博碩士論文 105690002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.119.0.68
姓名 徐志煌(Chase Jhih-Huang Shyu)  查詢紙本館藏   畢業系所 國際研究生博士學位學程
論文名稱 藉由數值模擬研究大地構造與熱演化:探討山脈侵蝕與盆地沉積物沉積
(Thermal and Tectonic Evolution Through Numerical Modeling: Investigating Mountain Erosion and Basin Sediment Deposition)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-1以後開放)
摘要(中) 本研究透過使用 Geoflac 和 DynEarthSol 進行數值模擬,探討臺灣雪山山脈與澳洲西北大陸棚羅巴克盆地的地質與熱演化。在雪山山脈的模擬中,Geoflac 結合熱年代學,重建因造山抬升所驅動的快速冷卻與剝蝕過程,捕捉了約 6-7 百萬年之間的短期熱歷史。相比之下,對於歷時近 2.9 億年的羅巴克盆地的分析則使用 DynEarthSol,顯示該沉積盆地因放射性產熱與逐步的地殼變薄而呈現長期的熱流特徵,對油氣成熟具有重要意涵。研究結果闡明了地質時間尺度如何塑造熱演化,顯示短期造山活動與長期裂谷階段各自導致不同的熱分佈模式。本研究確認在區域地質與熱歷史中,數值模擬在推進對構造過程的累積效應的洞見與價值。
摘要(英) This study investigates the geological and thermal evolution of the Hsuehshan Range in Taiwan and the Roebuck Basin on Northwest Shelf of Australia through advanced numerical modeling with Geoflac and DynEarthSol. In modeling the Hsuehshan Range, Geoflac incorporates thermochronology to reconstruct rapid cooling and exhumation processes driven by orogenic uplift, capturing the region’s short-term thermal history over approximately 6-7 Ma. In contrast, analysis of the Roebuck Basin, spanning nearly 290 Ma and conducted with DynEarthSol, reflects the long-term heat flux characteristic of sedimentary basins, shaped by radiogenic heat production and progressive crustal thinning with significant implications for hydrocarbon maturation. The findings elucidate how geological timescales shape thermal evolution, showing that short-term orogenic activity and extended rifting phases each result in distinct thermal patterns. This study affirms the value of numerical simulations in advancing insights into the cumulative effects of tectonic processes on regional geological and thermal histories.
關鍵字(中) ★ 數值模擬
★ 熱定年學
★ 臺灣
★ 沉積盆地
★ 熱流史
★ 澳洲
關鍵字(英) ★ Numerical modeling
★ Thermochronology
★ Taiwan
★ Sedimentary basin
★ Heat flux history
★ Australia
論文目次 國立中央大學圖書館學位論文授權書 i
Advisor’s Recommendation for Doctoral Students ii
Verification Letter from the Oral Examination Committee for Doctoral Students iii
摘要 v
Abstract vi
致謝 vii
Table of Contents x
List of Figures xiii
List of Appendix Figures xv
List of Tables xvi
List of Equations xvii
CHAPTER 1: INTRODUCTION 1
CHAPTER 2: THE EXHUMATION HISTORY OF THE MIDDLE HSUEHSHAN RANGE, TAIWAN, AS REVEALED BY ZIRCON THERMOCHRONOLOGICAL MODELING 5
Abstract 7
2.1 Introduction 9
2.2 Geological backgrounds 13
2.3 Thermochronology 17
2.4 Time-Dependent Thermal Models 25
2.5 Results 33
2.5.1 Representative Models of Four Types 36
2.5.2 Ensemble Average of Low-Misfit Models 39
2.6 Discussion 41
2.6.1 Comparisons to Geological Observations 41
2.6.2 Comparison to the Model of Simoes et al. (2007) 45
2.6.3 Onset of Exhumation 45
2.6.4 Implications for Taiwan Tectonics 46
2.6.5 Constraints on Erosion Rates Before 5 Ma and After 1.5 Ma 47
2.6.6 Relative Motion in the Profile Plane 48
2.6.7 Erosion and Climate Feedback 49
2.7 Conclusion 51
CHAPTER 3: NUMERICAL THERMO-MECHANICAL AND DEPOSITIONAL MODELS ON THE HEAT FLUX EVOLUTION OF THE BASINS OFFSHORE NW AUSTRALIA 53
Abstract 55
3.1 Introduction 57
3.2 Geological Backgrounds 61
3.2.1 Tectonic History 61
3.2.2 Tectonic Settings at the Present Day 64
3.3 Methods 69
3.3.1 Governing Equations 69
3.3.2 Surface Processes 71
3.3.3 Model Setup 74
3.4 Sensitivity Tests 79
3.4.1 Rifting Durations 79
3.4.2 Crustal Thickness (Lcrust) 87
3.4.3 Location of the Second Weak Seed (Wx2) 95
3.4.4 Radiogenic Heat Production Rate (HP) 110
3.5 Simulation of Geological Target 117
3.5.1 Parameters for Roebuck Basin AGSO120/01 117
3.5.2 Model Evolutions 121
3.5.3 History of Heat Flux and Other Sedimentary Information 126
3.6 Discussion 133
3.6.1 Heat Flux History from Vitrinite Reflectance Simulation 133
3.7 Conclusion 135
CHAPTER 4: CONCLUSION 137
Bibliography 139
Appendix A DynEarthSol improvements 151
A.1 Including Radiogenic Heat in Thermal Diffusion Equations 151
A.2 Two-Stage Update Approach for Parallelized Element-to-Node Calculations 153
A.3 Depth-Dependent Diffusion for Terrigenous Deposition Process 159
A.4 Location Correction of Surface-Connected Element Markers for Surface Process 161
A.5 Viscosity-Weighted NMD Stress for Mesh Stabilization in Low Viscosity 165
參考文獻 AGSO Group, 1994. Deep Reflections on the North West Shelf: Changing Perceptions of Basin Formation, in: The Sedimentary Basins of Western Australia: Proceedings of the Western Australian Basins Symposium. Petroleum Exploration Society of Australia, pp. 63–76.
