57] F. Hermerschmidt, F. Mathies, V. R. Schroder, C. Rehermann, N. Z. Morales, E. L. Unger, and E. J. List-Kratochvil, "Finally, inkjet-printed metal halide perovskite LEDs–utilizing seed crystal templating of salty PEDOT: PSS," Materials Horizons, vol. 7, no. 7, pp. 1773-1781, 2020.
[58] G. Vescio, J. L. Frieiro, A. F. Gualdron?Reyes, S. Hernandez, I. Mora?Sero, B. Garrido, and A. Cirera, "High Quality Inkjet Printed?Emissive Nanocrystalline Perovskite CsPbBr3 Layers for Color Conversion Layer and LEDs Applications," Advanced Materials Technologies, vol. 7, no. 7, p. 2101525, 2022.
[59] H. Liu, G. Shi, R. Khan, S. Chu, Z. Huang, T. Shi, H. Sun, Y. Li, H. Zhou, and P. Xiao, "Large?Area Flexible Perovskite Light?Emitting Diodes Enabled by Inkjet Printing," Advanced Materials, p. 2309921, 2023.
[60] F. Schackmar, F. Laufer, R. Singh, A. Farag, H. Eggers, S. Gharibzadeh, B. Abdollahi Nejand, U. Lemmer, G. Hernandez?Sosa, and U. W. Paetzold, "In Situ Process Monitoring and Multichannel Imaging for Vacuum?Assisted Growth Control of Inkjet?Printed and Blade?Coated Perovskite Thin?Films," Advanced Materials Technologies, vol. 8, no. 5, p. 2201331, 2023.
[61] G. Shi, Z. Huang, R. Qiao, W. Chen, Z. Li, Y. Li, K. Mu, T. Si, and Z. Xiao, "Manipulating solvent fluidic dynamics for large-area perovskite film-formation and white light-emitting diodes," Nature Communications, vol. 15, no. 1, p. 1066, 2024.
[62] M. Liu, M. B. Johnston, and H. J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, vol. 501, no. 7467, pp. 395-398, 2013.
[63] T. Antrack, M. Kroll, L. Merten, M. Albaladejo?Siguan, A. Hinderhofer, O. V. Konovalov, M. Jankowski, J. Benduhn, F. Schreiber, and Y. Vaynzof, "Enhancing luminescence efficiency by controlled island formation of CsPbBr3 perovskite," Advanced Optical Materials, vol. 11, no. 3, p. 2201408, 2023.
[64] C. A. Hsieh, G. H. Tan, Y. T. Chuang, H. C. Lin, P. T. Lai, P. E. Jan, B. H. Chen, C. H. Lu, S. D. Yang, and K. Y. Hsiao, "Vacuum?Deposited Inorganic Perovskite Light?Emitting Diodes with External Quantum Efficiency Exceeding 10% via Composition and Crystallinity Manipulation of Emission Layer under High Vacuum," Advanced Science, vol. 10, no. 10, p. 2206076, 2023.
[65] A. M. Igual-Munoz, J. Navarro-Alapont, C. Dreessen, F. Palazon, M. Sessolo, and H. J. Bolink, "Room-temperature vacuum deposition of CsPbI2Br perovskite films from multiple sources and mixed halide precursors," Chemistry of Materials, vol. 32, no. 19, pp. 8641-8652, 2020.
[66] J. Yan, J. Zhao, H. Wang, M. Kerklaan, L. J. Bannenberg, B. Ibrahim, T. J. Savenije, L. Mazzarella, and O. Isabella, "Crystallization Process for High-Quality Cs0.15FA0.85PbI2.85Br0.15 Film Deposited via Simplified Sequential Vacuum Evaporation," ACS Applied Energy Materials, vol. 6, no. 20, pp. 10265-10273, 2023.
[67] K. L. Heinze, T. Schulz, R. Scheer, and P. Pistor, "Structural Evolution of Sequentially Evaporated (Cs, FA) Pb(I,Br)3 Perovskite Thin Films via In Situ X?Ray Diffraction," physica status solidi (a), vol. 221, no. 3, p. 2300690, 2024.
