博碩士論文 111423074 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.119.107.255
姓名 黃佩怡(Pei-I Huang)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 跨領域建議探勘任務之研究─應用詞性嵌入於領域適應技術
(Research on Cross-domain Suggestion Mining Tasks: Application of Part-of-Speech Embedding in Domain Adaptation Techniques)
相關論文
★ Hybrid Architecture for Intent Detection through Integration of Data Augmentation in Text and Feature Space
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-1-1以後開放)
摘要(中) 隨著網路的快速發展,對網路評論的研究也日益增加,探討評論中是否含有建議內容已成為一個重要的研究方向。然而,隨著評論數量持續攀升,要瀏覽所有評論並篩選出所需的建議資訊變得愈加困難,因此如何從評論文本中有效萃取建議資訊成為一個值得深入探討的問題。
由於針對不同領域標記資料集需要大量成本,本研究採用領域適應架構進行跨領域訓練。在現有應用領域適應技術於跨領域建議探勘的研究中,較少有關於利用領域特定句法特徵的探討。因此本研究以領域適應架構為基礎,引入詞性標籤序列來表示句法,並使用Zhu et al. (2023)提出的注意力網路來萃取領域特定句法特徵,藉由提升模型對領域特定句法的關注程度,以改善跨領域建議探勘的準確性和效能。實驗結果顯示,與僅使用文本輸入的領域適應架構模型相比,額外引入詞性標籤序列來萃取領域特定句法特徵可以提升跨領域建議探勘的 F1 分數。此外,透過對含有領域特定句法的文本進行分析,本研究提出的方法能有效過濾掉更多不含建議內容的評論,進而減少使用者在大量評論中尋找建議資訊所需的時間。
摘要(英) With the rapid development of the internet, research on online reviews has also increased significantly. Investigating whether reviews contain suggestion content has become an important research direction. However, as the volume of reviews continues to rise, browsing all reviews to filter out the necessary suggestion information is becoming increasingly challenging. Thus, effectively extracting suggestion information from review texts has become a topic worthy of in-depth exploration.
Due to the high cost of labeling datasets for different domains, this study adopts a domain adaptation architecture for cross-domain training. In existing studies that apply domain adaptation techniques to cross-domain suggestion mining, there is relatively little discussion about utilizing domain-specific syntactic features. Therefore, this study introduces part-of-speech (POS) tag sequences to represent syntax within a domain adaptation framework and employs the attention network proposed by Zhu et al. (2023) to extract domain-specific syntactic features. By enhancing the model′s focus on domain-specific syntax, the goal is to improve the accuracy and performance of cross-domain suggestion mining.
Experimental results show that, compared to domain adaptation models that use only textual input, the additional incorporation of POS tag sequences to extract domain-specific syntactic features can improve the F1 score in cross-domain suggestion mining. Furthermore, by analyzing texts containing domain-specific syntax, the proposed method effectively filters out more reviews without suggestion content, thereby reducing the time users spend searching for suggestion information among a large number of reviews.
關鍵字(中) ★ 建議探勘
★ 跨領域建議探勘
★ 領域適應
★ 文本分類
關鍵字(英) ★ Suggestion mining
★ Cross-domain suggestion mining
★ Domain adaptation
★ Text classification
論文目次 摘要 i
Abstract ii
圖目錄 v
表目錄 vi
1. 緒論 1
1-1 研究背景 1
1-2 研究動機 2
1-3 研究目的 3
1-4 本論文章節結構 4
2. 文獻探討 5
2-1 研究問題定義 5
2-2 基於深度學習模型的方法 6
2-2-1 單一深度學習模型 6
2-2-2 多深度學習模型 7
2-3 深度學習模型結合語義特徵 8
2-4 深度學習結合句法特徵 9
2-5 領域適應 (domain adaptation) 11
2-6 跨領域建議探勘與領域適應 12
2-7 綜合討論 14
3. 研究方法 15
3-1 研究流程圖 15
3-2 資料集 19
3-3 預訓練詞性嵌入 20
3-3-1 預訓練詞性嵌入的資料集 20
3-3-2 預訓練詞性嵌入方式 22
3-4 注意力網路 23
3-4-1 Transformer編碼器 23
3-4-2 MLP注意力層 24
3-4-3 連接特徵向量 24
3-5 建議分類器和領域分類器 24
3-6 基線 26
3-7 超參數設定 27
3-8 評估指標 28
4. 實驗評估 30
4-1 實驗結果 30
4-1-1 消融實驗 33
4-2 領域特定句法分析 35
4-3 個案研究 41
4-4 討論 44
5. 結論與建議 46
5-1 研究結論 46
5-2 研究限制與未來建議 47
參考文獻 48
附錄 54
參考文獻 Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A next-generation hyperparameter optimization framework. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2623-2631. https://doi.org/10.1145/3292500.3330701
Alotaibi, Y., Malik, M. N., Khan, H. H., Batool, A., Alsufyani, A., & Alghamdi, S. (2021). Suggestion mining from opinionated text of big social media data. Computers, Materials & Continua, 68, 3323-3338. https://doi.org/10.32604/cmc.2021.016727
Anand, S., Mahata, D., Aggarwal, K., Mehnaz, L., Shahid, S., Zhang, H., Kumar, Y., Shah, R., & Uppal, K. (2019). MIDAS at semeval-2019 task 9: Suggestion mining from online reviews using ULMFiT. Proceedings of the 13th International Workshop on Semantic Evaluation, 1213-1217. https://doi.org/10.18653/v1/S19-2213
Bach, N. X., Do Hai, N., & Phuong, T. M. (2016). Personalized recommendation of stories for commenting in forum-based social media. Information Sciences, 352, 48-60. https://doi.org/10.1016/j.ins.2016.03.006
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3, 993-1022.