Andres?Martinez, M., Perez?Gussinye, M., Armitage, J., Morgan, J.P., 2019. Thermomechanical Implications of Sediment Transport for the Architecture and Evolution of Continental Rifts and Margins. Tectonics 38, 641–665. https://doi.org/10.1029/2018TC005346
Barker, C., 1996. Thermal modeling of petroleum generation: theory and applications, Developments in petroleum science. Elsevier, Amsterdam?; New York.
Barnes, J.B., Ehlers, T.A., Insel, N., McQuarrie, N., Poulsen, C.J., 2012. Linking orography, climate, and exhumation across the central Andes. Geology 40, 1135–1138. https://doi.org/10.1130/g33229.1
Barr, T.D., Dahlen, F.A., 1989. Brittle frictional mountain building: 2. Thermal structure and heat budget. Journal of Geophysical Research 94, 3923. https://doi.org/10.1029/JB094iB04p03923
Becker, L., Poreda, R.J., Basu, A.R., Pope, K.O., Harrison, T.M., Nicholson, C., Iasky, R., 2004. Bedout: A Possible End-Permian Impact Crater Offshore of Northwestern Australia. Science 304, 1469–1476. https://doi.org/10.1126/science.1093925
Beyssac, O., Simoes, M., Avouac, J.P., Farley, K.A., Chen, Y.-G., Chan, Y.-C., Goffe, B., 2007. Late Cenozoic metamorphic evolution and exhumation of Taiwan. Tectonics 26, 1–32. https://doi.org/10.1029/2006tc002064
Bradshaw, M.T., Yeates, A.N., Beynon, R.M., Brakel, A.T., Langford, R.P., Totterdell, J.M., Yeung, M., 1988. Paleogeographic evolution of the North West Shelf region, in: The North West Shelf, Australia. Petroleum Exploration Society of Australia, Perth, pp. 29–54.
Brandon, M.T., 2007. Programs for Illustrating Closure, Partial Retention, and the Response of Cooling Ages to Erosion: CLOSURE, AGE2EDOT, AND RESPTIME. Yale University.
Brandon, M.T., Roden-Tice, M.K., Garver, J.I., 1998. Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State. Geological Society of America Bulletin 110, 985–1009. https://doi.org/10.1130/0016-7606(1998)110<0985:lceotc>2.3.co;2
Braun, J., van der Beek, P., Valla, P., Robert, X., Herman, F., Glotzbach, C., Pedersen, V., Perry, C., Simon-Labric, T., Prigent, C., 2012. Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics 524–525, 1–28. https://doi.org/10.1016/j.tecto.2011.12.035
Brown, R.W., Summerfield, M.A., 1997. Some uncertainties in the derivation of rates of denudation from thermochronologic data. Earth Surface Processes and Landforms 22, 239–248. https://doi.org/10.1002/(SICI)1096-9837(199703)22:3<239::AID-ESP751>3.0.CO;2-B
Brune, S., Heine, C., Clift, P.D., Perez-Gussinye, M., 2017. Rifted margin architecture and crustal rheology: Reviewing Iberia-Newfoundland, Central South Atlantic, and South China Sea. Marine and Petroleum Geology 79, 257–281. https://doi.org/10.1016/j.marpetgeo.2016.10.018
Burrus, J., Institut francais du petrole, Centre national de la recherche scientifique (France) (Eds.), 1986. Thermal modeling in sedimentary basins: 1st IFP Exploration Research Conference, Carcans, France, June 3-7, 1985, Collection Colloques et seminaires. Presented at the IFP Exploration Research Conference, Editions Technip, Paris.
Carena, S., Suppe, J., Kao, H., 2002. Active detachment of Taiwan illuminated by small earthquakes and its control of first-order topography. Geological Society of America Bulletin 30, 935–938. https://doi.org/10.1130/0091-7613(2002)030<0935:ADOTIB>2.0.CO;2
Carretier, S., Regard, V., Vassallo, R., Aguilar, G., Martinod, J., Riquelme, R., Pepin, E., Charrier, R., Herail, G., Farias, M., Guyot, J.-L., Vargas, G., Lagane, C., 2013. Slope and climate variability control of erosion in the Andes of central Chile. Geology 41, 195–198. https://doi.org/10.1130/g33735.1
Champagnac, J.-D., Molnar, P., Sue, C., Herman, F., 2012. Tectonics, climate, and mountain topography. Journal of Geophysical Research: Solid Earth 117, n/a-n/a. https://doi.org/10.1029/2011jb008348
Chapple, W.M., 1978. Mechanics of thin-skinned fold-and-thrust belts. GSA Bulletin 89, 1189–1198. https://doi.org/10.1130/0016-7606(1978)89<1189:Motfb>2.0.Co;2
Chen, C.-H., Wang, C.-H., 1995. Explanatory notes for the metamorphic facies map of Taiwan, Special Publication of the Central Geological Survey. Central Geological Survey, MOEA, Taipei.