[68] Y. Fu, Q. Zhang, D. Zhang, Y. Tang, L. Shu, Y. Zhu, and Z. Fan, "Scalable All?Evaporation Fabrication of Efficient Light?Emitting Diodes with Hybrid 2D–3D Perovskite Nanostructures," Advanced Functional Materials, vol. 30, no. 39, p. 2002913, 2020.
[69] J. Li, R. Gao, F. Gao, J. Lei, H. Wang, X. Wu, J. Li, H. Liu, X. Hua, and S. F. Liu, "Fabrication of efficient CsPbBr3 perovskite solar cells by single-source thermal evaporation," Journal of alloys and compounds, vol. 818, p. 152903, 2020.
[70] Y. El Ajjouri, F. Palazon, M. Sessolo, and H. J. Bolink, "Single-source vacuum deposition of mechanosynthesized inorganic halide perovskites," Chemistry of materials, vol. 30, no. 21, pp. 7423-7427, 2018.
[71] N. A. Merdad, Y. Wang, O. Alkhazragi, Z. O. Mohammed, P. Maity, L. Gutierrez-Arzaluz, H. Yang, R. Naphade, C. H. Kang, and T. K. Ng, "Visible-light communication using thermally evaporated CsPbBr3 perovskite thin films," AIP Advances, vol. 13, no. 5, 2023.
[72] P.-N. Tran, H.-H. Phan, T.-N. Luu, Q.-H. Tran, and T.-T. Duong, "Optimizing the single-source flash thermal evaporation process of Zn-doped CsPbBr3 films for enhanced performance in perovskite LEDs," Applied Physics A, vol. 130, no. 1, p. 20, 2024.
[73] S. n. Caicedo-Da?vila, R. Gunder, J. A. Marquez, S. Levcenko, K. Schwarzburg, T. Unold, and D. Abou-Ras, "Effects of postdeposition annealing on the luminescence of mixed-phase CsPb2Br5/CsPbBr3 thin films," The Journal of Physical Chemistry C, vol. 124, no. 36, pp. 19514-19521, 2020.
[74] T. Xiang, Y. Zhang, H. Wu, J. Li, L. Yang, K. Wang, J. Xia, Z. Deng, J. Xiao, and W. Li, "Universal defects elimination for high performance thermally evaporated CsPbBr3 perovskite solar cells," Solar energy materials and solar cells, vol. 206, p. 110317, 2020.
[75] L. Zhang, F. Yuan, H. Dong, B. Jiao, W. Zhang, X. Hou, S. Wang, Q. Gong, and Z. Wu, "One-step co-evaporation of all-inorganic perovskite thin films with room-temperature ultralow amplified spontaneous emission threshold and air stability," ACS applied materials & interfaces, vol. 10, no. 47, pp. 40661-40671, 2018.
[76] T. Bai, S. Wang, K. Zhang, C. Chu, Y. Sun, and L. Yi, "High stability and strong luminescence CsPbBr3–Cs4PbBr6 thin films for all-inorganic perovskite light-emitting diodes," RSC advances, vol. 13, no. 35, pp. 24413-24422, 2023.
[77] H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, and S. Yoo, "Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes," Science, vol. 350, no. 6265, pp. 1222-1225, 2015.
[78] Y. Hu, Q. Wang, Y.-L. Shi, M. Li, L. Zhang, Z.-K. Wang, and L.-S. Liao, "Vacuum-evaporated all-inorganic cesium lead bromine perovskites for high-performance light-emitting diodes," Journal of Materials Chemistry C, vol. 5, no. 32, pp. 8144-8149, 2017.
[79] J. H. Warby, B. Wenger, A. J. Ramadan, R. D. Oliver, H. C. Sansom, A. R. Marshall, and H. J. Snaith, "Revealing factors influencing the operational stability of perovskite light-emitting diodes," ACS nano, vol. 14, no. 7, pp. 8855-8865, 2020.
[80] M. Shin, H. S. Lee, Y. C. Sim, Y.-H. Cho, K. Cheol Choi, and B. Shin, "Modulation of growth kinetics of vacuum-deposited CsPbBr3 films for efficient light-emitting diodes," ACS applied materials & interfaces, vol. 12, no. 1, pp. 1944-1952, 2019.
[81] S. Xie, A. Osherov, and V. Bulovi?, "All-vacuum-deposited inorganic cesium lead halide perovskite light-emitting diodes," APL Materials, vol. 8, no. 5, p. 051113, 2020.
