參考文獻 |
[1] Akaike, H. (1974). A new look at the statistical model identification, IEEE Trans
actions on Automatic Control, 19, 716-723.
[2] Bagdonavicius, V. and Nikulin, M. (2002). Accelerated Life Models: Modeling and
Statistical Analysis, Chapman & Hall, New York.
[3] Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis (Second
Edition), Springer-Verlag, New York.
[4] Birnbaum, Z. W. and Saunders, S. C. (1969). A new family of life distributions,
Journal of Applied Probability, 6, 319-327.
[5] Carlin, B. P. and Louis, T. A. (2008). Bayesian Methods for Data Analysis, Chap
man and Hall, London.
[6] Celeux, G., Forbes, F., Robert, C. P., and Titterington, D. M. (2006). Deviance
information criteria for missing data models, Bayesian Analysis, 1, 651-673.
[7] Chaluvadi, V. N. H. (2008). Accelerated life testing of electronic revenue meters,
Ph.D. dissertation, Clemson Univ., Clemson, SC, USA.
[8] Efron, B. (1979). Bootstrap method: another look at the jackknife, Annals of
Statistics, 17, 1-26.
[9] Fan, T. H. and Chen, C. H. (2017). A Bayesian predictive analysis of step-stress
accelerated tests in gamma degradation-based processes, Quality and Reliability
Engineering International, 33, 1417-1424.
[10] Fan, T. H., Dong, Y. S., and Peng, C. Y. (2024). A Complete Bayesian Degradation
Analysis Based on Inverse Gaussian Processes, IEEE Transactions on Reliability,
73, 536-548.
[11] Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D.
B. (2013). Bayesian Data Analysis (Third Edition), Chapman and Hall, London.
[12] Geman, S., and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images, IEEE Transactions on Pattern Analysis and
Machine Intelligence, PAMI-6, 721-741.
[13] Hamada, M., Martz, H. F., Reese, C. S., Graves, T., Johnson, V., and Wilson, A.
G. (2004). A fully Bayesian approach for combining multilevel failure information
in fault tree quantification and optimal follow-on resource allocation, Reliability
Engineering & System Safety, 86, 297-305.
[14] Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and
their applications, Biometrika, 57, 97-109.
[15] He, D., Wang, Y., and Chang, G. (2018). Objective Bayesian analysis for the ac
celerated degradation model based on the inverse Gaussian process, Applied Math
ematical Modelling, 61, 341-350.
[16] Lawless, J., and Crowder, M. (2004). Covariates and random effects in a gamma
process model with application to degradation and failure, Lifetime Data Analysis,10, 213-227.
[17] Li, Y., Yu, J., and Zeng, T. (2017). Deviation information criterion for Bayesian
model comparison: justification and variation. Working Paper, Singapore Manage
ment University.
[18] Liao, H., and Elsayed, E. A. (2006). Reliability inference for field conditions from
accelerated degradation testing, Naval Research Logistics (NRL), 53, 576-587.
[19] Ling, M. H., Ng, H. K. T., and Tsui, K. L. (2019). Bayesian and likelihood inferences
on remaining useful life in two-phase degradation models under gamma process,
Reliability Engineering & System Safety, 184, 77-85.
[20] Ling, M. H., Tsui, K. L., and Balakrishnan, N. (2014). Accelerated degradation
analysis for the quality of a system based on the gamma process, IEEE Transactions
on Reliability, 64, 463-472.
[21] Lu, C. J., Meeker, W. Q., and Escobar, L. A. (1996). A comparison of degrada
tion and failure-time analysis methods for estimating a time-to-failure distribution,
Statistica Sinica, 6, 531-546.
[22] Meeker, W. Q., and Escobar, L. A. (1993).A review of recent research and current
issues in accelerated testing, International Statistical Review, 61, 147-168.
[23] Meeker, W. Q., Escobar, L. A., and Pascual, F. G. (2022). Statistical methods for
reliability data, John Wiley & Sons.
[24] Meeker, W. Q., Escobar, L. A., and Lu, C. J. (1998). Accelerated degradation tests:
modeling and analysis, Technometrics, 40, 89-99.
[25] Meng, X. L. (1994). Posterior predictive p-values, The Annals of Statistics, 22,
1142-1160.
[26] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E.
(1953). Equation of state calculations by fast computing machines, The Journal of
Chemical Physics, 21, 1087-1092.
[27] Nelson, W. (1980). Accelerated life testing step-stress models and data analyses,
IEEE transactions on reliability, 29, 103-108.