Chen, C.-T., Chan, Y.-C., Lo, C.-H., Malavieille, J., Lu, C.-Y., Tang, J.-T., Lee, Y.-H., 2018. Basal accretion, a major mechanism for mountain building in Taiwan revealed in rock thermal history. Journal of Asian Earth Sciences 152, 80–90. https://doi.org/10.1016/j.jseaes.2017.11.030
Chen, P., 2018. Tectonostratigraphic Evolution of the Roebuck Basin and the northeast area of the Northern Carnarvon Basin, North West Shelf, Australia (Thesis). Curtin University.
Chen, W.-S., Yeh, J.-J., Syu, S.-J., 2019. Late Cenozoic exhumation and erosion of the Taiwan orogenic belt: New insights from petrographic analysis of foreland basin sediments and thermochronological dating on the metamorphic orogenic wedge. Tectonophysics 750, 56–69. https://doi.org/10.1016/j.tecto.2018.09.003
Chen, Y., Morgan, W.J., 1990. A nonlinear rheology model for mid?ocean ridge axis topography. J. Geophys. Res. 95, 17583–17604. https://doi.org/10.1029/JB095iB11p17583
Choi, E., Tan, E., Lavier, L.L., Calo, V.M., 2013. DynEarthSol2D: An efficient unstructured finite element method to study long-term tectonic deformation: DYNEARTHSOL2D. J. Geophys. Res. Solid Earth 118, 2429–2444. https://doi.org/10.1002/jgrb.50148
Clark, M.B., Fisher, D.M., Lu, C.-Y., Chen, C.-H., 1993. Kinematic analyses of the Hsuehshan Range, Taiwan: A large-scale pop-up structure. Tectonics 12, 205–217. https://doi.org/10.1029/92TC01711
Colwell, J.B., Stagg, H.M.J., 1994. Structure of the Offshore Canning Basin: First Impressions from a New Regional Deep-Seismic Data Set 757.
Coutand, I., Whipp, D.M., Grujic, D., Bernet, M., Fellin, M.G., Bookhagen, B., Landry, K.R., Ghalley, S.K., Duncan, C., 2014. Geometry and kinematics of the Main Himalayan Thrust and Neogene crustal exhumation in the Bhutanese Himalaya derived from inversion of multithermochronologic data. Journal of Geophysical Research: Solid Earth 119, 1446–1481. https://doi.org/10.1002/2013jb010891
Cundall, P.A., 1989. Numerical experiments on localization in frictional materials. Ingenieur-Archiv 59, 148–159. https://doi.org/10.1007/BF00538368
Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Hsieh, M.-L., Willett, S.D., Hu, J.-C., Horng, M.-J., Chen, M.-C., Stark, C.P., Lague, D., Lin, J.-C., 2003. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature 426, 648–651. https://doi.org/10.1038/nature02150
Dai, J.-G., Fox, M., Han, X., Tremblay, M.M., Xu, S.-Y., Shuster, D.L., Liu, B.-R., Zhang, J., Wang, C.-S., 2021. Two Stages of Accelerated Exhumation in the Middle Reach of the Yarlung River, Southern Tibet Since the Mid?Miocene. Tectonics 40. https://doi.org/10.1029/2020tc006618
Dan, W., Wang, Q., Murphy, J.B., Zhang, X.-Z., Xu, Y.-G., White, W.M., Jiang, Z.-Q., Ou, Q., Hao, L.-L., Qi, Y., 2021. Short duration of Early Permian Qiangtang-Panjal large igneous province: Implications for origin of the Neo-Tethys Ocean. Earth and Planetary Science Letters 568, 117054. https://doi.org/10.1016/j.epsl.2021.117054
Das, P., Lin, A.T.-S., Chen, M.-P.P., Miramontes, E., Liu, C.-S., Huang, N.-W., Kung, J., Hsu, S.-K., Pillutla, R.K., Nayak, K., 2021. Deep-sea submarine erosion by the Kuroshio Current in the Manila accretionary prism, offshore Southern Taiwan. Tectonophysics 807. https://doi.org/10.1016/j.tecto.2021.228813
Davis, D., Suppe, J., Dahlen, F.A., 1983. Mechanics of fold?and?thrust belts and accretionary wedges. Journal of Geophysical Research 88, 1153–1172. https://doi.org/10.1029/JB088iB02p01153
Deffontaines, B., Lee, J.-C., Angelier, J., Carvalho, J., Rudant, J.-P., 1994. New geomorphic data on the active Taiwan orogen: A multisource approach. Journal of Geophysical Research: Solid Earth 99, 20243–20266. https://doi.org/10.1029/94jb00733
Derrieux, F., Siame, L.L., Bourles, D.L., Chen, R.-F., Braucher, R., Leanni, L., Lee, J.-C., Chu, H.-T., Byrne, T.B., 2014. How fast is the denudation of the Taiwan mountain belt? Perspectives from in situ cosmogenic 10Be. Journal of Asian Earth Sciences 88, 230–245. https://doi.org/10.1016/j.jseaes.2014.03.012
Dobson, K.J., Stuart, F.M., Dempster, T.J., 2008. U and Th zonation in Fish Canyon Tuff zircons: Implications for a zircon (U–Th)/He standard. Geochimica et Cosmochimica Acta 72, 4745–4755. https://doi.org/10.1016/j.gca.2008.07.015
Dodson, M.H., 1979. Theory of Cooling ages, in: Jager, E., Hunziker, J.C. (Eds.), Lecture in Isotope Geology. Springer-Verlag, New York, pp. 194–206.