[82] L. Nasi, D. Calestani, F. Mezzadri, F. Mariano, A. Listorti, P. Ferro, M. Mazzeo, and R. Mosca, "All-inorganic CsPbBr3 perovskite films prepared by single source thermal ablation," Frontiers in chemistry, vol. 8, p. 313, 2020.
[83] C.-Y. Huang, S.-H. Huang, C.-L. Wu, Z.-H. Wang, and C.-C. Yang, "Cs4PbBr6/CsPbBr3 nanocomposites for all-inorganic electroluminescent perovskite light-emitting diodes," ACS Applied Nano Materials, vol. 3, no. 12, pp. 11760-11768, 2020.
[84] J. Li, P. Du, Q. Guo, L. Sun, Z. Shen, J. Zhu, C. Dong, L. Wang, X. Zhang, and L. Li, "Efficient all-thermally evaporated perovskite light-emitting diodes for active-matrix displays," Nature Photonics, vol. 17, no. 5, pp. 435-441, 2023.
[85] S.-R. Bae, M. J. Seol, and S. Y. Kim, "CsPbBr3 and Cs4PbBr6 perovskite light-emitting diodes using a thermally evaporated host–dopant system," Nanoscale, vol. 15, no. 21, pp. 9533-9542, 2023.
[86] B. Han, Q. Shan, F. Zhang, J. Song, and H. Zeng, "Giant efficiency and color purity enhancement in multicolor inorganic perovskite light-emitting diodes via heating-assisted vacuum deposition," Journal of Semiconductors, vol. 41, no. 5, p. 052205, 2020.
[87] C. Chen, T.-H. Han, S. Tan, J. Xue, Y. Zhao, Y. Liu, H. Wang, W. Hu, C. Bao, and M. Mazzeo, "Efficient flexible inorganic perovskite light-emitting diodes fabricated with CsPbBr3 emitters prepared via low-temperature in situ dynamic thermal crystallization," Nano letters, vol. 20, no. 6, pp. 4673-4680, 2020.
[88] Z. Liu, H. Jung, M. Sotome, and T. Kondo, "Substrate temperature dependence of vapor phase deposition of all-inorganic lead-free CsSnBr3 perovskite thin films," Japanese Journal of Applied Physics, vol. 63, no. 2, p. 02SP23, 2024.
[89] S. H. Chin, D. Cortecchia, M. Forzatti, C. S. Wu, A. L. Alvarado?Leanos, G. Folpini, A. Treglia, I. A. Kalluvila Justin, A. Paliwal, and C. Cho, "Stabilizing Single?Source Evaporated Perovskites with Organic Interlayers for Amplified Spontaneous Emission," Advanced Optical Materials, vol. 12, no. 13,p. 2302701, 2024.
[90] L. R. White, F. U. Kosasih, M. P. Sherburne, N. Mathews, S. Mhaisalkar, and A. Bruno, "Perovskite Multiple Quantum Well Superlattices: Potentials and Challenges," ACS Energy Letters, vol. 9, pp. 835-842, 2024.
[91] T. Antrack, M. Kroll, M. Sudzius, C. Cho, P. Imbrasas, M. Albaladejo?Siguan, J. Benduhn, L. Merten, A. Hinderhofer, and F. Schreiber, "Optical properties of perovskite?organic multiple quantum wells," Advanced Science, vol. 9, no. 24, p. 2200379, 2022.
[92] L.-C. Chen and C.-H. Kao, "Improved extraction efficiency of CsPbBr3 perovskite light-emitting diodes due to anodic aluminum oxide nanopore structure," Scientific Reports, vol. 12, no. 1, p. 14750, 2022.
[93] Y. K. Lin, C. H. Chen, Y. Y. Wang, M. H. Yu, J. W. Yang, I. C. Ni, B. H. Lin, I. S. Zhidkov, E. Z. Kurmaev, and Y. J. Lu, "Realizing High Brightness Quasi?2D Perovskite Light?Emitting Diodes with Reduced Efficiency Roll?Off via Multifunctional Interface Engineering," Advanced Science, vol. 10, no. 26, p. 2302232, 2023.
