博碩士論文 111225034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.222.112.142
姓名 陳稚蕙(Chih-Hui Chen)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 伽馬過程之貝氏加速衰變試驗模型與序列分析
(Bayesian Accelerated Degradation Models and Sequential Analysis based on Gamma Processes)
相關論文
★ 具Box-Cox轉換之逐步加速壽命實驗的指數推論模型★ 多元反應變數長期資料之多變量線性混合模型
★ 多重型 I 設限下串聯系統之可靠度分析與最佳化設計★ 應用累積暴露模式至單調過程之加速衰變模型
★ 串聯系統加速壽命試驗之最佳樣本數配置★ 破壞性加速衰變試驗之適合度檢定
★ 串聯系統加速壽命試驗之最佳妥協設計★ 加速破壞性衰變模型之貝氏適合度檢定
★ 加速破壞性衰變模型之最佳實驗配置★ 累積暴露模式之單調加速衰變試驗
★ 具ED過程之兩因子加速衰退試驗建模研究★ 逆高斯過程之完整貝氏衰變分析
★ 加速不變原則之偏斜-t過程★ 花蓮地區地震資料改變點之貝氏模型選擇
★ 颱風降雨量之統計迴歸預測★ 花蓮地區地震資料之長時期相關性及時間-空間模型之可行性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-11-5以後開放)
摘要(中) 為了改善產品在正常的環境應力之下衰變速度過於緩慢的問題,可以將產品置於高應力環境下進行加速衰變試驗 (accelerated degradation test),根據高應力下的衰變資料建構加速衰變模型進而推論產品壽命分布。由於產品之間可能存在些微差異,本文加入隨機效應 (random effect) 以描述產品間的個別差異,並使用貝氏方法分析伽馬隨機過程 (gamma process) 的加速衰變試驗。在模型選擇上,以偏差訊息量準則 (deviance information criterion; DIC) 選擇適當的模型,並藉由馬可夫鍊蒙地卡羅 (MCMC) 演算法得參數近似後驗樣本,從而推導出正常使用狀態下產品的貝氏可靠度推論。本文利用伽馬過程的加速衰變試驗結果作為產品在正常應力條件下的先驗資訊,並透過逐步預測探討正常應力下衰變模型分布改變時的貝氏逐步分析,並在滿足預設的容忍度時決定試驗終止時間。最後以三個實例和模擬資料驗證所提方法的可行性。
摘要(英) To address the issue of product degradation being too slow under normal environmental stress, the product can be subjected to accelerated degradation tests under high-stress conditions. By constructing an accelerated degradation model based on the degradation data obtained under high-stress conditions, we can infer the product′s lifetime distribution. Considering potential differences between products, this thesis incorporates random effects into the model to describe the heterogeneity of products, and employs Bayesian methods to analyze the gamma process in accelerated degradation tests. For model selection, the deviance information criterion is used to choose an appropriate model, and the Markov Chain Monte Carlo (MCMC) algorithm is employed to obtain approximate posterior samples of the parameters. This allows for the derivation of Bayesian reliability inferences for the product under normal usage conditions.The thesis uses the results of the gamma process accelerated degradation tests as prior information for the product under normal stress conditions. It explores Bayesian sequential analysis when the degradation model distribution changes under normal stress conditions, to determine a the test termination time when a preset tolerance is met. Finally, the feasibility of proposed method is verified through three case studies as well as by simulated data.
關鍵字(中) ★ 伽馬隨機過程
★ 隨機效應
★ DIC 準則
★ 後驗預測 p-值
★ 階層貝氏
關鍵字(英) ★ Gamma process
★ random effect
★ DIC criterion
★ posterior predictive p-value
★ hierarchical Bayesian
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 vii
第一章 緒論 1
1.1研究背景與動機 1
1.2文獻回顧 3
1.3研究方法 5
1.4本文架構 6
第二章 伽馬過程之貝氏加速衰變模型 7
2.1伽馬加速衰變模型與加速因子 7
2.1.1伽馬加速衰變模型 7
2.1.2加速應力結構 9
2.1.3加速模式 9
2.2概似函數 10
2.2.1符號定義 10
2.2.2固定效應模型 11
2.2.3隨機效應模型 11
2.3貝氏架構 14
2.3.1固定效應貝氏模型 15
2.3.2隨機效應貝氏模型 17
2.4模型選擇與診斷 21
2.4.1偏差訊息量準則 22
2.4.2貝氏適合度檢定 23
第三章 貝氏可靠度推論與序列預測分析 25
3.1壽命分布 25
3.2平均失效時間及q-分位數 28
3.3壽命分布之Birnbaum-Saunders近似 30
3.4壽命分布之診斷 32
3.5序列預測分析 33
3.5.1先驗分布之序列更新 34
3.5.2序列預測之試驗終止時間 37
第四章 實例與序列分析 38
4.1 LED資料-1 39
4.2 LED資料-2 44
4.3電器連接器資料 48
4.4模擬分析 52
4.4.1參數估計 52
4.4.2序列分析 55
第五章 結論 58
參考文獻 59
參考文獻 [1] Akaike, H. (1974). A new look at the statistical model identification, IEEE Trans
actions on Automatic Control, 19, 716-723.
