博碩士論文 110521012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:18.119.172.58
姓名 蘇姿羽(Tzu-Yu Su)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具自適應且多階資料獨立相位追蹤補償技術之 5 Gbps 半速率時脈與資料回復電路
(A 5 Gbps Half-Rate Clock and Data Recovery with Adaptive Multi-level Data Independent Phase Tracking Compensation Technique)
相關論文
★ 一種應用於觸控液晶顯示器的新型嵌入式開關★ 多重相位之延遲鎖定迴路倍頻器設計與分析
★ 2.5Gbps串列收發器設計★ 具低抖動與可適應式頻寬之自我偏壓鎖相迴路設計
★ 應用於串列傳輸之2.5GB/s CMOS 超取樣資料回復電路★ 全數位任意責任週期之同步映射延遲電路
★ 全數位式互補金屬氧化半導自我取樣延遲線電路用於時脈抖動量測★ 500MHz,30個相位輸出之鎖相迴路應用於三倍超取樣時脈回復系統
★ 設計於90奈米製程輸出頻率為100MHz-1GHz之具可適應性頻寬鎖相迴路★ 高解析度可變動責任週期之同步複製延遲電路
★ 奈米CMOS晶片內序列傳輸之接收器★ 奈米CMOS晶片內序列傳輸之送器
★ 基於鎖相迴路之多重相位脈波產生器★ 低能量時脈儲存元件之分析、設計與量測
★ 具有預先增強器之Gbps串列連結傳送器及全數位超取樣資料回復器★ 應用於10Gbps晶片系統傳輸鏈之低抖動自我校準鎖相迴路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-10-31以後開放)
摘要(中) 近年隨著先進製程的演進以及產品應用上的需求,資料在傳輸速率方面也跟著大幅提升,現今傳輸介面上,已由高速串列傳輸主導,例如:PCI Express、Ethernet、USB及HDMI等。然而當資料速率不斷提升,即位元週期不斷縮小下,抖動對於資料的佔比將更加嚴重,並且電路的時間餘裕也將越來越限縮,導致抖動容忍度惡化以及誤碼率提升,因此如何降低追鎖抖動以及改善抖動容忍度在電路設計上至關重要。

本論文遵循USB 3.2 Gen1的通訊規範,實現一個具自適應且多階資料獨立相位追蹤補償技術之5 Gbps半速率時脈與資料回復電路。
摘要(英) In recent years, with the advanced process technology and the increasing demand for product applications, data transmission rates have significantly increase. Nowadays, high-speed serial link has become dominant in transmission interfaces, such as PCI Express, Ethernet, USB, and HDMI. However, as data rates continue to increase and unit interval continue to shrink, jitter becomes the significant issue, and the timing margin in circuits become increasingly constrained, leading to worse jitter tolerance and higher bit error rate. Therefore, reducing hunting jitter and improving jitter tolerance are crucial in circuit design.

This thesis adheres to the USB 3.2 Gen1 communication specification and implements a 5 Gbps half-rate clock and data recovery circuit with adaptive and multi-level data independent phase tracking compensation technology.