[28] Nelson, W. B. (1990). Accelerated Testing: Statistical Models, Test Plans, and Data
Analysis, John Wiley and Sons, New York.
[29] Park, C., and Padgett, W. J. (2005). Accelerated degradation models for failure
based on geometric Brownian motion and gamma processes, Lifetime Data Analysis,
11, 511-527.
[30] Peng, C. Y., Dong, Y. S., and Fan, T. H. (2024). Acceleration invariance principle
for Hougaard processes in degradation analysis, Naval Research Logistics, 71, 318
330.
[31] Peng, C. Y., and Tseng, S. T. (2013). Statistical lifetime inference with skew-Wiener
linear degradation models. IEEE Transactions on Reliability, 62, 338-350.
[32] Peng, W., Li, Y. F., Yang, Y. J., Huang, H. Z., and Zuo, M. J. (2014). Inverse
Gaussian process models for degradation analysis: A Bayesian perspective, Relia
bility Engineering & System Safety, 130, 175-189.
[33] Pieruschka, E. (1961). Relation between lifetime distribution and the stress levelcausing the failures, LMSD-800440, Lockhead Missiles and Space Division, Sunny
vale.
[34] Qin, H., Zhang, S., and Zhou, W. (2013). Inverse Gaussian process-based corrosion
growth modeling and its application in the reliability analysis for energy pipelines,
Frontiers of Structural and Civil Engineering, 7, 276-287.
[35] Rodr’ ?guez-Narciso, S., and Christen, J. A. (2016). Optimal sequential Bayesian
analysis for degradation tests. Lifetime Data Analysis, 22, 405-428.
[36] Ross, S. M. (2022). Simulation (Sixth Edition), Elsevier, New York.
[37] Rubin, D. B. (1984). Bayesianly justifiable and relevant frequency calculations for
the applied statistician, The Annals of Statistics, 12, 1151-1172.
[38] Singpurwalla, N. D. (1995). Survival in dynamic environments, Statistical Science,
10, 86-103.
[39] Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Van Der Linde, A. (2002).
Bayesian measures of model complexity and fit, Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 64, 583-639.
[40] Tsai, C. C., Tseng, S. T., and Balakrishnan, N. (2012). Optimal design for degra
dation tests based on gamma processes with random effects, IEEE Transactions on
Reliability, 61, 604-613.
[41] Tseng, S. T., Balakrishnan, N., and Tsai, C. C. (2009). Optimal step-stress accel
erated degradation test plan for gamma degradation processes. IEEE Transactions
on Reliability, 58, 611-618.
[42] Wang, H. W., and Xi, W. (2016). Acceleration factor constant principle and the
application under ADT, Quality and Reliability Engineering International, 32, 2591
2600.
[43] Wang, L., Pan, R., Li, X., and Jiang, T. (2013). A Bayesian reliability evalua
tion method with integrated accelerated degradation testing and field information.
Reliability Engineering and System Safety, 112, 38-47.
[44] Wang, X. (2009). Nonparametric estimation of the shape function in a Gamma
process for degradation data, Canadian Journal of Statistics, 37, 102-118.
[45] Yang, G. B. (2007). Life cycle engineering, New York: John Wiley & Sons.
[46] Ye, Z. S., and Chen, N. (2014). The inverse Gaussian process as a degradation
model, Technometrics, 56, 302-311.
[47] Yuan, R., Tang, M., Wang, H., and Li, H. (2019). A reliability analysis method of
accelerated performance degradation based on Bayesian strategy, IEEE Access, 7,
169047-169054.
[48] Yurkowsky, W., Schafer, R. E., and Finkelstein, J. M. (1967), Accelerated testing
technology, RADC-TR-67-420, Griffiss Air Force Base, New York.
[49] 古立丞 (2021) 逆高斯過程之完整貝氏衰變分析,國立中央大學碩士論文。
[50] 張孟筑 (2017) 應用累積暴露模式至單調過程之加速衰變模型,國立中央大學碩士
論文。
[51] 黃雅翎 (2015) 具隨機效應與時間尺度之伽瑪加速衰退隨機過程的貝氏可靠度分
析,國立中央大學碩士論文。
[52] 童義軒 (2023) 逆高斯過程之貝氏加速衰變試驗分析與序列預測,國立中央大學碩
士論文。
[53] 董奕賢 (2019) 累積暴露模式之單調加速衰變試驗,國立中央大學碩士論文。 |