博碩士論文 105458009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.140.188.57
姓名 吳宜哲(Yi-Che Wu)  查詢紙本館藏   畢業系所 財務金融學系在職專班
論文名稱 加密貨幣風險值與預期損失實證研究
(non)
相關論文
★ 國內股票型共同基金異常報酬之特徵研究★ 台灣境外高收益債券型基金績效分析
★ 財富管理客戶選擇銀行之因素探討★ 境外匯回專法實施前後境外資金解決方案比較-以個案分析為例
★ 股票交易參考指標對個股報酬之預測分析–監督式降維模型之應用★ 利用隨機優勢方法探究商品指數之投資績效
★ 承銷關係是否會影響未來承銷業務?★ 併購動能:以台灣市場為例
★ 機構法人對股票報酬與公司價值之影響★ 投資者情緒與期貨價格關聯性
★ 避險基金指數是否能夠提供風險分散效果?- 利用均異擴張檢定★ Model-Free隱含波動度價差之遠期資訊
★ 公開市場購回股票之研究★ Modeling Long Run Risk with Macroeconomic Fundamentals
★ Exploration of Jumps and Cojumps in Financial Markets★ 社會責任指數與環境、社會及公司治理之關聯性分析-以FTSE4Good系列指數為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-1-23以後開放)
摘要(中) 儘管加密貨幣的波動性很大,但近年來受歡迎的程度卻逐年飆升,參與加密貨幣市場的投資者從早期的個人投資者逐漸擴大至機構投資人,然而加密貨幣價格的劇烈震盪,對於投資者的資產配置及風險管理顯然造成不小的影響。隨著加密貨幣市場日益擴大,市場參與者與日俱增,各國政府已不得不正視加密貨幣的存在,巴塞爾銀行監理委員會也於2022年發佈相關準則作為銀行風險控管之依據,因此,控管加密貨幣的投資風險至關重要。本文透過研究2018年到2022年共1825個交易日7檔流動性較佳且交易量較大的加密貨幣報酬率作為GARCH(1,1)模型的數據來源,估算特定信賴區間之風險值與預期損失。實證結果顯示在不同信賴水準下,VaR區間的擴張情形與歷史事件相符,表明VaR的估算確實能幫助投資者了解在特定條件下最大可能損失的範圍,而ES則可進一步告訴投資者一旦超出VaR,平均會有多少損失,進而幫助投資者優化投資組合、減少潛在損失,並提高整體投資決策的穩定性。
摘要(英) Despite the high volatility of cryptocurrencies, their popularity has soared year by year in recent years. Investors participating in the cryptocurrency market have gradually expanded from early individual investors to institutional investors. However, the sharp fluctuations in cryptocurrency prices have had a significant impact on investors. This obviously has a significant impact on investors′ asset allocation and risk management. As the cryptocurrency market continues to expand and the number of market participants increases, governments around the world have had to face up to the existence of cryptocurrencies. The Basel Committee on Banking Supervision also issued relevant guidelines in 2022 as the basis for bank risk control. Therefore, it is necessary to control cryptocurrencies. The investment risk is crucial. This paper studies the returns of 7 cryptocurrencies with good liquidity and large trading volume in 1825 trading days from 2018 to 2022 as the data source of the GARCH (1,1) model, and estimates the risk value and Expected losses. The empirical results show that under different confidence levels, the expansion of the VaR range is consistent with historical events, indicating that VaR estimation can indeed help investors understand the maximum possible loss range under specific conditions, and ES can further tell investors what will happen if VaR is exceeded. , how much loss there will be on average, thereby helping investors optimize their investment portfolios, reduce potential losses, and improve the stability of overall investment decisions.
關鍵字(中) ★ 加密貨幣
★ 比特幣
★ 乙太幣
★ 風險值
★ 預期損失
關鍵字(英) ★ Cryptocurrency
★ Bitcoin
★ Ethereum
★ Value at Risk
★ Expected Shortfall
論文目次 目錄
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VII
第一章 緒論 1
第二章 文獻回顧 4
2-1 風險值(Value at Risk,VaR) 4
2-2 預期損失(Expected Shortfall,ES) 6
2-3 相關文獻 7
第三章 研究方法與步驟 10
3-1 ADF(Augmented Dickey-Fuller)單根檢定 10
3-2 Jarque-Bera檢定 11
3-3 ARCH-LM檢定 11
3-4 ARCH模型&GARCH模型 12
第四章 研究結果 15
4-1 資料來源 15
4-2 資料處理 15
4-3 ADF單根檢定結果 15
4-4 Jarque-Bera檢定結果 15
4-5 ARCH-LM檢定結果 16
4-6 報酬率敘述統計量 16
4-7 時間序列模型 18
4-8 風險值穿透情形及預期損失之估算 21
第五章 結論 30
參考文獻 31
參考文獻 Artzner, P., F. Delbaen, J.-M. Eber and D. Heath (1999). "Coherent Measures of Risk." Mathematical finance 9(3): 203-228.
Bollerslev, T. (1986). "Generalized autoregressive conditional heteroskedasticity." Journal of econometrics 31(3): 307-327.
Bollerslev, T., R. Y. Chou and K. F. Kroner (1992). "ARCH modeling in finance: A review of the theory and empirical evidence." Journal of econometrics 52(1): 5-59.
Borri, N. (2019). "Conditional tail-risk in cryptocurrency markets." Journal of Empirical Finance 50: 1-19.
Demir, E., G. Gozgor, C. K. M. Lau and S. A. Vigne (2018). "Does economic policy uncertainty predict the Bitcoin returns? An empirical investigation." Finance Research Letters 26: 145-149.
Engle, R. F. (1982). "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation." Econometrica 50(4): 987-1007.
Gkillas, K. and P. Katsiampa (2018). "An application of extreme value theory to cryptocurrencies." Economics Letters 164: 109-111.
Jorion, P. (2007). Value at risk the new benchmark for managing financial risk / Philippe Jorion. New York, McGraw-Hill.
Koutmos, D. (2018). "Return and volatility spillovers among cryptocurrencies." Economics Letters 173: 122-127.
Salisu, A. A. and A. E. Ogbonna (2022). "The return volatility of cryptocurrencies during the COVID-19 pandemic: Assessing the news effect." Global Finance Journal 54: 100641.
Stavroyiannis, S. (2018). "Value-at-risk and related measures for the Bitcoin." The Journal of Risk Finance 19(2): 127-136.
Supervision, B. C. o. B. (2022). "Prudential treatment of cryptoasset exposures."
Wei, W. C. (2018). "Liquidity and market efficiency in cryptocurrencies." Economics Letters 168: 21-24.
尤靖文 (2023). 比特幣與金融資產之避險績效分析 碩士論文, 淡江大學.
施育芳 (2021). 探討影響比特幣價格之市場因素 碩士論文, 國立中正大學.
陳彥安 (2023). 比特幣對多項傳統金融資產之非線性影響探討 碩士論文, 淡江大學.
黃思婷 (2023). 加密貨幣市場投資績效之評估 碩士論文, 國立中央大學.
指導教授 葉錦徽(Jin?Huei Yeh) 審核日期 2025-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明