博碩士論文 110552002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.188.99.196
姓名 潘彥廷(Yen-Ting Pan)  查詢紙本館藏   畢業系所 資訊工程學系在職專班
論文名稱 整合 MIAT 方法論與大型語言模型於系統設計:以指紋影像增強系統為案例研究
(Integration of MIAT Methodology and Large Language Models for System Design:A Case Study of Fingerprint Enhancement System)
相關論文
★ 整合GRAFCET虛擬機器的智慧型控制器開發平台★ 分散式工業電子看板網路系統設計與實作
★ 設計與實作一個基於雙攝影機視覺系統的雙點觸控螢幕★ 智慧型機器人的嵌入式計算平台
★ 一個即時移動物偵測與追蹤的嵌入式系統★ 一個固態硬碟的多處理器架構與分散式控制演算法
★ 基於立體視覺手勢辨識的人機互動系統★ 整合仿生智慧行為控制的機器人系統晶片設計
★ 嵌入式無線影像感測網路的設計與實作★ 以雙核心處理器為基礎之車牌辨識系統
★ 基於立體視覺的連續三維手勢辨識★ 微型、超低功耗無線感測網路控制器設計與硬體實作
★ 串流影像之即時人臉偵測、追蹤與辨識─嵌入式系統設計★ 一個快速立體視覺系統的嵌入式硬體設計
★ 即時連續影像接合系統設計與實作★ 基於雙核心平台的嵌入式步態辨識系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-2-1以後開放)
摘要(中) 本論文探討了一個整合MIAT 方法論與大型語言模型(LLM)的創新系統設計方法,並選擇指紋影像增強系統作為實證案例。研究採用 MIAT 方法論進行系統設計,其特色在於強調系統架構的層級化模組設計,並透過離散事件模型進行演算法建模,進而產生具備可維護性與延展性的系統程式。研究中運用 LLM 技術,自動生成各個離散事件狀態對應的 Action 程式碼。在系統實作方面,我們建構了一個模組化的指紋影像增強系統,其中包含了前處理、Gabor 濾波與 Median 濾波等功能模組。系統效能評估採用 FVC2004 指紋資料庫,針對不同濾波方法進行對比實驗,評估系統在影像品質改善程度與執行效能兩個面向的表現。測試結果證實了系統在模組化架構下具備良好的濾波技術切換彈性,成功實現了可重構性,同時驗證了各個功能模組的獨立性與可靠度性。實驗結果證實了 LLM 在自動化程式生成可以無縫結合 MIAT 方法論的開發流程,在提升系統開發時程與程式品質方面的表現出很大的優勢。本研究不僅為指紋影像處理領域提供創新解決方案,其提出的整合式系統設計方法論也可延伸應用至其他需要高度模組化與彈性設計的資訊系統開發。
摘要(英) This thesis presents an innovative system design approach that integrates MIAT methodology with Large Language Models (LLM), using a fingerprint image enhancement system as a validation case study. The research employs MIAT methodology for system design, emphasizing hierarchical modular architecture design and algorithmic modeling through discrete event models to generate maintainable and extensible system code. The study innovatively utilizes LLM technology to automatically generate action code corresponding to each discrete event state.
In terms of system implementation, we constructed a modular fingerprint image enhancement system comprising preprocessing, Gabor filtering, and Median filtering modules. System performance evaluation was conducted using the FVC2004 fingerprint database, comparing different filtering methods to assess both image quality improvement and execution performance. Test results confirmed that the system achieved excellent flexibility in switching filtering techniques under its modular architecture, successfully realizing reconfigurability while validating the independence and reliability of each functional module. Experimental results demonstrated that LLM′s automated code generation could seamlessly integrate with the MIAT methodology development process, showing significant advantages in improving system development timeline and code quality. This research not only provides an innovative solution for fingerprint image processing but also presents an integrated system design methodology that can be extended to other information system developments requiring high modularity and flexible design.