Dodson, M.H., 1973. Closure temperature in cooling geochronological and petrological systems. Contribution to Mineralogy and Petrology 40, 259–274. https://doi.org/10.1007/BF00373790
Dorsey, R.J., Lundberg, N., 1988. Lithofacies analysis and basin reconstruction of the Plio-Pleistocene collisional basin, Coastal Range of eastern Taiwan. Acta. Geol. Taiwan 57–132.
Epstein, S.A., Clark, D., 2009. Baltimore Canyon untested gas potential. Carbonates and Evaporites 24, 58–76. https://doi.org/10.1007/BF03228057
Fellin, M.G., Chen, C.-Y., Willett, S.D., Christl, M., Chen, Y.-G., 2017. Erosion rates across space and timescales from a multi-proxy study of rivers of eastern Taiwan. Global and Planetary Change 157, 174–193. https://doi.org/10.1016/j.gloplacha.2017.07.012
Foeken, J.P.T., Stuart, F.M., Dobson, K.J., Persano, C., Vilbert, D., 2006. A diode laser system for heating minerals for (U-Th)/He chronometry. Geochemistry, Geophysics, Geosystems 7. https://doi.org/10.1029/2005gc001190
Fox, M., Bodin, T., Shuster, D.L., 2015. Abrupt changes in the rate of Andean Plateau uplift from reversible jump Markov Chain Monte Carlo inversion of river profiles. Geomorphology 238, 1–14. https://doi.org/10.1016/j.geomorph.2015.02.022
Fox, M., Reverman, R., Herman, F., Fellin, M.G., Sternai, P., Willett, S.D., 2014. Rock uplift and erosion rate history of the Bergell intrusion from the inversion of low temperature thermochronometric data. Geochemistry, Geophysics, Geosystems 15, 1235–1257. https://doi.org/10.1002/2013gc005224
Fuller, C.W., Willett, S.D., Fisher, D., Lu, C.Y., 2006. A thermomechanical wedge model of Taiwan constrained by fission-track thermochronometry. Tectonophysics 425, 1–24. https://doi.org/10.1016/j.tecto.2006.05.018
Fullerton, L.G., Sager, W.W., Handschumacher, D.W., 1989. Late Jurassic?Early Cretaceous evolution of the eastern Indian Ocean adjacent to northwest Australia. J. Geophys. Res. 94, 2937–2953. https://doi.org/10.1029/JB094iB03p02937
Gaetani, M., Garzan, E., 1991. Multicyclic History of the Northern India Continental Margin (Northwestern Himalaya) (1). Bulletin 75. https://doi.org/10.1306/0C9B2957-1710-11D7-8645000102C1865D
Galewsky, J., Stark, C.P., Dadson, S., Wu, C.C., Sobel, A.H., Horng, M.J., 2006. Tropical cyclone triggering of sediment discharge in Taiwan. Journal of Geophysical Research: Earth Surface 111. https://doi.org/10.1029/2005jf000428
Geoscience Australia, 2024. The National Offshore Petroleum Information Management System.
Geoscience Australia, 2022. Regional Geology of the Roebuck Basin.
Gerard, B., Robert, X., Grujic, D., Gautheron, C., Audin, L., Bernet, M., Balvay, M., 2022. Zircon (U-Th)/He Closure Temperature Lower Than Apatite Thermochronometric Systems: Reconciliation of a Paradox. Minerals 12. https://doi.org/10.3390/min12020145
Gleason, G.C., Tullis, J., 1995. A flow law for dislocation creep of quartz aggregates determined with the molten salt cell. Tectonophysics 247, 1–23. https://doi.org/10.1016/0040-1951(95)00011-B
Goldberg, D., 1991. What every computer scientist should know about floating-point arithmetic. ACM Comput. Surv. 23, 5–48. https://doi.org/10.1145/103162.103163
Gorter, J.D., 1996. Speculation on the Origin of the Bedout High - A Large, Circular Structure of Pre Mesozoic Age in the Offshore Canning Basin, Western Australia.