[94] Y. Zhao, W. Feng, M. Li, J. Lu, X. Qin, K. Lin, J. Luo, W.-H. Zhang, E. L. Lim, and Z. Wei, "Efficient perovskite light-emitting diodes with chemically bonded contact and regulated charge behavior," Nano Letters, vol. 23, no. 18, pp. 8560-8567, 2023.
[95] F.-B. Chiu, Y.-W. Wu, and S.-H. Yang, "Surface Modification of ZnO Nanocrystals with Conjugated Polyelectrolytes Carrying Different Counterions for Inverted Perovskite Light-Emitting Diodes," ACS omega, vol. 8, no. 21, pp. 19109-19118, 2023.
[96] Q. Khan, A. Subramanian, G. Yu, K. Maaz, D. Li, R. U. R. Sagar, K. Chen, W. Lei, B. Shabbir, and Y. Zhang, "Structure optimization of perovskite quantum dot light-emitting diodes," Nanoscale, vol. 11, no. 11, pp. 5021-5029, 2019.
[97] G. Simkus, S. Sanders, D. Stummler, A. Vescan, H. Kalisch, and M. Heuken, "High-intensity CsPbBr3 perovskite LED using poly (bis (4-phenyl)(2, 4, 6-trimethylphenyl) amine) as hole transport and electron-blocking layer," MRS Advances, vol. 5, no. 8-9, pp. 411-419, 2020.
[98] Q. Wan, Q. Zhang, J. Guo, M. Liu, W. Zhan, X. Liao, C. Yuan, M. He, W. Zheng, and C. Zhang, "Inverted semitransparent perovskite nanocrystal light-emitting diodes with a conjugated polymer as an electron transport layer," Nanoscale, vol. 15, no. 12, pp. 5720-5725, 2023.
[99] G.-i. Kim, Y. Mo, H. Na, S. J. Lee, S. Choi, H. Choi, and J. Lee, "Optimizing Green Perovskite Light-Emitting Diodes through a Solution-Processed Triple-Layer HTL Strategy," IEEE Electron Device Letters, vol. 45, no. 6, pp. 5 1028-1031,2024.
[100] P.-H. Huang, S.-A. Chen, L.-W. Chao, J.-X. Xie, C.-Y. Liao, Z.-L. Tseng, and S.-H. Chen, "Efficient CsPbBr3 quantum-dot light-emitting diodes using sputtered NiO films as hole injection layers," Materials, vol. 16, no. 17, p. 6060, 2023.
[101] H. Liu, G. Shi, R. Khan, S. Chu, Z. Huang, T. Shi, H. Sun, Y. Li, H. Zhou, and P. Xiao, "Large?Area Flexible Perovskite Light?Emitting Diodes Enabled by Inkjet Printing," Advanced Materials, vol. 36, no. 8, p. 2309921, 2024.
[102] F. Jin, B. Zhao, B. Chu, H. Zhao, Z. Su, W. Li, and F. Zhu, "Morphology control towards bright and stable inorganic halide perovskite light-emitting diodes," Journal of Materials Chemistry C, vol. 6, no. 6, pp. 1573-1578, 2018.
[103] I. S. Zhidkov, A. F. Akbulatov, A. I. Poteryaev, A. I. Kukharenko, A. V. Rasmetyeva, L. A. Frolova, P. A. Troshin, and E. Z. Kurmaev, "The Photochemical Stability of PbI2 and PbBr2: Optical and XPS and DFT Studies," Coatings, vol. 13, no. 4, p. 784, 2023.
[104] S. Caicedo-Davila, H. Funk, R. Lovrincic, C. Mu?ller, M. Sendner, O. Cojocaru-Miredin, F. Lehmann, R. Gunder, A. Franz, and S. Levcenco, "Spatial phase distributions in solution-based and evaporated Cs–Pb–Br thin films," The Journal of Physical Chemistry C, vol. 123, no. 29, pp. 17666-17677, 2019.
[105] O. Torres, G. Gordillo, M. Plazas, D. Landinez Tellez, and J. Roa-Rojas, "Optical features of PbBr2 semiconductor thin films for radiation attenuation application," Journal of Materials Science: Materials in Electronics, vol. 32, no. 12, pp. 16937-16944, 2021.
[106] L.-C. Chen, C.-H. Tien, K.-Y. Lee, and Z.-C. Zhan, "Enhancing device performance of CsPbBr3 perovskite light-emitting diodes with Cs2CO3 modification layer and dual additives," Materials Science in Semiconductor Processing, vol. 148, p. 106815, 2022.