關鍵字(中) ★ 時脈與資料回復電路 關鍵字(英) ★ CDR
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 x
表目錄 xiii
第 1 章 緒論 1
1.1 研究動機 1
1.2 論文架構 4
第 2 章 高速串列傳輸系統基本概述 5
2.1 隨機二位元資料 5
2.1.1 隨機二位元資料之面臨問題 5
2.2 抖動介紹 7
2.2.1 隨機性抖動(Random Jitter, RJ) 8
2.2.2 定量性抖動 9
2.2.2.1 資料相關抖動 9
2.2.2.2 責任週期失真 11
2.2.2.3 週期性抖動 12
2.2.3 抖動量測方式 13
2.2.3.1 時間間隔誤差 14
2.2.3.2 週期抖動 15
2.2.3.3 相鄰週期抖動 16
2.2.3.4 抖動量測方式之總結 17
2.3 眼圖分析 18
2.4 誤碼率[16] 19
第 3 章 時脈與資料回復電路背景介紹 22
3.1 時脈與資料回復電路簡介 22
3.1.1 相位偵測器操作型態 23
3.1.2 相位偵測器取樣速率 24
3.1.3 抖動轉移函數(Jitter Transfer, JTF) 25
3.1.4 抖動容忍度 26
3.1.4.1 迴路延遲對抖動容忍度之影響[6] 27
3.1.5 抖動產生(Jitter Generation)[22] 28
3.2 傳統時脈與資料回復電路相關設計 28
3.2.1 鎖相迴路式時脈與資料回復電路 28
3.2.2 混合鎖相迴路及延遲鎖定迴路式時脈與資料回復電路 30
3.2.3 超取樣式時脈與資料回復電路 31
3.2.4 相位內插式時脈與資料回復電路 32
3.2.5 突發模式時脈與資料回復電路 33
3.2.6 頻率資訊迴路 34
3.3 提高抖動容忍度之設計背景 36
3.3.1 多增益路徑之超取樣式時脈與資料回復電路 36
3.3.2 自適應迴路增益之時脈與資料回復電路 38
3.4 分析與比較 39
3.5 論文貢獻與特色 40
第 4 章 具自適應且多階資料獨立相位追蹤補償技術之半速率時脈與資料回復電路設計與實現 42
4.1 電路架構 42
4.2 系統分析 45
4.2.1 頻率資訊迴路系統分析 45
4.2.2 相位資訊迴路系統分析 49
4.3 多階相位追蹤補償相位偵測器操作說明 55
4.3.1 傳統二進位相位偵測器電路分析 55
4.3.2 多階相位追蹤補償相位偵測器分析 56
4.4 子電路介紹 58
4.4.1 傳統半速率二進位相位偵測器 58
4.4.2 多階相位追蹤補償相位偵測器 60
4.4.3 相位偵測器選擇電路 63
4.4.4 電荷幫浦 64
4.4.5 電容放大技術之迴路濾波器 66
4.4.6 壓控振盪器 67
4.4.7 擺幅轉換電路 69
4.4.8 除頻器 69
4.4.9 相位頻率偵測器 70
4.5 模擬結果 72
4.5.1 佈局前模擬 72
4.5.2 佈局後模擬 76
第 5 章 晶片佈局與量測 80
5.1 電路佈局 80
5.1.1 晶片腳位 81
5.1.2 佈局與電源規劃 82
5.2 量測考量 83
5.2.1 量測環境 83
5.2.2 高頻輸入緩衝器 84
5.2.3 高頻輸出緩衝器 85
5.3 規格比較表 86
第 6 章 結論 88
6.1 結論 88
6.2 未來研究方向 89
參考文獻 90
參考文獻 [1] PCI ExpressR Base Specification, Revision 6.0, PCI-SIG, 2022.
[2] Universal Serial Bus 4 Specification, Version 2.0, USB-IF, 2022.
[3] High-Definition Multimedia Interface Specification, Version 2.1a, HDMI, 2022.
[4] 孫世洋, “以符碼間干擾偵測技術實現自適應等化器之5 Gbps半速率時脈與資料回復電路,” 碩士論文, 國立中央大學, 2016.
[5] Behzad Razavi, Design of Integrated Circuits for Optical Communications. McGraw-Hill: Behzad Razavi, 2003.
[6] 鄭宇亨, “具資料獨立相位追蹤補償技術之10 Gbps半速率時脈與資料回復電路,” 碩士論文, 國立中央大學, 2018.
[7] A. X. Widmer, and P. A. Franaszek, “A DC-balanced, partitioned-block, 8b/10b transmission code,” IBM J. Res and Develop., vol. 27, pp. 440–451, Sep. 1983.
[8] Tektronix, “Understanding and characterizing timing jitter”.
[9] N. Da Dalt and A. Sheikholeslami, Understanding Jitter and Phase Noise a Circuits and Systems Perspective, Cambridge, U.K. Cambridge Univ. Press, 2018.
[10] Agilent Technologies, “Finding sources of jitter with real-time jitter analysis,” 2008.