Blitzer, J., Dredze, M., & Pereira, F. (2007). Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, 440-447.
Blitzer, J., McDonald, R., & Pereira, F. (2006). Domain adaptation with structural correspondence learning. Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing, 120-128. https://doi.org/10.3115/1610075.1610094
Cabanski, T. (2019). DS at semeval-2019 task 9: From suggestion mining with neural networks to adversarial cross-domain classification. Proceedings of the 13th International Workshop on Semantic Evaluation, 1192-1198. https://doi.org/10.18653/v1/S19-2209
Chen, M., Xu, Z., Weinberger, K. Q., & Sha, F. (2012). Marginalized denoising autoencoders for domain adaptation. arXiv preprint arXiv:1206.4683. https://arxiv.org/abs/1206.4683
Chen, X., & Cardie, C. (2018). Multinomial adversarial networks for multi-domain text classification. Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 1, 1226-1240. https://doi.org/10.18653/v1/N18-1111
Ding, Y., Zhou, X., & Zhang, X. (2019). YNU_DYX at semeval-2019 task 9: A stacked bilstm for suggestion mining classification. In Proceedings of the 13th International Workshop on Semantic Evaluation, 1272-1276. https://doi.org/10.18653/v1/S19-2223
Du, C., Sun, H., Wang, J., Qi, Q., & Liao, J. (2020). Adversarial and domain-aware bert for cross-domain sentiment analysis. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 4019-4028 , Online. https://doi.org/10.18653/v1/2020.acl-main.370
Ezen-Can, A., & Can, E. F. (2019). Hybrid RNN at semeval-2019 task 9: Blending information sources for domain-independent suggestion mining. Proceedings of the 13th International Workshop on Semantic Evaluation, 1199-1203. https://doi.org/10.18653/v1/S19-2210
Ganin,Y., & Lempitsky, V. (2015). Unsupervised domain adaptation by backpropagation. Proceedings of the 32nd International Conference on International Conference on Machine Learning, 37, 1180-1189. https://doi.org/10.48550/arXiv.1409.7495
Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., March, M., & Lempitsky, V. (2016). Domain-adversarial training of neural networks. Journal of Machine Learning Research, 17(59), 1-35. https://dl.acm.org/doi/10.5555/2946645.2946704
Glorot, X., Bordes, A., & Bengio, Y. (2011). Domain adaptation for large-scale sentiment classification: A deep learning approach. Proceedings of the 28th International Conference on Machine Learning (ICML-11), 513-520. https://dl.acm.org/doi/10.5555/3104482.3104547
Goel, P., & Ganatra, A. (2023). Unsupervised domain adaptation for image classification and object detection using guided transfer learning approach and JS divergence. Sensors, 23(9), 4436. https://doi.org/10.3390/s23094436
Golchha, H., Gupta, D., Ekbal, A., & Bhattacharyya, P. (2018). Helping each other: A framework for customer-to-customer suggestion mining using a semi-supervised deep neural network. arXiv preprint arXiv:1811.00379. https://doi.org/10.48550/arXiv.1811.00379
Gulati, S. (2024). Enhancing sentiment analysis in short texts with pos-embedded LSTM models. 2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI), 1-5, Gwalior, India. https://doi.org/10.1109/IATMSI60426.2024.10502918
Khan, U. B. R., Akhtar, N., & Sana, E. (2023). Ensemble approach for suggestion mining using deep recurrent convolutional networks. Proceedings of Data Analytics and Management,788 , 67-76. https://doi.org/10.1007/978-981-99-6553-3_5
Klimaszewski, M., & Andruszkiewicz, P. (2019). WUT at semeval-2019 task 9: Domain-adversarial neural networks for domain adaptation in suggestion mining. Proceedings of the 13th International Workshop on Semantic Evaluation, 1262-1266. https://doi.org/10.18653/v1/S19-2221
Kowsari, K., Heidarysafa, M., Brown, D. E., Meimandi, K. J., & Barnes, L. E. (2018). Rmdl: Random multimodel deep learning for classification. Proceedings of the 2nd International Conference on Information System and Data Mining, 19-28. https://doi.org/10.1145/3206098.3206111
Lai, S., Xu, L., Liu, K., & Zhao, J. (2015). Recurrent convolutional neural networks for text classification. Proceedings of the AAAI Conference on Artificial Intelligence, 29(1), 2267- 2273. https://doi.org/10.1609/aaai.v29i1.9513
Laskari, N. K. S., & Kumar, S. (2022). A systematic study on suggestion mining from opinion reviews. Journal of Theoretical and Applied Information Technology, 100(20), 6061-6072.