[107] W. B. Gunnarsson, Z. Xu, N. K. Noel, and B. P. Rand, "Improved charge balance in green perovskite light-emitting diodes with atomic-layer-deposited Al2O3," ACS Applied Materials & Interfaces, vol. 14, no. 30, pp. 34247-34252, 2022.
[108] S. Ding, Q. Wang, W. Gu, Z. Tang, B. Zhang, C. Wu, X. Zhang, H. Chen, X. Zhang, and R. Cao, "Phase dimensions resolving of efficient and stable perovskite light-emitting diodes at high brightness," Nature Photonics, vol. 18, no. 4, pp. 363-370, 2024.
[109] M. Marra, C. Provenzano, M. Cesaria, R. Cataldo, A. G. Monteduro, and A. P. Caricato, "CsPbBr3 films grown by pulsed laser deposition: Impact of oxygen on morphological evolution and properties," Processes, vol. 11, no. 9, p. 2514, 2023.
[110] C. Tenailleau, S. Aharon, B.-E. Cohen, and L. Etgar, "Cell refinement of CsPbBr 3 perovskite nanoparticles and thin films," Nanoscale Advances, vol. 1, no. 1, pp. 147-153, 2019.
[111] M. Cesaria, G. Quarta, M. R. Guascito, M. Mazzeo, M. Marra, C. Provenzano, M. R. Aziz, M. Martino, L. Calcagnile, and A. P. Caricato, "CsPbBr3 deposited by laser ablation: Effects of post-growth aging, oxygen adsorption and annealing on film properties," Applied Physics A, vol. 128, no. 11, p. 950, 2022.
[112] Y. Yang, Y. Li, W. Gong, H. Guo, and X. Niu, "Cobalt-doped CsPbBr3 perovskite quantum dots for photoelectrocatalytic hydrogen production via efficient charge transport," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 663, p. 131083, 2023.
[113] X. Liu, Z. Luo, W. Yin, A. P. Litvin, A. V. Baranov, J. Zhang, W. Liu, X. Zhang, and W. Zheng, "Methanol-induced fast CsBr release results in phase-pure CsPbBr 3 perovskite nanoplatelets," Nanoscale Advances, vol. 2, no. 5, pp. 1973-1979, 2020.
[114] J. Li, X. Shan, S. G. R. Bade, T. Geske, Q. Jiang, X. Yang, and Z. Yu, "Single-layer halide perovskite light-emitting diodes with sub-band gap turn-on voltage and high brightness," The journal of physical chemistry letters, vol. 7, no. 20, pp. 4059-4066, 2016.
[115] H. Kim, J. S. Kim, J.-M. Heo, M. Pei, I.-H. Park, Z. Liu, H. J. Yun, M.-H. Park, S.-H. Jeong, and Y.-H. Kim, "Proton-transfer-induced 3D/2D hybrid perovskites suppress ion migration and reduce luminance overshoot," Nature communications, vol. 11, no. 1, p. 3378, 2020.
[116] C.-T. Li, K.-L. Lee, S.-F. Wang, and L.-C. Chen, "Low turn-on voltage CsPbBr3 perovskite light-emitting diodes with regrowth crystal MAPbBr3 hole transport layer," Journal of Materials Research and Technology, vol. 22, pp. 375-381, 2023.
[117] G. Mandal and R. Choudhary, "Solution processed PANI-rGO-SiO2 nanocomposite with inflated electron injection and transport capabilities as ETL for OLED applications," Materials Science and Engineering: B, vol. 300, p. 117118, 2024.
[118] G. Mandal, R. B. Choudhary, B. A. Al-Asbahi, and A. A. A. Ahmed, "WS2 incorporated PANI-rGO nanocomposites tailored for inflated thermal, optical and electrical properties used as ETL for OLEDs," Optical Materials, vol. 146, p. 114379, 2023.
[119] P. Maurya and A. Kannaujiya, "Controlled ETL thickness modulation for performance optimization of organic light-emitting diode," Journal of Optics, pp. 1-11, 2024.