關鍵字(中) ★ 指紋影像增強
★ MIAT 方法論
★ 離散事件建模
★ 高階合成
★ 大型語言模型
關鍵字(英)
論文目次 中文摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 、緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 研究架構 3
第二章 、指紋影像增強方法 4
2.1 指紋特徵 4
2.2 指紋影像增強方法與技術 6
2.2.1 正規化(Normalization) 8
2.2.2 二值化技術(Binarization) 10
2.2.3 直方圖均值化(Histogram Equalization) 12
2.2.4 傅立葉轉換方法(Fourier transform) 14
2.2.5 Gabor 濾波器 15
2.2.6 Median 濾波器 17
2.3 指紋影像增強效果評估指標 NFIQ2 20
第三章 、可重構指紋影像增強架構設計 21
3.1 MIAT 方法論 21
3.2 應用大型語言模型於 Grafcet 架構生成之實驗 22
3.3 可重構指紋影像增強架構設計 23
3.3.1 指紋影像增強模組(A1) 24
3.3.2 指紋預處理模組(A11) 25
3.3.3 脊密度影像處理模組(A14) 26
3.3.4 細紋連接與分岔影像處理模組(A15) 27
3.4 指紋影像增強離散事件建模 28
3.4.1 指紋影像增強離散事件建模 30
3.4.2 指紋預處理離散事件建模 31
3.4.3 脊密度影像離散事件建模 32
3.4.4 細紋影像處理離散事件建模 33
第四章 、可重構指紋影像增強實驗 34
4.1 實驗環境與資料庫 34
4.2 應用大型語言模型於 Grafcet 架構生成之實驗 36
4.2.1 Claude3.5 生成指紋影像增強 Grafcet 系統架構之步驟 36
4.2.2 Claude3.5 生成過程中的除錯策略 40
4.3 可重構指紋影像增強架構實驗 41
4.3.1 Median Filter 實驗 41
4.3.2 Gabor Filter 實驗 43
4.3.3 實驗結果比較 46
4.4 實驗結果討論 50
第五章 、結論與未來展望 51
5.1 結論 51
5.2 研究方向 51
參考文獻 53
附錄一 可重構指紋增強 Grafcet 程式架構 59
附錄二 Claude 生成 Grafcet 對話流程 71
附錄三 實驗結果紀錄 75
參考文獻 [1] R. Gupta, M. Khari, D. Gupta, R. G. Crespo, “Fingerprint image enhancement and reconstruction using the orientation and phase reconstruction,” Information
Sciences, vol. 530, pp. 201-218, 2020.
[2] M. Chhabra, M. Shukla & K. K. Ravulakollu, “State-of-the-art: A systematic
literature review of image segmentation in latent fingerprint forensics,” Recent
Advances in Computer Science and Communications (Formerly: Recent Patents
on Computer Science, vol. 13, no. 6, pp. 1115-1125, 2020.
[3] P. Qian, A. Li and M. Liu, “Latent Fingerprint Enhancement Based on DenseUNet,”2019 International Conference on Biometrics (ICB), Crete, Greece, pp. 1-6, 2019.
[4] A. A. Mohammad, A. Fatimah, A. Mahmoud, J. Yaser & G. Brij, “Impact of digital fingerprint image quality on the fingerprint recognition accuracy,” Multimedia Tools and Applications, vol. 78, no.3, pp. 3649-3688, 2019.
[5] Z. Yang, Y. Xu and G. Lu, "Efficient Method for High-Resolution Fingerprint Image Enhancement Using Deep Residual Network," 2020 IEEE Symposium Series on Computational Intelligence (SSCI),Canberra, ACT, Australia, 2020, pp. 1725-1730.
[6] C.H. Chen, C.T. Liu, “Person Re-Identification Microservice over Artificial
Intelligence Internet of Things Edge Computing Gateway,” Electronics 2021,
vol.10, no.18, pp. 2264, 2021.
[7] N. T. Le, J.-W. Wang, D. H. Le, C.-C. Wang and T. N. Nguyen, “Fingerprint
Enhancement Based on Tensor of Wavelet Subbands for Classification,” IEEE
Access, vol. 8, pp. 6602-6615, 2020.
[8] H. Pan, K. Chang, & S. Pan, “Research on Fingerprint Image
Enhancement Algorithm Based on Adaptive Fractional
Differential,” IOP Conference Series: Earth and Environmental
Science, vol. 234, no.1, pp. 012012, 2019.