[2] Bagdonavicius, V. and Nikulin, M. (2002). Accelerated Life Models: Modeling and
Statistical Analysis, Chapman & Hall, New York.
[3] Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis (Second
Edition), Springer-Verlag, New York.
[4] Birnbaum, Z. W. and Saunders, S. C. (1969). A new family of life distributions,
Journal of Applied Probability, 6, 319-327.
[5] Carlin, B. P. and Louis, T. A. (2008). Bayesian Methods for Data Analysis, Chap
man and Hall, London.
[6] Celeux, G., Forbes, F., Robert, C. P., and Titterington, D. M. (2006). Deviance
information criteria for missing data models, Bayesian Analysis, 1, 651-673.
[7] Chaluvadi, V. N. H. (2008). Accelerated life testing of electronic revenue meters,
Ph.D. dissertation, Clemson Univ., Clemson, SC, USA.
[8] Efron, B. (1979). Bootstrap method: another look at the jackknife, Annals of
Statistics, 17, 1-26.
[9] Fan, T. H. and Chen, C. H. (2017). A Bayesian predictive analysis of step-stress
accelerated tests in gamma degradation-based processes, Quality and Reliability
Engineering International, 33, 1417-1424.
[10] Fan, T. H., Dong, Y. S., and Peng, C. Y. (2024). A Complete Bayesian Degradation
Analysis Based on Inverse Gaussian Processes, IEEE Transactions on Reliability,
73, 536-548.
[11] Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D.
B. (2013). Bayesian Data Analysis (Third Edition), Chapman and Hall, London.
[12] Geman, S., and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images, IEEE Transactions on Pattern Analysis and
Machine Intelligence, PAMI-6, 721-741.
[13] Hamada, M., Martz, H. F., Reese, C. S., Graves, T., Johnson, V., and Wilson, A.
G. (2004). A fully Bayesian approach for combining multilevel failure information
in fault tree quantification and optimal follow-on resource allocation, Reliability
Engineering & System Safety, 86, 297-305.
[14] Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and
their applications, Biometrika, 57, 97-109.
[15] He, D., Wang, Y., and Chang, G. (2018). Objective Bayesian analysis for the ac
celerated degradation model based on the inverse Gaussian process, Applied Math
ematical Modelling, 61, 341-350.
[16] Lawless, J., and Crowder, M. (2004). Covariates and random effects in a gamma
process model with application to degradation and failure, Lifetime Data Analysis,10, 213-227.
[17] Li, Y., Yu, J., and Zeng, T. (2017). Deviation information criterion for Bayesian
model comparison: justification and variation. Working Paper, Singapore Manage
ment University.
[18] Liao, H., and Elsayed, E. A. (2006). Reliability inference for field conditions from
accelerated degradation testing, Naval Research Logistics (NRL), 53, 576-587.
[19] Ling, M. H., Ng, H. K. T., and Tsui, K. L. (2019). Bayesian and likelihood inferences
on remaining useful life in two-phase degradation models under gamma process,
Reliability Engineering & System Safety, 184, 77-85.
[20] Ling, M. H., Tsui, K. L., and Balakrishnan, N. (2014). Accelerated degradation
analysis for the quality of a system based on the gamma process, IEEE Transactions
on Reliability, 64, 463-472.
[21] Lu, C. J., Meeker, W. Q., and Escobar, L. A. (1996). A comparison of degrada
tion and failure-time analysis methods for estimating a time-to-failure distribution,
Statistica Sinica, 6, 531-546.
[22] Meeker, W. Q., and Escobar, L. A. (1993).A review of recent research and current
issues in accelerated testing, International Statistical Review, 61, 147-168.
[23] Meeker, W. Q., Escobar, L. A., and Pascual, F. G. (2022). Statistical methods for
reliability data, John Wiley & Sons.
[24] Meeker, W. Q., Escobar, L. A., and Lu, C. J. (1998). Accelerated degradation tests:
modeling and analysis, Technometrics, 40, 89-99.
[25] Meng, X. L. (1994). Posterior predictive p-values, The Annals of Statistics, 22,
1142-1160.
[26] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E.
(1953). Equation of state calculations by fast computing machines, The Journal of
Chemical Physics, 21, 1087-1092.