Haig, D.W., Mory, A.J., McCartain, E., Backhouse, J., Hakansson, E., Ernst, A., Nicoll, R.S., Shi, G.R., Bevan, J.C., Davydov, V.I., Hunter, A.W., Keep, M., Martin, S.K., Peyrot, D., Kossavaya, O., Santos, Z.D., 2017. Late Artinskian–Early Kungurian (Early Permian) warming and maximum marine flooding in the East Gondwana interior rift, Timor and Western Australia, and comparisons across East Gondwana. Palaeogeography, Palaeoclimatology, Palaeoecology 468, 88–121. https://doi.org/10.1016/j.palaeo.2016.11.051
Hall, R., 2011. Australia–SE Asia collision: plate tectonics and crustal flow. SP 355, 75–109. https://doi.org/10.1144/SP355.5
Harrowfield, M., Holdgate, G.R., Wilson, C.J.L., McLoughlin, S., 2005. Tectonic significance of the Lambert graben, East Antarctica: Reconstructing the Gondwanan rift. Geol 33, 197. https://doi.org/10.1130/G21081.1
Heine, C., Muller, R., 2005. Late Jurassic rifting along the Australian North West Shelf: margin geometry and spreading ridge configuration. Australian Journal of Earth Sciences 52, 27–39. https://doi.org/10.1080/08120090500100077
Hirth, G., Kohlstedt, D.L., 2015. The stress dependence of olivine creep rate: Implications for extrapolation of lab data and interpretation of recrystallized grain size. Earth and Planetary Science Letters 418, 20–26. https://doi.org/10.1016/j.epsl.2015.02.013
Ho, C.S., 1986. A synthesis of the geologic evolution of Taiwan. Tectonophysics 125, 1–16. https://doi.org/10.1016/0040-1951(86)90004-1
Hourigan, J.K., Reiners, P.W., Brandon, M.T., 2005. U-Th zonation-dependent alpha-ejection in (U-Th)/He chronometry. Geochimica et Cosmochimica Acta 69, 3349–3365. https://doi.org/10.1016/j.gca.2005.01.024
Hsieh, H.-H., Chen, C.-H., Lin, P.-Y., Yen, H.-Y., 2014. Curie point depth from spectral analysis of magnetic data in Taiwan. Journal of Asian Earth Sciences 90, 26–33. https://doi.org/10.1016/j.jseaes.2014.04.007
Hsu, W.-H., Byrne, T.B., Ouimet, W., Lee, Y.-H., Chen, Y.-G., Soest, M. van, Hodges, K., 2016. Pleistocene onset of rapid, punctuated exhumation in the eastern Central Range of the Taiwan orogenic belt. Geology 44, 719–722. https://doi.org/10.1130/g37914.1
Huang, S.-Y., Lee, Y.-H., Mesalles, L., Horng, C.-S., Lu, H.-Y., Tsai, Y.-L., Wu, Y.-J., Chen, F.-Y., Tan, X.-B., 2022. Plio-Pleistocene fluvial dynamics in the pro-foreland basins of Taiwan: Thermochronological constraints and tectonic implications from the syn-orogenic deposits. Tectonophysics 838, 229486. https://doi.org/10.1016/j.tecto.2022.229486
Huang, T.-Y., Gung, Y., Kuo, B.-Y., Chiao, L.-Y., Chen, Y.-N., 2015. Layered deformation in the Taiwan orogen. Science 349, 720–723. https://doi.org/10.1126/science.aab1879
Hung, J.-H., Wiltschko, D.V., Lin, H.-C., Hickman, J.B., Fang, P., Bock, Y., 1999. Structure and motion of the southwestern Taiwan fold and thrust belt. TERRESTRIAL ATMOSPHERIC AND OCEANIC SCIENCES 10, 543–568. https://doi.org/10.3319/TAO.1999.10.3.543(T)
Hurford, A.J., 1986. Cooling and uplift patterns in the Lepontine Alps South Central Switzerland and an age of vertical movement on the Insubric fault line. Contributions to Mineralogy and Petrology 92, 413–427. https://doi.org/10.1007/BF00374424
Hurford, A.J., Green, P.F., 1983. The zeta age calibration of fission-track dating. Chemical Geology 41, 285–317. https://doi.org/10.1016/S0009-2541(83)80026-6
Jules, R., Ren, Y.J., Qiang, C., 2015. Thermal History and Potential of Hydrocarbon Generated from Jurassic to Early Cretaceous Source Rocks in the Malita Graben, Northern Bonaparte Basin, Australia. IJG 06, 894–916. https://doi.org/10.4236/ijg.2015.68073
Kaufman, P., Grotzinger, J., McCormick, D., 1991. Depth-dependent diffusion algorithm for simulation of sedimentation in shallow marine depositional systems. Bulletin of Kansas Geological Survey 489–508.
Kidder, S., Avouac, J.-P., Chan, Y.-C., 2012. Constraints from rocks in the Taiwan orogen on crustal stress levels and rheology. Journal of Geophysical Research 117, 13. https://doi.org/10.1029/2012jb009303
Kirstein, L.A., Carter, A., Chen, Y.-G., 2013. Impacts of arc collision on small orogens: new insights from the Coastal Range detrital record, Taiwan. Journal of the Geological Society 171, 5–8. https://doi.org/10.1144/jgs2013-046
Kirstein, L.A., Fellin, M.G., Willett, S.D., Carter, A., Chen, Y.-G., Garver, J.I., Lee, D.-C., 2010. Pliocene onset of rapid exhumation in Taiwan during arc-continent collision: new insights from detrital thermochronometry. Basin Research 22, 270–285. https://doi.org/10.1111/j.1365-2117.2009.00426.x
Kneller, E.A., Johnson, C.A., Karner, G.D., Einhorn, J., Queffelec, T.A., 2012. Inverse methods for modeling non-rigid plate kinematics: Application to mesozoic plate reconstructions of the Central Atlantic. Computers & Geosciences 49, 217–230. https://doi.org/10.1016/j.cageo.2012.06.019
Lan, C.-H., 2009. Fission track dating of zircon from the middle Hsuehshan Range of Taiwan. National Chung Cheng University, Chia-Yi.
Lee, C.R., Cheng, W.T., 1986. Preliminary heat flow measurements in Taiwan, paper presented at Fourth Circum-Pacific Energy and Mineral Resources Conference, Circum-Pac. Counc. for Energy and Miner. Resour., Singapore 1–9.
