參考文獻 |
Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A next-generation hyperparameter optimization framework. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2623-2631. https://doi.org/10.1145/3292500.3330701
Alotaibi, Y., Malik, M. N., Khan, H. H., Batool, A., Alsufyani, A., & Alghamdi, S. (2021). Suggestion mining from opinionated text of big social media data. Computers, Materials & Continua, 68, 3323-3338. https://doi.org/10.32604/cmc.2021.016727
Anand, S., Mahata, D., Aggarwal, K., Mehnaz, L., Shahid, S., Zhang, H., Kumar, Y., Shah, R., & Uppal, K. (2019). MIDAS at semeval-2019 task 9: Suggestion mining from online reviews using ULMFiT. Proceedings of the 13th International Workshop on Semantic Evaluation, 1213-1217. https://doi.org/10.18653/v1/S19-2213
Bach, N. X., Do Hai, N., & Phuong, T. M. (2016). Personalized recommendation of stories for commenting in forum-based social media. Information Sciences, 352, 48-60. https://doi.org/10.1016/j.ins.2016.03.006
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3, 993-1022.
Blitzer, J., Dredze, M., & Pereira, F. (2007). Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, 440-447.
Blitzer, J., McDonald, R., & Pereira, F. (2006). Domain adaptation with structural correspondence learning. Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing, 120-128. https://doi.org/10.3115/1610075.1610094
Cabanski, T. (2019). DS at semeval-2019 task 9: From suggestion mining with neural networks to adversarial cross-domain classification. Proceedings of the 13th International Workshop on Semantic Evaluation, 1192-1198. https://doi.org/10.18653/v1/S19-2209
Chen, M., Xu, Z., Weinberger, K. Q., & Sha, F. (2012). Marginalized denoising autoencoders for domain adaptation. arXiv preprint arXiv:1206.4683. https://arxiv.org/abs/1206.4683
Chen, X., & Cardie, C. (2018). Multinomial adversarial networks for multi-domain text classification. Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 1, 1226-1240. https://doi.org/10.18653/v1/N18-1111
Ding, Y., Zhou, X., & Zhang, X. (2019). YNU_DYX at semeval-2019 task 9: A stacked bilstm for suggestion mining classification. In Proceedings of the 13th International Workshop on Semantic Evaluation, 1272-1276. https://doi.org/10.18653/v1/S19-2223
Du, C., Sun, H., Wang, J., Qi, Q., & Liao, J. (2020). Adversarial and domain-aware bert for cross-domain sentiment analysis. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 4019-4028 , Online. https://doi.org/10.18653/v1/2020.acl-main.370
Ezen-Can, A., & Can, E. F. (2019). Hybrid RNN at semeval-2019 task 9: Blending information sources for domain-independent suggestion mining. Proceedings of the 13th International Workshop on Semantic Evaluation, 1199-1203. https://doi.org/10.18653/v1/S19-2210
Ganin,Y., & Lempitsky, V. (2015). Unsupervised domain adaptation by backpropagation. Proceedings of the 32nd International Conference on International Conference on Machine Learning, 37, 1180-1189. https://doi.org/10.48550/arXiv.1409.7495
Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., March, M., & Lempitsky, V. (2016). Domain-adversarial training of neural networks. Journal of Machine Learning Research, 17(59), 1-35. https://dl.acm.org/doi/10.5555/2946645.2946704
Glorot, X., Bordes, A., & Bengio, Y. (2011). Domain adaptation for large-scale sentiment classification: A deep learning approach. Proceedings of the 28th International Conference on Machine Learning (ICML-11), 513-520. https://dl.acm.org/doi/10.5555/3104482.3104547
Goel, P., & Ganatra, A. (2023). Unsupervised domain adaptation for image classification and object detection using guided transfer learning approach and JS divergence. Sensors, 23(9), 4436. https://doi.org/10.3390/s23094436
Golchha, H., Gupta, D., Ekbal, A., & Bhattacharyya, P. (2018). Helping each other: A framework for customer-to-customer suggestion mining using a semi-supervised deep neural network. arXiv preprint arXiv:1811.00379. https://doi.org/10.48550/arXiv.1811.00379
Gulati, S. (2024). Enhancing sentiment analysis in short texts with pos-embedded LSTM models. 2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI), 1-5, Gwalior, India. https://doi.org/10.1109/IATMSI60426.2024.10502918
Khan, U. B. R., Akhtar, N., & Sana, E. (2023). Ensemble approach for suggestion mining using deep recurrent convolutional networks. Proceedings of Data Analytics and Management,788 , 67-76. https://doi.org/10.1007/978-981-99-6553-3_5
Klimaszewski, M., & Andruszkiewicz, P. (2019). WUT at semeval-2019 task 9: Domain-adversarial neural networks for domain adaptation in suggestion mining. Proceedings of the 13th International Workshop on Semantic Evaluation, 1262-1266. https://doi.org/10.18653/v1/S19-2221
Kowsari, K., Heidarysafa, M., Brown, D. E., Meimandi, K. J., & Barnes, L. E. (2018). Rmdl: Random multimodel deep learning for classification. Proceedings of the 2nd International Conference on Information System and Data Mining, 19-28. https://doi.org/10.1145/3206098.3206111
Lai, S., Xu, L., Liu, K., & Zhao, J. (2015). Recurrent convolutional neural networks for text classification. Proceedings of the AAAI Conference on Artificial Intelligence, 29(1), 2267- 2273. https://doi.org/10.1609/aaai.v29i1.9513
Laskari, N. K. S., & Kumar, S. (2022). A systematic study on suggestion mining from opinion reviews. Journal of Theoretical and Applied Information Technology, 100(20), 6061-6072.