[11] B. Razavi, Design of Analog CMOS Integrated Circuits, 2nd ed. New York, NY, USA: McGraw-Hill, 2017.
[12] R. Sarpeshkar, T. Delbruck and C. A. Mead, “White noise in MOS transistors and resistors,” IEEE Circuits and Devices Magazine, vol. 9, no. 6, pp. 23-29, Nov. 1993.
[13] Maxim, “Choosing AC-Coupling Capacitors,” Application Note: HFAN-1.1, 2000.
[14] N. Radhakrishnan, B. Achkir, J. Fan and J. L. Drewniak, “Stressed jitter analysis for physical link characterization,” in Proc. IEEE International Symposium on Electromagnetic Compatibility, Feb. 2010, pp. 568-572. Agilent Technologies, “Measuring jitter in digital systems,” Application Note 1448-1.
[15] STMicroelectronics, “Improving a jitter definition,” 2007.
[16] SHF Communication Technologies AG, “Application note AN-jitter-1-jitter analysis using SHF 10000 series bit error rate testers,” 2005.
[17] 劉深淵, 揚清淵, 鎖相迴路, 滄海書局, 2006.
[18] R. C. Walker and B. Razavi, “Designing bang-bang PLLs for clock and data recovery in serial data transmission systems,” in Proc. High-Performance Systems, Feb. 2003, pp.34- 45.STMicroelectronics, “Improving a jitter definition,” 2007.
[19] J. Lee, K. S. Kundert and B. Razavi, “Analysis and modeling of bang-bang clock and data recovery circuits,” IEEE Journal of Solid-State Circuits, vol. 39, no. 9, pp. 1571-1580, Sept. 2004.
[20] T. Lee, Y. -H. Kim and L. -S. Kim, “A 5-Gb/s digital clock and data recovery circuit with reduced DCO supply noise sensitivity utilizing coupling network,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 1, pp. 380-384, Jan. 2017.
[21] X. Ge, Y. Chen, X. Zhao, P. -I. Mak and R. P. Martins, “Analysis and verification of jitter in bang-bang clock and data recovery circuit with a second-order loop filter,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 10, pp. 2223-2236, Oct. 2019.
[22] 王璽華, “具資料決策補償技術之16 Gbps半速率時脈與資料回復電路,” 碩士論文, 國立中央大學, 2022.
[23] T. H. Lee and J. F. Bulzacchelli, “A 155 MHz clock recovery delay- and phase-locked loop,” in IEEE International Solid-State Circuits Conference Digest of Technical Papers, Dec. 1992, pp. 160-161.
[24] J. Lin, C. Yang and H. Wu, “A 2.5-Gb/s DLL-based burst-mode clock and data recovery circuit with 4 × oversampling,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 4, pp. 791-795, April 2015.
[25] W. Bae, G. Jeong, K. Park, S. Cho, Y. Kim and D. Jeong, “A 0.36 pJ/bit, 0.025 mm2 , 12.5 Gb/s forwarded-clock receiver with a stuck-free delay-locked loop and a half-bit delay line in 65-nm CMOS technology,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 9, pp. 1393-1403, Sept. 2016.
[26] Y. -S. Lin, M. -S. Li and C. -Y. Yang, “A 2.7-Gb/s clock and data recovery circuit based on D/PLL,” in IEEE International System-on-Chip Conference, Sept. 2019, pp. 284-288.
[27] J. Kim, and D.-K. Jeong, “Multi-gigabit-rate clock and data recovery based on blind oversampling,” IEEE Commun. Mag., vol. 41, pp. 68–74, Dec. 2003.
[28] G. Wu et al., “A 1–16 Gb/s all-digital clock and data recovery with a wideband high-linearity phase interpolator,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 7, pp. 2511-2520, July 2016.
[29] J. Terada, K. Nishimura, S. Kimura, H. Katsurai, N. Yoshimoto and Y. Ohtomo, “A 10.3 Gb/s Burst-Mode CDR Using a ΔΣ DAC,” IEEE Journal of Solid-State Circuits, vol. 43, no. 12, pp. 2921-2928, Dec. 2008.