Lee, J.-C., Angelier, J., Chu, H.-T., 1997. Polyphase history and kinematics of a complex major fault zone in the northern Taiwan mountain belt: the Lishan Fault. Tectonophysics 274, 97–115. https://doi.org/10.1016/S0040-1951(96)00300-9
Lee, Y.-H., Byrne, T., Wang, W.-H., Lo, W., Rau, R.-J., Lu, H.-Y., 2015. Simultaneous mountain building in the Taiwan orogenic belt. Geology 43, 451–454. https://doi.org/10.1130/g36373.1
Lee, Y.-H., Byrne, T.B., Lo, W., Wang, S.-J., Tsao, S.-J., Chen, C.-H., Yu, H.-C., Tan, X., van Soest, M., Hodges, K., Mesalles, L., Robinson, H., Fosdick, J.C., 2022. Out of sequence faulting in the backbone range, Taiwan: Implications for thickening and exhumation processes. Earth and Planetary Science Letters 594. https://doi.org/10.1016/j.epsl.2022.117711
Lee, Y.-H., Chen, C.-C., Liu, T.-K., Ho, H.-C., Lu, H.-Y., Lo, W., 2006. Mountain building mechanisms in the Southern Central Range of the Taiwan Orogenic Belt — From accretionary wedge deformation to arc–continental collision. Earth and Planetary Science Letters 252, 413–422. https://doi.org/10.1016/j.epsl.2006.09.047
Liang, J.-H., 2011. Zircon and apatite fission track dating along the “Lishan fault” and its tectonic implication. National Chung Cheng University, Chia-Yi.
Lin, A.T., Watts, A.B., Hesselbo, S.P., 2003. Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research 15, 453–478. https://doi.org/10.1046/j.1365-2117.2003.00215.x
Lipski, P., 1994. Structural Framework and Depositional History of the Bedout and Rowley Sub-Basins, in: The Sedimentary Basins of Western Australia: Proceedings of the Western Australian Basins Symposium. Petroleum Exploration Society of Australia, p. 769.
Liu, C.-M., Song, S.-R., Kuo, C.-H., 2015. Silica Geothermometry Applications in the Taiwan Orogenic Belt. Terrestrial, Atmospheric and Oceanic Sciences 26. https://doi.org/10.3319/tao.2015.02.09.01(tt)
Liu, C.-S., Curray, J.R., McDonald, J.M., 1983. New constraints on the tectonic evolution of the eastern Indian Ocean. Earth and Planetary Science Letters 65, 331–342. https://doi.org/10.1016/0012-821X(83)90171-1
Liu, H.-C., Kao, M.-C., 2010. Geological map of Taiwan scale 1:50,000: Lishan, Geological Map and Explanatory Text of Taiwan 1:50,000. Central Geological Survey, MOEA, Taipei.
Liu, H.-C., Lin, C.-W., Yang, C.-N., 2009. On the Stratigraphy and Geological Structures in Upper Reaches of the Ta-anchi River, Central Taiwan. Bulletin of the Central Geological Survey 22, 29–61.
Liu, T.-K., 1982. Tectonic implication of fission track ages from the Central Range, Taiwan. Presented at the Proc. Geol. Soc. China, pp. 22–37.
Liu, T.-K., Chen, Y.-G., Chen, W.-S., Jiang, S.-H., 2000. Rates of cooling and denudation of the Early Penglai Orogeny, Taiwan, as assessed by fission-track constraints. Tectonophysics 320, 69–82. https://doi.org/10.1016/S0040-1951(00)00028-7
Liu, T.-K., Hsieh, S., Chen, Y.-G., Chen, W.-S., 2001. Thermo-kinematic evolution of the Taiwan oblique-collision mountain belt as revealed by zircon fission track dating. Earth and Planetary Science Letters 186, 45–56. https://doi.org/10.1016/S0012-821X(01)00232-1
Lo, C.H., Yui, T.F.U., 1996. 40Ar/39Ar dating of high-pressure rocks in the tananao basement complex, Taiwan. J. Geol. Soc. China 39, 13–30.
Lock, J., 2007. Interpreting low-temperature thermochronometric data in fold-and-thrust belts: An example from the Western Foothills, Taiwan (Ph.D.). University of Washington, United States -- Washington.
Longley, I.M., Buessenschuett, C., Clydsdale, L., Cubitt, C.J., Davis, R.C., Johnson, M.K., Marshall, N.M., Murray, A.P., Somerville, R., Spry, T.B., Thompson, N.B., 2002. The North West shelf of Australia–a woodside perspective. The sedimentary basins of Western Australia 3, 27–88.
Maino, M., Gaggero, L., Langone, A., Seno, S., Fanning, M., 2019. Cambro-Silurian magmatisms at the northern Gondwana margin (Penninic basement of the Ligurian Alps). Geoscience Frontiers 10, 315–330. https://doi.org/10.1016/j.gsf.2018.01.003
Mancktelow, N.S., Grasemann, B., 1997. Time-dependent effects of heat advection and topography on cooling histories during erosion. Tectonophysics 270, 167–195. https://doi.org/10.1016/S0040-1951(96)00279-X
McCallister, A.T., Taylor, M.H., Murphy, M.A., Styron, R.H., Stockli, D.F., 2014. Thermochronologic constraints on the late Cenozoic exhumation history of the Gurla Mandhata metamorphic core complex, Southwestern Tibet. Tectonics 33, 27–52. https://doi.org/10.1002/2013tc003302
McKenzie, D., 1981. The variation of temperature with time and hydrocarbon maturation in sedimentary basins formed by extension. Earth and Planetary Science Letters 55, 87–98. https://doi.org/10.1016/0012-821X(81)90089-3
Meesters, A.G.C.A., Dunai, T.J., 2005. A noniterative solution of the (U-Th)/He age equation. Geochemistry, Geophysics, Geosystems 6. https://doi.org/10.1029/2004gc000834
Molnar, P., England, P., Martinod, J., 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Reviews of Geophysics 31, 357–396. https://doi.org/10.1029/93RG02030
Molyneux, S., Goodall, J., McGee, R., Mills, G., Hartung-Kagi, B., 2016. Observations on the Lower Triassic petroleum prospectivity of the offshore Carnarvon and Roebuck basins. The APPEA Journal 56, 173. https://doi.org/10.1071/AJ15014
Montgomery, D.R., Brandon, M.T., 2002. Topographic controls on erosion rates in tectonically active mountain ranges. Earth and Planetary Science Letters 201, 481–489. https://doi.org/10.1016/S0012-821X(02)00725-2
Morgan, P., 1984. The thermal structure and thermal evolution of the continental lithosphere. Physics and Chemistry of the Earth 15, 107–193. https://doi.org/10.1016/0079-1946(84)90006-5
Mory, A.J., 2023. Mesozoic transformation of Western Australia: rifting and breakup of Gondwana. Geological Survey of Western Australia, East Perth, Western Australia.