[9] S. Hajri, F. Kallel, A. B. Hamida and A. Nait-Ali, “A Comparative Study of
Fingerprint Enhancement Algorithms,” 2020 5th International Conference on
Advanced Technologies for Signal and Image Processing (ATSIP), Sousse, Tunisia,pp. 1-6, 2020.
[10] C. Gottschlich, “Curved-region-based ridge frequency estimation and curved Gabor filters for fingerprint image enhancement,” IEEE Transactions on Image Processing, vol. 21, no. 4, pp. 2220-2227, 2012.
[11] X. Lin, L. Tian, Q. Du,& C. Qin, “Improved Decision Based Adaptive Threshold Median Filter for Fingerprint Image Salt and Pepper Noise
Denoising,” 2022 21st International Symposium on Communications
and Information Technologies (ISCIT), pp. 233-237, 2022.
[12] A. Alekseev and A. Bobe, "GaborNet: Gabor filters with learnable
parameters in deep convolutional neural network," 2019
International Conference on Engineering and Telecommunication
(EnT) , Dolgoprudny, Russia, 2019, pp. 1-4.
[13] I. Katib, “Implementing Median Filter on Heterogeneous Architectures,” International Journal of Computer Applications,vol. 176, no.19, May 2020.
[14] C.H. Chen, Mi.Y. Lin, Y.C. Shih, "High-Precision Time Synchronization Chip Design for Industrial Sensor and Actuator Network," Microprocessors and Microsystems, Volume 91, no. 104507,June 2022.
[15] A. Gomez, P. Krus, M. Panarotto, & O. Isaksson, “Large language
models in complex system design,” Proceedings of the Design Society, vol. 4, pp. 2197–2206, 2024.
[16] X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo, D. Lo,J. Grundy, & H. Wang, “Large Language Models for SoftwareEngineering: A Systematic Literature Review,” 2023,ArXiv:2308.10620.
[17] R. Dhaneshwar, M. Kaur, & M. Kaur, “An investigation of latent fingerprinting
techniques,” Egyptian Journal of Forensic Sciences, vol. 11, no. 33, 2021.
[18] N. Teymourian, H. Izadkhah and A. Isazadeh, “A Fast Clustering Algorithm for Modularization of Large-Scale Software Systems,” IEEE Transactions on
Software Engineering, vol. 48, no. 4, pp. 1451-1462, Apr. l, 2022.
[19] A. Prajapati and J. K. Chhabra, “Improving modular structure of software system using structural and lexical dependency,” Information and Software Technology,vol. 82, pp. 96-120, 2017.
[20] F. Huang and H. Madeira, "Targeted Code Inspection based on Human
Errors," 2021 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW), Wuhan, pp. 274-275, 2021.
[21] A. Isazadeh, H. Izadkhah and I. Elgedawy, “Source code modularization: theory and techniques,” Springer, 2017.
[22] H. Shams, T. Jan, A.A. Khalil, N. Ahmad, A. Munir and R. A. Khalil, “Fingerprint image enhancement using multiple filters,” PeerJ Comput. Sci., vol. 9, pp. 1183,2023.
[23] C.H. Chen, C.Y. Chen, and T.M. Hsu, “Singular Points Detection in Fingerprints Based on Poincare Index and Local Binary Patterns,” Journal of Imaging Science and Technology, Vol. 63, no.3, pp.030401-1-7, May-June 2019.
[24] A. C. Lomte, “Biometric fingerprint authentication with minutiae using ridge
feature extraction,” 2015 International Conference on Pervasive Computing
(ICPC), Pune, India, pp. 1-6, 2015.
[25] M. E. Nandi, et al., “VARIATION IN THUMBPRINT PATTERNS AND RIDGE
DENSITY COUNTS BETWEEN TWO MAJOR ETHNIC GROUPS IN NIGERIA,” Journal of Experimental Research, vol. 9, no.2, 2021.