[30] K. Kishine et al., “A Multi-Rate Burst-Mode CDR Using a GVCO With Symmetric Loops for Instantaneous Phase Locking in 65-nm CMOS,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 5, pp. 1288-1295, May 2015.
[31] Y. S. Tan, K. S. Yeo, C. C. Boon and M. A. Do, “A dual-loop clock and data recovery circuit with compact quarter-rate CMOS linear phase detector,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 6, pp. 1156-1167, June 2012.
[32] R. Inti, W. Yin, A. Elshazly, N. Sasidhar and P. K. Hanumolu, “A 0.5-to-2.5 Gb/s Reference-Less Half-Rate Digital CDR With Unlimited Frequency Acquisition Range and Improved Input Duty-Cycle Error Tolerance,” IEEE Journal of Solid-State Circuits, vol. 46, no. 12, pp. 3150-3162, Dec. 2011.
[33] M. Brownlee, P. K. Hanumolu and U. Moon, “A 3.2Gb/s Oversampling CDR with Improved Jitter Tolerance,” in IEEE Custom Integrated Circuits Conference, Sept. 2007, pp. 353-356.
[34] D. Kwon, Y. Park and W. Choi, “A clock and data recovery circuit with programmable multi-level phase detector characteristics and a built-in jitter monitor,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 6, pp. 1472-1480, June 2015.
[35] C. Gimeno, D. Bol and D. Flandre, “Multilevel Half-Rate Phase Detector for Clock and Data Recovery Circuits,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 9, pp. 1807-1811, Sept. 2018.
[36] H. -J. Jeon, R. Kulkarni, Y. -C. Lo, J. Kim and J. Silva-Martinez, “A Bang-Bang Clock and Data Recovery Using Mixed Mode Adaptive Loop Gain Strategy,” IEEE Journal of Solid-State Circuits, vol. 48, no. 6, pp. 1398-1415, June 2013.
[37] Y. -S. Yao, C. -C. Huang and S. -I. Liu, “A Jitter-Tolerance-Enhanced Digital CDR Circuit Using Background Loop Gain Controller,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 6, pp. 1837-1841, June 2021.
[38] 鄭柏旻, “具電容放大技術和自適應迴路增益控制器之 5 Gbps 雙路徑時脈與資料回復電路,” 碩士論文, 國立中央大學, 2017.
[39] Integrated Device Technology Inc, “RMS Phase Jitter,’’ Aplication Note, AN-839, 2014.
[40] J. Lee, K. S. Kundert, and B. Razavi, “Analysis and modeling of bang-bang clock and data recovery circuits,” IEEE Journal of Solid-State Circuits, Express Briefs, vol. 39, no. 9, pp. 1571–1580, Sept. 2004.
[41] Y. Kim et al., “An Input Data and Power Noise Inducing Clock Jitter Tolerant Referenceless Digital CDR for LCD Intra-Panel Interface,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 4, pp. 823-835, April 2017.
[42] K. -S. Son, T. -J. An, Y. -H. Moon and J. -K. Kang, "A 0.42–3.45 Gb/s Referenceless Clock and Data Recovery Circuit With Counter-Based Unrestricted Frequency Acquisition," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 6, pp. 974-978, June 2020.
[43] Z. Shu et al., "A 5–13.5 Gb/s Multistandard Receiver With High Jitter Tolerance Digital CDR in 40-nm CMOS Process," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 10, pp. 3378-3388, Oct. 2020.
[44] W. Xiao, Q. Huang, H. Mosalam, C. Zhan, Z. Li and Q. Pan, "A 6.15–10.9 Gb/s 0.58 pJ/Bit Reference-Less Half-Rate Clock and Data Recovery With “Phase Reset” Scheme," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 2, pp. 634-644, Feb. 2022.
[45] W. Kim, W. Hong, J. J. Kim and M. Lee, "A 5.4-Gb/s, 0.57-pJ/bit, Single-Loop Referenceless CDR With an Unlimited Bilateral Frequency Detection Scheme," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 31, no. 6, pp. 851-860, June 2023.
指導教授 鄭國興(Kuo-Hsing Cheng) 審核日期 2024-10-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明