Mouthereau, F., Lacombe, O., Deffontaines, B., Angelier, J., Brusset, S., 2001. Deformation history of the southwestern Taiwan foreland thrust belt: insights from tectono-sedimentary analyses and balanced cross-sections. Tectonophysics 333. https://doi.org/10.1016/S0040-1951(00)00280-8
Muller, R.D., Goncharov, A., Kritski, A., 2005. Geophysical evaluation of the enigmatic Bedout basement high, offshore northwestern Australia. Earth and Planetary Science Letters 237, 264–284. https://doi.org/10.1016/j.epsl.2005.06.014
Muller, R.D., Mihut, D., Baldwin, S., 1998. A new kinematic model for the formation and evolution of the west and northwest Australian margin, in: The Sedimentary Basins of Western Australia: Proceedings of Petroleum Exploration Society of Australia Symposium 2. Petroleum Exploration Society of Australia Perth, pp. 55–72.
Muller, R.D., Zahirovic, S., Williams, S.E., Cannon, J., Seton, M., Bower, D.J., Tetley, M.G., Heine, C., Le Breton, E., Liu, S., Russell, S.H.J., Yang, T., Leonard, J., Gurnis, M., 2019. A Global Plate Model Including Lithospheric Deformation Along Major Rifts and Orogens Since the Triassic. Tectonics 38, 1884–1907. https://doi.org/10.1029/2018TC005462
Muttoni, G., Kent, D.V., Garzanti, E., Brack, P., Abrahamsen, N., Gaetani, M., 2003. Early Permian Pangea ‘B’ to Late Permian Pangea ‘A’☆. Earth and Planetary Science Letters 215, 379–394. https://doi.org/10.1016/S0012-821X(03)00452-7
Purcell, P., Longley, I., 2023. The North West Shelf, Western Australia’s super basin, in the twenty-first century. AAPG Bulletin 107, 1299–1367. https://doi.org/10.1306/02072322035
Ramsay, D.C., Exon, N.F., 1994. Structure and tectonic history of the northern Exmouth Plateau and Rowley Terrace: outer North West Shelf. Journal of Australian Geology and Geophysics 15, 55–70.
Reiners, P.W., Spell, T.L., Nicolescu, S., Zanetti, K.A., 2004. Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating. Geochimica et Cosmochimica Acta 68, 1857–1887. https://doi.org/10.1016/j.gca.2003.10.021
Rybacki, E., Dresen, G., 2000. Dislocation and diffusion creep of synthetic anorthite aggregates. J. Geophys. Res. 105, 26017–26036. https://doi.org/10.1029/2000JB900223
Seton, M., Muller, R.D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., Talsma, A., Gurnis, M., Turner, M., Maus, S., Chandler, M., 2012. Global continental and ocean basin reconstructions since 200Ma. Earth-Science Reviews 113, 212–270. https://doi.org/10.1016/j.earscirev.2012.03.002
Shyu, C.J., Tan, E., Lavier, L.L., 2023. Geoflac for thermochronology with HR2022. https://doi.org/10.5281/zenodo.7816507
Shyu, J.B.H., Sieh, K., 2005. Neotectonic architecture of Taiwan and its implications for future large earthquakes. Journal of Geophysical Research 110. https://doi.org/10.1029/2004jb003251
Simoes, M., Avouac, J.P., Beyssac, O., Goffe, B., Farley, K.A., Chen, Y.-G., 2007. Mountain building in Taiwan: A thermokinematic model. Journal of Geophysical Research 112, 25. https://doi.org/10.1029/2006jb004824
Smith, S.A., 1999. The phanerozoic basin-fill history of the Roebuck Basin. University of Southampton.
Stolar, D.B., Willett, S.D., Montgomery, D.R., 2007. Characterization of topographic steady state in Taiwan. Earth and Planetary Science Letters 261, 421–431. https://doi.org/10.1016/j.epsl.2007.07.045
Suppe, J., 1984. Kinematics of Arc-Continent Collision, Flipping of Subduction, and Back-Arc Spreading Near Taiwan. Memoir of the Geological Society of China 21–33.
Suppe, J., 1981. Mechanics of mountain building and metamorphism in Taiwan. Memoir of the Geological Society of China 67–89.