[120] F. Cao, Q. Wu, W. Li, S. Wang, L. Kong, J. Zhang, X. Zhang, H. Li, W. Hua, and A. L. Rogach, "Core/Shell ZnO/ZnS Nanoparticle Electron Transport Layers Enable Efficient All?Solution?Processed Perovskite Light?Emitting Diodes," Small, vol. 19, no. 16, p. 2207260, 2023.
[121] G. Vescio, G. Mathiazhagan, S. Gonzalez-Torres, J. Sanchez-Diaz, A. Villaueva-Antoli, R. S. Sanchez, A. F. Gualdron–Reyes, M. Oszajca, F. Linardi, and A. Hauser, "Fully Inkjet?Printed Green?Emitting PEDOT: PSS/NiO/Colloidal CsPbBr3/SnO2 Perovskite Light?Emitting Diode on Rigid and Flexible Substrates," Advanced Engineering Materials, vol. 25, no. 21, p. 2300927, 2023.
[122] A. Tsukazaki, A. Ohtomo, and M. Kawasaki, "High-mobility electronic transport in ZnO thin films," Applied physics letters, vol. 88, no. 15, 2006.
[123] S. Panda and C. Jacob, "Preparation of transparent ZnO thin films and their application in UV sensor devices," Solid-State Electronics, vol. 73, pp. 44-50, 2012.
[124] T. Amakali, L. Daniel, V. Uahengo, N. Y. Dzade, and N. H. De Leeuw, "Structural and optical properties of ZnO thin films prepared by molecular precursor and sol–gel methods," Crystals, vol. 10, no. 2, p. 132, 2020.
[125] M. Lal, P. Sharma, and C. Ram, "Optical, structural properties and photocatalytic potential of Nd-ZnO nanoparticles synthesized by hydrothermal method," Results in Optics, vol. 10, p. 100371, 2023.
[126] A. C. Badgujar, B. S. Yadav, G. K. Jha, and S. R. Dhage, "Room temperature sputtered aluminum-doped ZnO thin film transparent electrode for application in solar cells and for low-band-gap optoelectronic devices," ACS omega, vol. 7, no. 16, pp. 14203-14210, 2022.
[127] J. Kruszy?ska, J. Ostapko, V. Ozkaya, B. Surucu, O. Szawcow, K. Nikiforow, M. Ho?dy?ski, M. M. Tavakoli, P. Yadav, and M. Kot, "Atomic Layer Engineering of Aluminum?Doped Zinc Oxide Films for Efficient and Stable Perovskite Solar Cells," Advanced Materials Interfaces, vol. 9, no. 17, p. 2200575, 2022.
[128] S. Sahu, T. Debnath, and K. Sahu, "Reversible CsPbBr3?CsPb2Br5 Transformation via Reverse Micellar Aqueous Solution," The Journal of Physical Chemistry Letters, vol. 15, no. 13, pp. 3677-3682, 2024.
[129] J. C. Dahl, X. Wang, X. Huang, E. M. Chan, and A. P. Alivisatos, "Elucidating the weakly reversible Cs–Pb–Br perovskite nanocrystal reaction network with high-throughput maps and transformations," Journal of the American Chemical Society, vol. 142, no. 27, pp. 11915-11926, 2020.
[130] H. Luo, W. Zhang, M. Li, Y. Yang, M. Guo, S.-W. Tsang, and S. Chen, "Origin of subthreshold turn-on in quantum-dot light-emitting diodes," ACS nano, vol. 13, no. 7, pp. 8229-8236, 2019.
[131] B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, and S. Coe-Sullivan, "High-efficiency quantum-dot light-emitting devices with enhanced charge injection," Nature photonics, vol. 7, no. 5, pp. 407-412, 2013.
[132] L. Qian, Y. Zheng, K. R. Choudhury, D. Bera, F. So, J. Xue, and P. H. Holloway, "Electroluminescence from light-emitting polymer/ZnO nanoparticle heterojunctions at sub-bandgap voltages," Nano Today, vol. 5, no. 5, pp. 384-389, 2010.
[133] H. Xu, X. Wang, Y. Li, L. Cai, Y. Tan, G. Zhang, Y. Wang, R. Li, D. Liang, and T. Song, "Prominent heat dissipation in perovskite light-emitting diodes with reduced efficiency droop for silicon-based display," The Journal of Physical Chemistry Letters, vol. 11, no. 9, pp. 3689-3698, 2020.