Leekha, M., Goswami, M., & Jain, M. (2020). A multi-task approach to open domain suggestion mining using language model for text over-sampling. Advances in Information Retrieval: 42nd European Conference on IR Research, ECIR 2020, 223-229, Lisbon, Portugal, 2020, April 14-17. https://doi.org/10.1007/978-3-030-45442-5_28
Lei, T., Zhang, Y., Wang, S. I., Dai, H., & Artzi, Y. (2018). Simple recurrent units for highly parallelizable recurrence. Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 4470-4481. https://doi.org/10.18653/v1/D18-1477
Li, Z., Wei, Y., Zhang, Y., &Yang, Q. (2018). Hierarchical attention transfer network for cross-domain sentiment classification. Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence, 5852-5859.
Li, Z., Zhang, Y., Wei, Y., Wu, Y., & Yang, Q. (2017). End-to-End adversarial memory network for cross-domain sentiment classification. International Joint Conference on Artificial Intelligence, 2237-2243. Melbourne, Australia, 2017, August 19-25. https://doi.org/10.24963/ijcai.2017/311
Lin, H. C. K., Wang, T. H., Lin, G. C., Cheng, S. C., Chen, H. R., & Huang, Y. M. (2020). Applying sentiment analysis to automatically classify consumer comments concerning marketing 4Cs aspects. Applied Soft Computing, 97, 106755. https://doi.org/10.1016/j.asoc.2020.106755
Liu, F., Wang, L., Zhu, X., & Wang, D. (2019). Suggestion mining from online reviews using random multimodel deep learning. 2019 18th IEEE International Conference on Machine Learning and Applications (ICMLA), 667-672, Boca Raton, Florida, USA, 2019, December 16-19. https://doi.org/10.1109/ICMLA.2019.00121
Liu, J., Wang, S., & Sun, Y. (2019). Olenet at semeval-2019 task 9: BERT based multi-perspective models for suggestion mining. Proceedings of the 13th International Workshop on Semantic Evaluation, 1231-1236. https://doi.org/10.18653/v1/S19-2216
Liu, W., Liu, P., Yang, Y., Yi, J., & Zhu, Z. (2019). A< word, part of speech> embedding model for text classification. Expert Systems, 36(6), e12460. https://doi.org/10.1111/exsy.12460
Mikolov, T. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781. https://doi.org/10.48550/arXiv.1301.3781
Negi, S. (2016). Suggestion mining from opinionated text. Proceedings of the ACL 2016 Student Research Workshop, 119-125.