Tan, E., Lavier, L.L., Van Avendonk, H.J.A., Heuret, A., 2012. The role of frictional strength on plate coupling at the subduction interface. Geochemistry, Geophysics, Geosystems 13, 19. https://doi.org/10.1029/2012gc004214
Teng, L.S., 2007. Quaternary Tectonics of Taiwan. Special Publication of the Central Geological Survey 18, 1–24.
Teng, L.S., 1992. Geotectonic Evolution of Tertiary Continental Margin Basins of Taiwan. Petroleum Geology of Taiwan 27, 1–19.
Teng, L.S., 1990. Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics 183, 57–76. https://doi.org/10.1016/0040-1951(90)90188-E
Teng, L.S., 1987. Stratigraphic records of the late Cenozoic Penglai orogeny of Taiwan. Acta Geologica Taiwanica 205–224.
Thompson, N.B., Buessenschuett, C., Clydsdale, L., Cubitt, C.J., Davis, R.C., Johnson, M.K., Marshall, N.M., Murray, A.P., Somerville, R., Spry, T.B., Longley, I.M., Woodside Energy Ltd, 2003. The North West Shelf of Australia—A Woodside Perspective. Presented at the SEAPEX Exploration Conference, Singapore.
Tillman, K.S., Byrne, T.B., 1995. Kinematic analysis of the Taiwan Slate Belt. Tectonics 14, 322–341. https://doi.org/10.1029/94tc02451
Tissot, B.P., Pelet, R., Ungerer, P., 1987. Thermal history of sedimentary basins, maturation indices, and kinetics of oil and gas generation. AAPG Bull.; (United States) 71:12.
Tissot, B.P., Welte, D.H., 1984. Petroleum Formation and Occurrence. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87813-8
Tsao, S., 1996. The geological significances of illite crystallinity, zircon fission-track ages, and K-Ar ages of metasedimentary rocks of the Central Range of Taiwan. National Taiwan University, Taipei.
van der Beek, P., Schildgen, T.F., 2023. Short communication: age2exhume – a MATLAB/Python script to calculate steady-state vertical exhumation rates from thermochronometric ages and application to the Himalaya. Geochronology 5, 35–49. https://doi.org/10.5194/gchron-5-35-2023
Vincent, C., Merriman, R., 2004. Thermal modelling of the Cheshire Basin using BasinModTM.
Wangen, M., Throndsen, T., Halvorsen, G., 2007. The Paleo Heat Flow Contents in Vitrinite Reflectance Observations. Math Geol 39, 491–511. https://doi.org/10.1007/s11004-007-9110-z
Willett, S.D., Brandon, M.T., 2002. On steady states in mountain belts. GSA. https://doi.org/10.1130/0091-7613(2002)030<0175:OSSIMB>2.0.CO;2
Willett, S.D., Fisher, D., Fuller, C., Yeh, E.-C., Lu, C.-Y., 2003. Erosion rates and orogenic-wedge kinematics in Taiwan inferred from ?ssion-track thermochronometry. Geology 31, 945–948. https://doi.org/10.1130/G19702.1
Wolff, R., Hetzel, R., Dunkl, I., Anczkiewicz, A.A., Pomella, H., 2020. Fast cooling of normal-fault footwalls: Rapid fault slip or thermal relaxation? Geology 48, 333–337. https://doi.org/10.1130/g46940.1
Wu, S.-K., Chi, W.-C., Hsu, S.-M., Ke, C.-C., Wang, Y., 2013. Shallow crustal thermal structures of central Taiwan foothills region. Terr. Atmos. Ocean. Sci. 24 (4), 695–707. https://doi.org/10.3319/TAO.2013.03.13.01(T)
Wu, Y.-J., 2018. Detrital Zircon Fission-Track and U-Pb Dating of the Toukoshan and Cholan Formations in Central Taiwan and its Tectonic Implications. National Chung Cheng University.
Yeates, A.N., Bradshaw, M.T., Dickins, J.M., Brakel, A.T., Exon, N.F., Langford, R.P., Mulholland, S.M., Totterdell, J.M., Yeung, M., 1987. The Westralian superbasin: an Australian link with Tethys; Superbassin Westralien: un maillon australien avec la Tethys. Presented at the International symposium on Shallow Tethys 2 (Wagga 1986-09-15), A. A. Balkema, Rotterdam; Boston MA, pp. 199–213.
Yeh, J.-J., 2017. Petrographic study of the Miocene-Pleistocene sandstone in the Western Foothills, northern Taiwan: implication for the unroofing history of Taiwan orogenic belt. National Taiwan University, Taipei.
Yin, A., Harrison, T.M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences. https://doi.org/10.1146/annurev.earth.28.1.211
Yu, P.-S., Yang, T.-C., Kuo, C.-C., 2006. Evaluating Long-Term Trends in Annual and Seasonal Precipitation in Taiwan. Water Resources Management 20, 1007–1023. https://doi.org/10.1007/s11269-006-9020-8
Yu, S.-B., Chen, H.-Y., Kuo, L.-C., 1997. Velocity field of GPS stations in the Taiwan area. Tectonophysics 274, 41–59. https://doi.org/10.1016/S0040-1951(96)00297-1
Yue, L.-F., Suppe, J., Hung, J.-H., 2005. Structural geology of a classic thrust belt earthquake: the 1999 Chi-Chi earthquake Taiwan (Mw=7.6). Journal of Structural Geology 27, 2058–2083. https://doi.org/10.1016/j.jsg.2005.05.020
指導教授 譚諤 林殿順(Eh Tan Andrew Tien-Shun Lin) 審核日期 2024-12-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明