[26] I.G. Babatunde, “Fingerprint Matching Using Minutiae-Singular Points
Network,” International Journal of Signal Processing Image Processing and
Pattern Recognition, vol. 8, no. 2, pp. 375-388, 2015.
[27] O.S. Ogunlana, “Impact of noisy singular point detection on performance of
fingerprint matching,” Covenant Journal of Informatics and Communication
Technology, vol. 11, no. 1, Jul. 2023.
[28] D. N. Lepikhova, V. U. Gudkov and A. A. Kirsanova, “An Overview of Fingerprint Description Models,” Bulletin of the South Ural State University. Series: Computational Mathematics and Software Engineering, vol. X, no. Y, pp. Z1-Z2,2018.
[29] C. C. Liao and C. T. Chiu, “Fingerprint recognition with ridge features and
minutiae on distortion,” Proceedings of 2016 IEEE International Conference on
Acoustics Speech and Signal Processing (lCASSP), pp. 2109-2113, 2016.
[30] K. Cao, E. Liu and A. K. Jain, “Segmentation and Enhancement of Latent
Fngerprints: A Coarse to Fine Ridge Structure Dictionary,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 36, no. 9, pp. 1847-1859, 2014.
[31] A. K. Jain and K. Cao, “Fingerprint image analysis: Role of orientation patch and ridge structure dictionaries,” Geometry Driven Statist., vol. 121, pp. 288, Apr. 2015.
[32] H. M. Ali and S. Corraya, “Line Profile-Based Fingerprint Matching,
” Proceedings of 2016 International Workshop on Computational Intelligence (lWCI), pp. 115-119, 2016.
[33] V. Gudkov and D. Lepikhova, “Fingerprint Model Based on Fingerprint Image Topology and Ridge Count Values,” 2018 Global Smart Industry Conference(GloSIC), Chelyabinsk, Russia, pp. 1-5, 2018.
[34] L. Cao and Y. Wang, “Fingerprint image enhancement and minutiae extractionalgorithm,” M.S thesis, Department of Physics and Electrical Engineering,Linnaeus University, Sweden, 2017.
[35] S. Sen, M. Paul, R. SinhaRoy and C. K. Sengupta, “Overlapped Fingerprint Separation using Graph based Model,” 2022 IEEE Silchar Subsection Conference(SILCON), Silchar, India, pp. 1-5, 2022.
[36] A. A. Abbood, M. S. H. Al-Tamimi, S. U. Peters, G. Sulong, “New Combined
Technique for Fingerprint Image Enhancement,” Modern Applied Science, vol. 11,no.1, pp.222-234, 2016.
[37] M. B. Patel, S. M. Parikh and A. R. Patel, “Global Normalization for Fingerprint Image Enhancement,” International Conference On Computational Vision and Bio-Inspired Computing, pp. 1059-1066, Sep. 2020.
[38] A. Shetter, S. Prajwalasimha and H. Swapna, “Finger Print Image Enhancement Using Thresholding and Binarization Techniques,” 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India, pp. 899-901, 2018.
[39] M. Hossain, M. Islam, “Fingerprint matching through minutiae based feature extraction method,” Am. J. Sci. Technol., vol 2, no. 6, pp.262-269, 2015.
[40] M. B. Patel, S. M. Parikh and A. R. Patel, “Performance Improvement in
Binarization for Fingerprint Recognition,” IOSR Journal of Computer
Engineering (IOSR-JCE), vol. 19, no. 3, pp. 68-74, Jun. 2017.
[41] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern., vol. SMC-9, no. 1, pp. 62-66, Jan. 1979.
[42] S. Bana and D. Kaur, “Fingerprint recognition using image
segmentation,” IJAEST, vol. 5, no. 1, pp. 012-023, 2011.
[43] S. Makhija, A. Khatwani and M. M. Roja, “Performance analysis of latent
fingerprint enhancement techniques,” 2017 International Conference on
Innovative Mechanisms for Industry Applications (ICIMIA), Bengaluru, India,
2017, pp. 96-100.
[44] V. Hemalatha, P.B. Selvapriya and K.C. Maheswari, “An inclusive analysis on
various image enhancement techniques,” IJMER, vol. 4, no. 12, 2014.