Negi, S., & Buitelaar, P. (2015). Towards the extraction of customer-to-customer suggestions from reviews. Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 2159-2167. https://doi.org/10.18653/v1/D15-1258
Negi, S., & Buitelaar, P. (2017). Suggestion mining from opinionated text. In F. A. Pozzi, E. Fersini, E. Messina, & B. Liu (Eds.), Sentiment analysis in social networks, 129-139. Morgan Kaufmann. https://doi.org/10.1016/B978-0-12-804412-4.00008-5
Negi, S., Daudert, T., & Buitelaar, P. (2019). Semeval-2019 task 9: Suggestion mining from online reviews and forums. Proceedings of the 13th International Workshop on Semantic Evaluation, 877-887. https://doi.org/10.18653/v1/S19-2151
Pan, S. J., Ni, X., Sun, J.-T., Yang, Q., & Chen, Z. (2010). Cross-domain sentiment classification via spectral feature alignment. Proceedings of the 19th International Conference on World Wide Web, 751-760. https://doi.org/10.1145/1772690.1772767
Park, C., Kim, J., Lee, H. G., Amplayo, R. K., Kim, H., Seo, J., & Lee, C. (2019). ThisIsCompetition at semeval-2019 task 9: BERT is unstable for out-of-domain samples. Proceedings of the 13th International Workshop on Semantic Evaluation, 1254-1261. https://doi.org/10.18653/v1/S19-2220
Patnayakuni, S., & Yedidi, N. (2021). A BERT-based deep learning approach for suggestion mining. Journal of Artificial Intelligence, Machine Learning and Data Science, 1(4), 1-9. https://doi.org/10.51219/JAIMLD/siva-prasad-patnayakuni/21
Pecar, S., Simko, M., & Bielikova, M. (2019). NL-FIIT at semeval-2019 task 9: Neural model ensemble for suggestion mining. Proceedings of the 13th International Workshop on Semantic Evaluation, 1218-1223. https://doi.org/10.18653/v1/S19-2214
Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1532–1543. https://doi.org/10.3115/v1/D14-1162
Phan, M. H., & Ogunbona, P. O. (2020). Modelling context and syntactical features for aspect-based sentiment analysis. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 3211-3220. https://doi.org/10.18653/v1/2020.acl-main.293
Potamias, R. A., Neofytou, A., & Siolas, G. (2019). NTUA-ISLab at semeval-2019 task 9: Mining suggestions in the wild. Proceedings of the 13th International Workshop on Semantic Evaluation, 1224-1230. https://doi.org/10.18653/v1/S19-2215
Riaz, S., Saghir, A., Khan, M. J., Khan, H., Khan, H. S., & Khan, M. J. (2024). TransLSTM: A hybrid LSTM-Transformer model for fine-grained suggestion mining. Natural Language Processing Journal, 8, 100089. https://doi.org/10.1016/j.nlp.2024.100089
Singal, S., Goel, T., Chopra, S., & Dahiya, S. (2020). Open domain suggestion mining leveraging fine-grained analysis (workshop paper). 2020 IEEE Sixth International Conference on Multimedia Big Data (BigMM), 414-423, New Delhi, India, 2020, September 24-26. https://doi.org/10.1109/BigMM50055.2020.00069
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, ?., & Polosukhin, I. (2017). Attention is all you need. Proceedings of the 31st International Conference on Neural Information Processing Systems, 6000-6010. https://dl.acm.org/doi/10.5555/3295222.3295349
Wachsmuth, H., Trenkmann, M., Stein, B., Engels, G., & Palakarska, T. (2014). A review corpus for argumentation analysis. Computational Linguistics and Intelligent Text Processing: 15th International Conference, CICLing 2014, Proceedings, Part II, 15, 115-127. https://doi.org/10.1007/978-3-642-54903-8_10
Wu, L., & Wang, T. (2022). Aspect-level sentiment analysis model incorporating part-of-speech. 2022 International Conference on Machine Learning and Knowledge Engineering (MLKE), 187-190. Guilin, China, 2022, February 25-27. https://doi.org/10.1109/MLKE55170.2022.00043
Yu, J., & Jiang, J. (2016). Learning sentence embeddings with auxiliary tasks for cross-domain sentiment classification. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 236-246. https://doi.org/10.18653/v1/D16-1023
Zhang, K., Zhang, H., Liu, Q., Zhao, H., Zhu, H., & Chen, E. (2019). Interactive attention transfer network for cross-domain sentiment classification. Proceedings of the AAAI Conference on Artificial Intelligence, 5773-5780. https://doi.org/10.1609/aaai.v33i01.33015773
Zhu, Y., Qiu, Y., Wu, Q., Wang, F. L., & Rao, Y. (2023). Topic Driven Adaptive Network for cross-domain sentiment classification. Information Processing & Management, 60(2), 103230. https://doi.org/10.1016/j.ipm.2022.103230
Zhuang, Y. (2019). Yimmon at semeval-2019 task 9: Suggestion mining with hybrid augmented approaches. Proceedings of the 13th International Workshop on Semantic Evaluation, 1267-1271. https://doi.org/10.18653/v1/S19-2222 |