博碩士論文 111523022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.137.142.60
姓名 周昌平(Chang-Pin Chou)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 使用機器學習技術提升以輔助波束對 方法做相位陣列天線的角度估計
(Machine Learning Techniques for Phased Array Antennas DOA Estimation Based on The Auxiliary Beam Pair Method)
相關論文
★ 利用二元關聯法之簡易指紋辨識★ 基於數位單脈衝接收機與質點演算法之無人機追蹤效能分析
★ 基於輔助波束對之UAV追蹤方法實現★ 實時無人機追蹤系統設計與實現
★ 使用MMSE等化器的Filterbank OFDM系統探討★ Kalman Filtering應用於可適性載波同步系統之研究
★ 無線區域網路之MIMO-OFDM系統設計與電路實現★ 包含通道追蹤之IEEE 802.11a接收機設計與電路實現
★ 時變通道下的OFDM傳輸系統設計: 基於IEEE 802.11a標準★ MIMO-OFDM系統各天線間載波頻率偏差之探討 與收發機硬體實現
★ 使用雜散式領航訊號之DVB-T系統通道估測演算法與電路實現★ 數位地面視訊廣播系統同步模組 之設計與電路實現
★ 適用於移動式正交分頻多工通訊系統的改良型時域通道響應追蹤演算法★ 正交分頻多工系統通道估測基於可適性模型化通道參數估測
★ 以共同項載波頻率偏移補償於正交分頻多重存取系統中減少多重存取干擾之方法★ 正交分頻多工系統之資料訊號裁剪雜訊消除
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來隨著科技的進步,無人機系統也逐漸發展完善,
各產業也爭相將此投入各個產業以及軍事方面,因此勢必需要對
此進行研究和追蹤。此篇論文將著重以輔助波束對(Auxiliary Beam
Pair) 演算法追蹤無人機與基站之間的角度,但演算法在均勻平面
天線陣列下只能得到近似角度,因此對這部分提出以前一個取樣
時間,用演算法算出的角度當作下一個取樣點的視軸(Boresight)
來降低近似誤差,也希望可以利用其他方式再降低誤差,所以會
加入擴展卡曼濾波器修正近似的問題,也使用機器學習修正輔助
波束對誤差的參數,再代回演算法求出角度,並比較這些方法在
不同環境下的效果,最後再針對結果分析各方法的優缺點。
摘要(英) In recent years, with the advancement of technology, unmanned
aerial vehicle (UAV) systems have become increasingly sophisticated.
Various industries, including military applications, have been eager to adopt UAVs. Consequently, there is a growing need for research and tracking of UAVs. This paper focuses on using the Auxiliary Beam Pair algorithm to track the angle between a UAV and a base station. However, when using a uniform planar array, the algorithm can only obtain an approximate angle. To mitigate this approximation error, we propose using the angle calculated by the algorithm at the previous sampling time as the boresight for the next sampling point. Additionally, we aim to further reduce the error by incorporating a Extended Kalman filter to correct the
approximation and by using machine learning to adjust the parameters of the Auxiliary Beam Pair algorithm. The angles are then recalculated using the algorithm, and the performance of these methods under different environments is compared. Finally, the advantages and disadvantages of each method are analyzed based on the results.
關鍵字(中) ★ 均勻平面天線陣列
★ 波束成形
★ 波束搜索
★ 角度估計
★ 輔助波束對
★ 擴展型卡爾曼濾波器
★ 深度神經網路
★ 卷積神經網路
關鍵字(英) ★ UPA
★ Beamforming
★ Beam searching
★ DOA estimation
★ ABP
★ EKF
★ DNN
★ CNN
論文目次 中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . i
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . ii
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . i
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . ii
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . iv
第1 章序論. . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 章節架構. . . . . . . . . . . . . . . . . . . . . . . 3
第2 章系統設計與模型. . . . . . . . . . . . . . . . . . . . 4
2.1 相位陣列天線基本架構. . . . . . . . . . . . . . . . . . 4
2.2 通訊系統架構. . . . . . . . . . . . . . . . . . . . . 7
2.2.1 波束控制(Beam steering) . . . . . . . . . . . . . . 7
2.2.2 接收端訊號處理. . . . . . . . . . . . . . . . . . . 8
2.3 空間特徵檢測. . . . . . . . . . . . . . . . . . . . . 9
第3 章角度搜索並追蹤. . . . . . . . . . . . . . . . . . . .12
3.1 接收波束訊號. . . . . . . . . . . . . . . . . . . . . 12
3.2 輔助波束對. . . . . . . . . . . . . . . . . . . . . . 13
3.2.1 估計誤差. . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 降低誤差. . . . . . . . . . . . . . . . . . . . . . 20
3.3 擴展卡爾曼濾波器. . . . . . . . . . . . . . . . . . . 21
3.3.1 EKF 基於ABP . . . . . . . . . . . . . . . . . . . . 25
3.4 機器學習. . . . . . . . . . . . . . . . . . . . . . . 27
3.4.1 深度神經網路. . . . . . . . . . . . . . . . . . . . 27
3.4.2 捲積神經網路. . . . . . . . . . . . . . . . . . . . 31
第4 章機器學習性能比較. . . . . . . . . . . . . . . . . . .34
4.1 DNN . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 CNN . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.1 性能比較. . . . . . . . . . . . . . . . . . . . . . 54
第5 章模擬結果與分析. . . . . . . . . . . . . . . . . . . 59
5.1 每次接收單筆. . . . . . . . . . . . . . . . . . . . . 61
5.2 每次接收1000 筆. . . . . . . . . . . . . . . . . . . . 65
第6 章結論. . . . . . . . . . . . . . . . . . . . . . . . 70
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . 71
參考文獻 [1] A. Tekin and A. Emira, High Frequency Communication and Sensing:
Traveling-wave Techniques. CRC Press, 2018.