Leekha, M., Goswami, M., & Jain, M. (2020). A multi-task approach to open domain suggestion mining using language model for text over-sampling. Advances in Information Retrieval: 42nd European Conference on IR Research, ECIR 2020, 223-229, Lisbon, Portugal, 2020, April 14-17. https://doi.org/10.1007/978-3-030-45442-5_28
Lei, T., Zhang, Y., Wang, S. I., Dai, H., & Artzi, Y. (2018). Simple recurrent units for highly parallelizable recurrence. Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 4470-4481. https://doi.org/10.18653/v1/D18-1477
Li, Z., Wei, Y., Zhang, Y., &Yang, Q. (2018). Hierarchical attention transfer network for cross-domain sentiment classification. Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence, 5852-5859.
Li, Z., Zhang, Y., Wei, Y., Wu, Y., & Yang, Q. (2017). End-to-End adversarial memory network for cross-domain sentiment classification. International Joint Conference on Artificial Intelligence, 2237-2243. Melbourne, Australia, 2017, August 19-25. https://doi.org/10.24963/ijcai.2017/311
Lin, H. C. K., Wang, T. H., Lin, G. C., Cheng, S. C., Chen, H. R., & Huang, Y. M. (2020). Applying sentiment analysis to automatically classify consumer comments concerning marketing 4Cs aspects. Applied Soft Computing, 97, 106755. https://doi.org/10.1016/j.asoc.2020.106755
Liu, F., Wang, L., Zhu, X., & Wang, D. (2019). Suggestion mining from online reviews using random multimodel deep learning. 2019 18th IEEE International Conference on Machine Learning and Applications (ICMLA), 667-672, Boca Raton, Florida, USA, 2019, December 16-19. https://doi.org/10.1109/ICMLA.2019.00121
Liu, J., Wang, S., & Sun, Y. (2019). Olenet at semeval-2019 task 9: BERT based multi-perspective models for suggestion mining. Proceedings of the 13th International Workshop on Semantic Evaluation, 1231-1236. https://doi.org/10.18653/v1/S19-2216
Liu, W., Liu, P., Yang, Y., Yi, J., & Zhu, Z. (2019). A< word, part of speech> embedding model for text classification. Expert Systems, 36(6), e12460. https://doi.org/10.1111/exsy.12460
Mikolov, T. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781. https://doi.org/10.48550/arXiv.1301.3781
Negi, S. (2016). Suggestion mining from opinionated text. Proceedings of the ACL 2016 Student Research Workshop, 119-125.