[27] Nelson, W. (1980). Accelerated life testing step-stress models and data analyses,
IEEE transactions on reliability, 29, 103-108.
[28] Nelson, W. B. (1990). Accelerated Testing: Statistical Models, Test Plans, and Data
Analysis, John Wiley and Sons, New York.
[29] Park, C., and Padgett, W. J. (2005). Accelerated degradation models for failure
based on geometric Brownian motion and gamma processes, Lifetime Data Analysis,
11, 511-527.
[30] Peng, C. Y., Dong, Y. S., and Fan, T. H. (2024). Acceleration invariance principle
for Hougaard processes in degradation analysis, Naval Research Logistics, 71, 318
330.
[31] Peng, C. Y., and Tseng, S. T. (2013). Statistical lifetime inference with skew-Wiener
linear degradation models. IEEE Transactions on Reliability, 62, 338-350.
[32] Peng, W., Li, Y. F., Yang, Y. J., Huang, H. Z., and Zuo, M. J. (2014). Inverse
Gaussian process models for degradation analysis: A Bayesian perspective, Relia
bility Engineering & System Safety, 130, 175-189.
[33] Pieruschka, E. (1961). Relation between lifetime distribution and the stress levelcausing the failures, LMSD-800440, Lockhead Missiles and Space Division, Sunny
vale.
[34] Qin, H., Zhang, S., and Zhou, W. (2013). Inverse Gaussian process-based corrosion
growth modeling and its application in the reliability analysis for energy pipelines,
Frontiers of Structural and Civil Engineering, 7, 276-287.
[35] Rodr’ ?guez-Narciso, S., and Christen, J. A. (2016). Optimal sequential Bayesian
analysis for degradation tests. Lifetime Data Analysis, 22, 405-428.
[36] Ross, S. M. (2022). Simulation (Sixth Edition), Elsevier, New York.
[37] Rubin, D. B. (1984). Bayesianly justifiable and relevant frequency calculations for
the applied statistician, The Annals of Statistics, 12, 1151-1172.
[38] Singpurwalla, N. D. (1995). Survival in dynamic environments, Statistical Science,
10, 86-103.
[39] Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Van Der Linde, A. (2002).
Bayesian measures of model complexity and fit, Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 64, 583-639.
[40] Tsai, C. C., Tseng, S. T., and Balakrishnan, N. (2012). Optimal design for degra
dation tests based on gamma processes with random effects, IEEE Transactions on
Reliability, 61, 604-613.
[41] Tseng, S. T., Balakrishnan, N., and Tsai, C. C. (2009). Optimal step-stress accel
erated degradation test plan for gamma degradation processes. IEEE Transactions
on Reliability, 58, 611-618.
[42] Wang, H. W., and Xi, W. (2016). Acceleration factor constant principle and the
application under ADT, Quality and Reliability Engineering International, 32, 2591
2600.
[43] Wang, L., Pan, R., Li, X., and Jiang, T. (2013). A Bayesian reliability evalua
tion method with integrated accelerated degradation testing and field information.
Reliability Engineering and System Safety, 112, 38-47.
[44] Wang, X. (2009). Nonparametric estimation of the shape function in a Gamma
process for degradation data, Canadian Journal of Statistics, 37, 102-118.
[45] Yang, G. B. (2007). Life cycle engineering, New York: John Wiley & Sons.
[46] Ye, Z. S., and Chen, N. (2014). The inverse Gaussian process as a degradation
model, Technometrics, 56, 302-311.
[47] Yuan, R., Tang, M., Wang, H., and Li, H. (2019). A reliability analysis method of
accelerated performance degradation based on Bayesian strategy, IEEE Access, 7,
169047-169054.
[48] Yurkowsky, W., Schafer, R. E., and Finkelstein, J. M. (1967), Accelerated testing
technology, RADC-TR-67-420, Griffiss Air Force Base, New York.
[49] 古立丞 (2021) 逆高斯過程之完整貝氏衰變分析,國立中央大學碩士論文。
[50] 張孟筑 (2017) 應用累積暴露模式至單調過程之加速衰變模型,國立中央大學碩士
論文。
[51] 黃雅翎 (2015) 具隨機效應與時間尺度之伽瑪加速衰退隨機過程的貝氏可靠度分
析,國立中央大學碩士論文。
[52] 童義軒 (2023) 逆高斯過程之貝氏加速衰變試驗分析與序列預測,國立中央大學碩
士論文。
[53] 董奕賢 (2019) 累積暴露模式之單調加速衰變試驗,國立中央大學碩士論文。
指導教授 樊采虹(Tsai-Hung Fan) 審核日期 2024-11-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明