博碩士論文 111521109 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.20.239.211
姓名 邱恩芸(En-Yun Qiu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於X頻段互補式金氧半導體F類壓控振器與使用動態體偏壓技術B/C類混合式壓控振盪器暨整數型鎖相迴路之研製
(Design and Implementation of CMOS X-Band Class-F Voltage-Controlled Oscillator, Dynamic Body Biasing Technique for Class-B/C Hybrid-Mode Voltage-Controlled Oscillator, and Integer-N Phase-Locked Loop)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文擬研究收發機中本地振盪源的相關電路,設計應用於X頻段之本地振盪電路,本文首先介紹LC振盪器的振盪條件以及相位雜訊相關的分析與成因,最後介紹所實現的電路,本論文一共實現三種電路,皆使用tsmcTM 0.18 μm互補式金氧半導體製程製作,內容如下所述:
I. F類壓控振盪器:
本電路實作具有低相位雜訊之F類壓控振盪器,使用變壓器耦合同時實現一、二、三階的共振腔,透過改變輸出波型使其呈現類方波,以此實現F類操作,提升相位雜訊的表現。整體電路經由量測後,在0.7V的直流供應下,電路功耗為9.1 ~ 10.5 mW,可調範圍10.14 ~ 11.45 GHz,頻寬為12.1%,加入線損後量測到的輸出功率為?1.59 ~ ?0.2 dBm,相位雜訊在1-MHz偏移頻率下最佳為-115 dBc/Hz,FOM、FOMT分別-185.11 dBc/Hz與-186.79 dBc/Hz,晶片面積包含I/O PAD為0.99 × 0.82 mm2。
II. 使用動態體偏壓技術之B/C類混合式壓控振盪器:
本電路實作具有低功耗特性之B/C類混合式壓控振盪器,透過C類高電流效率的操作以及正向體偏壓技術,使壓控振盪器得以實現低功耗的目標,同時再以操作於B類之PMOS電晶體輔助,提高電路振盪的穩定性。在1.1V的直流供應下,電路功耗為2.5 mW,可調頻率範圍10 ~ 10.7 GHz,頻寬為6.7 %,加入線損後的量測輸出功率為?5.3 ~ ?8.2 dBm,相位雜訊在1-MHz偏移頻率下最佳為-108.6 dBc/Hz,FOM、FOMT最佳分別-184.7 dBc/Hz與-181.4 dBc/Hz。整體晶片面積包含I/O PAD為0.89 × 0.69 mm2。
III. 使用F類壓控振盪器之X頻段整數型鎖相迴路
本電路使用第一顆設計的F類壓控振盪器,實現X頻段的整數型鎖相迴路,電路包含壓控振盪器、電流模式邏輯除頻器、雙轉單緩衝放大器、真單一相位時脈除頻器、全擺幅緩衝器、相位頻率偵測器、電荷幫浦以及迴路濾波器。章節中包含對各個子電路的介紹與數學分析。本次量測到的鎖相迴路鎖定頻寬為9.63 ~ 10.28 GHz,參考頻率在除256模式下為37.64 ~ 40.16 MHz,在除260模式下為37.04 ~ 39.54 MHz,整體功耗約46.8 mW,晶片面積包含I/O PAD為1.2 × 0.95 mm2,在鎖定中心頻10 GHz時量測到的參考突波小於-45 dBc,鎖定後量測到最佳的1-MHz偏移相位雜訊為-96.9dBc/Hz,由10 kHz到40 MHz (SSA儀器量測極限)的時脈抖動為940 fsec。
摘要(英) This thesis investigates the designs of the local oscillators for the applications in X-band. In this thesis, we firstly introduce the oscillation condition, analyze the causes of phase noise and finally illustrate the circuit implemented in this thesis. In this thesis, three LO circuits were implemented in tsmcTM 0.18 μm CMOS processes. The developed LO circuits are listed as follow:
I. A Class-F Voltage Controlled Oscillator
This circuit implements a Class-F voltage-controlled oscillator with low phase noise. It uses transformer coupling to realize the fundamental, second, and third order resonant. By making the output waveform appear like a square wave, Class F operation is achieved. The measurements are listed as below, under a 0.7 V DC supply, the circuit power consumption is 9.1 ~ 10.5 mW, the operation frequency is from 10.14 to 11.45 GHz, (i.e., 12.1% tuning range). After subtracting the cable loss, the measured output power is ?1.59 ~ ?0.2 dBm, the best phase noise at 1-MHz offset frequency is -115 dBc/Hz, FOM and FOMT are -185.11 dBc/Hz and -186.79 dBc/Hz respectively, the chip area including I/O PAD is 0.99 × 0.82 mm2.