[2] A. Morsali, S. Norouzi, and B. Champagne, “Single rf chain hybrid
analog/digital beamforming for mmwave massive-mimo,” in
2019 IEEE Global Conference on Signal and Information Processing
(GlobalSIP), 2019, pp. 1–5.
[3] A. Dhami, N. N. Parekh, and Y. Vasavada, “Digital beamforming
for antenna arrays,” in 2019 IEEE Indian Conference on Antennas
and Propogation (InCAP), 2019, pp. 1–5.
[4] R. O. Schmidt, A signal subspace approach to multiple emitter location
and spectral estimation. Stanford University, 1982.
[5] Z. I. Khan, R. A. Awang, A. A. Sulaiman, M. H. Jusoh, N. H. Baba,
M. M. Kamal, and N. I. Khan, “Performance analysis for estimation
of signal parameters via rotational invariance technique (esprit)
in estimating direction of arrival for linear array antenna,” in 2008
IEEE International RF and Microwave Conference, 2008, pp. 530–
533.
[6] D. Zhu, J. Choi, and R. W. Heath, “Auxiliary beam pair enabled
aod and aoa estimation in closed-loop large-scale millimeter-wave
mimo systems,” IEEE Transactions on Wireless Communications,
vol. 16, no. 7, pp. 4770–4785, 2017.
[7] ——, “Auxiliary beam pair design in mmwave cellular systems with
hybrid precoding and limited feedback,” in 2016 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
2016, pp. 3391–3395.
[8] ——, “Auxiliary beam pair enabled aod and aoa estimation in
mmwave fd-mimo systems,” in 2016 IEEE Global Communications
Conference (GLOBECOM), 2016, pp. 1–6.
[9] S. Nawaz and S. A. Hassan, “Auxiliary beam pair enabled initial
access in mmwave systems: Analysis and design insights,”
in 2019 IEEE International Conference on Communications Workshops
(ICC Workshops), 2019, pp. 1–6.
[10] ——, “Optimal beam separation in auxiliary beam pair-based initial
access in mmwave d2d networks,” in 2020 IEEE 91st Vehicular
Technology Conference (VTC2020-Spring), 2020, pp. 1–5.
[11] C. A. Balanis, Antenna theory: analysis and design. John wiley
& sons, 2015.
[12] H.-L. Song, Y.-c. Ko, J. Cho, and C. Hwang, “Beam tracking algorithm
for uav communications using kalman filter,” in 2020 International
Conference on Information and Communication Technology
Convergence (ICTC), 2020, pp. 1101–1104.
[13] G. A. Terejanu et al., “Extended kalman filter tutorial,” University
at Buffalo, vol. 27, 2008.
[14] A. B. Amjoud and M. Amrouch, “Object detection using deep learning,
cnns and vision transformers: A review,” IEEE Access, vol. 11,
pp. 35 479–35 516, 2023.
[15] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” nature, vol. 323, no. 6088,
pp. 533–536, 1986.
[16] Z.-M. Liu, C. Zhang, and S. Y. Philip, “Direction-of-arrival estimation
based on deep neural networks with robustness to array
imperfections,” IEEE Transactions on Antennas and Propagation,
vol. 66, no. 12, pp. 7315–7327, 2018.
[17] F. Yu, D. Stamoulis, D. Wang, D. Lymberopoulos, and X. Chen,
“Exploring the design space of efficient deep neural networks,” in
2020 IEEE/ACM Symposium on Edge Computing (SEC), 2020, pp.
317–318.
[18] D.-C. Chang and Y.-T. Liu, “Doa estimation based on convolutional
autoencoder in the presence of array imperfections,” Electronics,
vol. 12, no. 3, p. 771, 2023.
[19] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of convolutional
neural networks: analysis, applications, and prospects,” IEEE
transactions on neural networks and learning systems, vol. 33,
no. 12, pp. 6999–7019, 2021.
[20] A. Molisch, M. Steinbauer, M. Toeltsch, E. Bonek, and R. Thoma,
“Capacity of mimo systems based on measured wireless channels,”
IEEE Journal on Selected Areas in Communications, vol. 20, no. 3,
pp. 561–569, 2002.
[21] A. J. Paulraj, D. A. Gore, R. U. Nabar, and H. Bolcskei, “An
overview of mimo communications-a key to gigabit wireless,” Proceedings
of the IEEE, vol. 92, no. 2, pp. 198–218, 2004.
[22] S. J. Orfanidis, “Electromagnetic waves and antennas,” 2002.
[23] D. Zhu, J. Choi, Q. Cheng, W. Xiao, and R. W. Heath, “Highresolution
angle tracking for mobile wideband millimeter-wave systems
with antenna array calibration,” IEEE Transactions on Wireless
Communications, vol. 17, no. 11, pp. 7173–7189, 2018.
[24] A. Agarap, “Deep learning using rectified linear units (relu),” arXiv
preprint arXiv:1803.08375, 2018.
指導教授 張大中(Dah-Chung Chang) 審核日期 2025-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明