Negi, S., & Buitelaar, P. (2015). Towards the extraction of customer-to-customer suggestions from reviews. Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 2159-2167. https://doi.org/10.18653/v1/D15-1258
Negi, S., & Buitelaar, P. (2017). Suggestion mining from opinionated text. In F. A. Pozzi, E. Fersini, E. Messina, & B. Liu (Eds.), Sentiment analysis in social networks, 129-139. Morgan Kaufmann. https://doi.org/10.1016/B978-0-12-804412-4.00008-5
Negi, S., Daudert, T., & Buitelaar, P. (2019). Semeval-2019 task 9: Suggestion mining from online reviews and forums. Proceedings of the 13th International Workshop on Semantic Evaluation, 877-887. https://doi.org/10.18653/v1/S19-2151
Pan, S. J., Ni, X., Sun, J.-T., Yang, Q., & Chen, Z. (2010). Cross-domain sentiment classification via spectral feature alignment. Proceedings of the 19th International Conference on World Wide Web, 751-760. https://doi.org/10.1145/1772690.1772767
Park, C., Kim, J., Lee, H. G., Amplayo, R. K., Kim, H., Seo, J., & Lee, C. (2019). ThisIsCompetition at semeval-2019 task 9: BERT is unstable for out-of-domain samples. Proceedings of the 13th International Workshop on Semantic Evaluation, 1254-1261. https://doi.org/10.18653/v1/S19-2220
Patnayakuni, S., & Yedidi, N. (2021). A BERT-based deep learning approach for suggestion mining. Journal of Artificial Intelligence, Machine Learning and Data Science, 1(4), 1-9. https://doi.org/10.51219/JAIMLD/siva-prasad-patnayakuni/21
Pecar, S., Simko, M., & Bielikova, M. (2019). NL-FIIT at semeval-2019 task 9: Neural model ensemble for suggestion mining. Proceedings of the 13th International Workshop on Semantic Evaluation, 1218-1223. https://doi.org/10.18653/v1/S19-2214
Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1532–1543. https://doi.org/10.3115/v1/D14-1162
Phan, M. H., & Ogunbona, P. O. (2020). Modelling context and syntactical features for aspect-based sentiment analysis. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 3211-3220. https://doi.org/10.18653/v1/2020.acl-main.293
Potamias, R. A., Neofytou, A., & Siolas, G. (2019). NTUA-ISLab at semeval-2019 task 9: Mining suggestions in the wild. Proceedings of the 13th International Workshop on Semantic Evaluation, 1224-1230. https://doi.org/10.18653/v1/S19-2215
Riaz, S., Saghir, A., Khan, M. J., Khan, H., Khan, H. S., & Khan, M. J. (2024). TransLSTM: A hybrid LSTM-Transformer model for fine-grained suggestion mining. Natural Language Processing Journal, 8, 100089. https://doi.org/10.1016/j.nlp.2024.100089
Singal, S., Goel, T., Chopra, S., & Dahiya, S. (2020). Open domain suggestion mining leveraging fine-grained analysis (workshop paper). 2020 IEEE Sixth International Conference on Multimedia Big Data (BigMM), 414-423, New Delhi, India, 2020, September 24-26. https://doi.org/10.1109/BigMM50055.2020.00069
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, ?., & Polosukhin, I. (2017). Attention is all you need. Proceedings of the 31st International Conference on Neural Information Processing Systems, 6000-6010. https://dl.acm.org/doi/10.5555/3295222.3295349
Wachsmuth, H., Trenkmann, M., Stein, B., Engels, G., & Palakarska, T. (2014). A review corpus for argumentation analysis. Computational Linguistics and Intelligent Text Processing: 15th International Conference, CICLing 2014, Proceedings, Part II, 15, 115-127. https://doi.org/10.1007/978-3-642-54903-8_10
Wu, L., & Wang, T. (2022). Aspect-level sentiment analysis model incorporating part-of-speech. 2022 International Conference on Machine Learning and Knowledge Engineering (MLKE), 187-190. Guilin, China, 2022, February 25-27. https://doi.org/10.1109/MLKE55170.2022.00043
Yu, J., & Jiang, J. (2016). Learning sentence embeddings with auxiliary tasks for cross-domain sentiment classification. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 236-246. https://doi.org/10.18653/v1/D16-1023
Zhang, K., Zhang, H., Liu, Q., Zhao, H., Zhu, H., & Chen, E. (2019). Interactive attention transfer network for cross-domain sentiment classification. Proceedings of the AAAI Conference on Artificial Intelligence, 5773-5780. https://doi.org/10.1609/aaai.v33i01.33015773
Zhu, Y., Qiu, Y., Wu, Q., Wang, F. L., & Rao, Y. (2023). Topic Driven Adaptive Network for cross-domain sentiment classification. Information Processing & Management, 60(2), 103230. https://doi.org/10.1016/j.ipm.2022.103230
Zhuang, Y. (2019). Yimmon at semeval-2019 task 9: Suggestion mining with hybrid augmented approaches. Proceedings of the 13th International Workshop on Semantic Evaluation, 1267-1271. https://doi.org/10.18653/v1/S19-2222
指導教授 周惠文 柯士文(Huey-Wen Chou Shih-Wen Ke) 審核日期 2025-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明