[134] S. H. Chin, D. Cortecchia, M. Forzatti, C. S. Wu, A. L. Alvarado?Leanos, G. Folpini, A. Treglia, I. A. Kalluvila Justin, A. Paliwal, and C. Cho, "Stabilizing Single?Source Evaporated Perovskites with Organic Interlayers for Amplified Spontaneous Emission," Advanced Optical Materials, vol. 12, no. 13, p. 2302701, 2024.
[135] W. Li, T. Li, Y. Tong, H. Qi, Y. Zhang, Y. Guo, H. Wang, H. Wang, K. Wang, and H. Wang, "Fabrication of highly luminescent quasi two-dimensional CsPbBr3 perovskite films in high humidity air for light-emitting diodes," ACS Applied Materials & Interfaces, vol. 15, no. 30, pp. 36602-36610, 2023.
[136] Y. Cheng, H. Wan, E. H. Sargent, and D. Ma, "Reduced?Dimensional Perovskites: Quantum Well Thickness Distribution and Optoelectronic Properties," Advanced Materials, p. 2410633, 2024.
[137] H. Xiao, R. Li, W. Cai, and Z. Zang, "Development of Quasi-Two-Dimensional Perovskites and Their Application in Light-Emitting Diodes," Inorganic Chemistry, vol. 63, no. 6, pp. 2853-2876, 2024.
[138] A. J. Ramadan, W. H. Jeong, R. D. Oliver, J. Jiang, A. Dasgupta, Z. Yuan, J. Smith, J. E. Lee, S. G. Motti, and O. Gough, "The Role of the Organic Cation in Developing Efficient Green Perovskite LEDs Based on Quasi?2D Perovskite Heterostructures," Advanced Functional Materials, vol. 34, no. 14, p. 2309653, 2024.
[139] B. Kang and K. Biswas, "Exploring polaronic, excitonic structures and luminescence in Cs4PbBr6/CsPbBr3," The Journal of Physical Chemistry Letters, vol. 9, no. 4, pp. 830-836, 2018.
[140] M. I. Saidaminov, J. Almutlaq, S. Sarmah, I. Dursun, A. A. Zhumekenov, R. Begum, J. Pan, N. Cho, O. F. Mohammed, and O. M. Bakr, "Pure Cs4PbBr6: highly luminescent zero-dimensional perovskite solids," ACS Energy Letters, vol. 1, no. 4, pp. 840-845, 2016.
[141] J. Cao, X. Zeng, W. Li, L. Lv, C. Yan, H. Huang, J. Lu, and W. Yang, "Water-induced construction of Cs4PbBr6/CsPbBr3 heterojunction for efficient perovskite light-emitting diode," Applied Materials Today, vol. 30, p. 101733, 2023.
[142] C. Wang, L. Yan, J. Si, T. Huo, and X. Hou, "Strongly luminescent and highly stable CsPbBr3/Cs4PbBr6 core/shell nanocrystals and their ultrafast carrier dynamics," Journal of Alloys and Compounds, vol. 946, p. 169272, 2023.
[143] L. Liu, S.-E. Yang, P. Liu, and Y. Chen, "High-quality and full-coverage CsPbBr3 thin films via electron beam evaporation with post-annealing treatment for all-inorganic perovskite solar cells," Solar Energy, vol. 232, pp. 320-327, 2022.
[144] D. Chen, Z. Wan, X. Chen, Y. Yuan, and J. Zhong, "Large-scale room-temperature synthesis and optical properties of perovskite-related Cs4PbBr6 fluorophores," Journal of Materials Chemistry C, vol. 4, no. 45, pp. 10646-10653, 2016.
[145] J. Byun, H. Cho, C. Wolf, M. Jang, A. Sadhanala, R. H. Friend, H. Yang, and T.-W. Lee, "Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes," Advanced Materials (Deerfield Beach, Fla.), vol. 28, no. 34, pp. 7515-7520, 2016.
[146] T. L. Leung, I. Ahmad, A. A. Syed, A. M. C. Ng, J. Popovi?, and A. B. Djuri?i?, "Stability of 2D and quasi-2D perovskite materials and devices," Communications materials, vol. 3, no. 1, p. 63, 2022.
指導教授 詹佳樺(Chia-Hua Chan) 審核日期 2025-1-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明