[45] C. Wang and Z. Ye, “Brightness preserving histogram equalization with maximum entropy: a variational perspective,” IEEE Transactions on Consumer Electronics, vol. 51, no. 4, 2005.
[46] S. Dyre and C. P. Sumathi, “Hybrid approach to enhancing fingerprint images using filters in the frequency domain,” 2014 IEEE International Conference on Computational Intelligence and Computing Research, Coimbatore, India, pp. 1-6, 2014.
[47] J. Yang, L. Liu, T. Jiang, Y. Fan, “A modified Gabor filter design method for
fingerprint image enhancement,” Pattern Recognition Letters, vol. 24, Issue 12,
pp. 1805-1817, 2003.
[48] M. Khfagy, Y. AbdelSatar, O. Reyad, N. Omran, “An integrated smoothing method for fingerprint recognition enhancement,” Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2016, vol. 533, pp. 407-416, 2017.
[49] K. Han, Z. Wang and Z. Chen, “Fingerprint Image Enhancement Method based on Adaptive Median Filter,” 2018 24th Asia-Pacific Conference on Communications (APCC), Ningbo, China, pp. 40-44, 2018.
[50] K. Han, “Fingerprint Image Enhancement Processing Method Based on Weighted Median Filtering,” 2019 20th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing (SNPD), Toyama, Japan, pp. 114-120, 2019.
[51] M. A. Alsmirat, F. Al-Alem, M. Al-Ayyoub, Y. Jaraweh and B. Gupta, “Impact of digital fingerprint image quality on the fingerprint recognition accuracy,” Multimedia Tools Appl., vol. 78, pp. 3649-3688, Feb. 2019.
[52] C.H. Chen, C.S. An, C.Y. Chen, “Fingerprint Quality Assessment Based on
Texture and Geometric Features,” Journal of Imaging Science and echnology, Journal of Imaging Science and Technology, vol.64, no.4, pp. 40403-1-40403-7(7), Jul. 2020.
[53] “NFIQ2.0: NIST fingerprint image quality 2.0,” [online] Available:https://github.com/usnistgov/NFIQ2.
[54] E. Tabassi, M. Olsen, O. Bausinger, C. Busch, A. Figlarz, G. Fiumara, O. Henniger and J. Merkle, “NFIQ 2.0—NIST Fingerprint Image Quality,” NIST-IR 8382,2021.
[55] B. S. Emmanuel, M. B. Mu′azu, S. M. Sani, and S. Garba,“A Review of Wavelet-Based Image Processing Methods for Fingerprint Compression in Biometric Application,” British Journal of Mathematics & Computer Science, vol. 4, no. 9, pp. 2781-2798, 2014.
[56] M. Hendre, S. Patil and A. Abhyankar, “Utility of quality metrics in partial
fingerprint recognition, “ International Journal of Computing and Digital Systems, 2021.
[57] C.H. Chen, M.Y. Lin, X.C. Guo, “High-level Modeling and Synthesis of Smart
Sensor Networks for Industrial Internet of Things,” Computers & Electrical
Engineering, Vol.61, pp.48–66, July 2017.
[58] V. Ashish, et al, “Attention is all you need,” in Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, USA, 2017, pp. 5998–6008.
[59] M. Chen et al., “Evaluating large language models trained on code,”2021, arXiv:2107.03374.
[60] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, et al.,
“Learning transferable visual models from natural language supervision,” Proc.
38th Int. Conf. Machine Learning, pp. 8748-8763, 2021.
[61] L. Caruccio, S. Cirillo, G. Polese, G. Solimando, S. Sundaramurthy & G. Tortora, “Claude 2.0 large language model: Tackling a real-world classification problem with a new iterative prompt engineering approach, ” Intelligent Systems with Applications, vol. 21, no. 200336, 2024.
[62] I. Kovac and P. Marak, “Finger vein recognition: Utilization of adaptive Gabor filters in the enhancement stage combined with SIFT/SURF-based feature
extraction,” Signal Image Video Process, vol. 2022, pp. 1-7, Jun. 2022.
指導教授 陳慶瀚(Ching-Han Chen) 審核日期 2025-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明