II. A dynamic body biasing technique low power consumption on Class-B/C Hybrid-Mode VCO
This circuit implements a Class B/C hybrid voltage-controlled oscillator with low power consumption. Through Class-C high current efficiency operation and forward body biasing technique, the voltage-controlled oscillator can achieve the goal of low power consumption. And PMOS auxiliary oscillation operating in Class-B to solve hard start-up problem of the Class-C oscillator. Under the DC supply of 1.1 V, the circuit power consumption is 2.5 mW, the operation frequency is from 10 to 10.7 GHz, (i.e., 6.7% tuning range). The measured output power after adding cable loss is ?5.3 ~ ?8.2 dBm, and the best phase noise at the 1-MHz offset frequency is -108.6 dBc/Hz, and the best FOM and FOMT are -184.7 dBc/Hz and -181.4 dBc/Hz respectively. The chip area including I/O PAD is 0.89 × 0.69 mm2.
III. An X-band integer-N Phase Locked Loop (PLL) with Class-F Voltage-Controlled Oscillator
This circuit uses the first designed class-F voltage-controlled oscillator to implement an integer phase-locked loop (PLL) in X-band. The circuit includes a voltage-controlled oscillator, a current mode logic divider, a differential to single buffer, TSPC dividers, full-swing buffers, phase and frequency detector, a charge pump, and a loop filter. Chapters include an introduction and analysis of each sub-circuit. The measurements are listed as, the PLL is locked from 9.63 to 10.28 GHz when reference signal is 37.64 to 40.16 MHz. The division ratio is dual-mode 256 and 260. The overall power consumption is about 46.8 mW. The chip area including the I/O PAD is 1.2 × 0.95 mm2. At the center frequency of 10 GHz, the reference spur is as low as -45 dBc and phase noise is -96.9 dBc/Hz at 1-MHz offset. The clock jitter from 10 kHz to 40 MHz (SSA instrument measurement limit) is 940 fsec.
關鍵字(中) ★ 壓控振盪器
★ 鎖相迴路
關鍵字(英) ★ Voltage Controlled Oscillator (VCO)
★ phase-locked loop (PLL)
論文目次 摘要 I
Abstract III
誌謝 V
目錄 VII
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1-1 研究動機 1
1-2 研究成果 2
1-3 章節簡介 2
第二章 F類壓控振盪器 3
2-1 壓控振盪器簡介 3
2-2 相位雜訊 4
2-3 尾濾波及二次諧波共振 12
2-4 F類壓控振盪器設計 14
2-5 量測與模擬結果 21
2-6 結果與討論 27
第三章 B/C類混合式壓控振盪器 29
3-1 C類壓控振盪器介紹 29
3-2 B/C類混合式壓控振盪器設計 32
3-3 量測與模擬結果 39
3-4 結果與討論 45
第四章 使用F類壓控振盪器之X頻段整數型鎖相迴路 47
4-1 鎖相迴路基本架構 47
4-2 迴路特性分析 56
4-3 應用於X頻段整數型鎖相迴路 60
4-3-1 壓控振盪器 61
4-3-2 電流模式邏輯除頻器 67
4-3-3 雙轉單緩衝放大器 71
4-3-4 真單一相位時脈除頻器 73
4-3-5 全擺幅緩衝器 76
4-3-6 相位頻率偵測器 77
4-3-7 電荷幫浦 81
4-3-8 迴路濾波器 84
4-4 量測與模擬結果 87
4-5 結果與討論 100
第五章 結論 103
5-1 結論 103
5-2 未來研究方向 104
參考文獻 105
參考文獻 [1] D. B. Leeson, “A simple model of feedback oscillator noises spectrum,” Proc. IEEE, vol. 54, pp. 329–330, Feb. 1966.
[2] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.
[3] E. Hegazi, H. Sjoland and A. A. Abidi, “A filtering technique to lower LC oscillator phase noise,” IEEE J. Solid-State Circuits, vol. 36, no. 12, pp. 1921-1930, Dec. 2001.
[4] D. Murphy, H. Darabi and H. Wu, “Implicit common-mode resonance in LC oscillators,” IEEE J. Solid-State Circuits, vol. 52, no. 3, pp. 812-821, March 2017.
[5] M. Babaie and R. B. Staszewski, “A Class-F CMOS oscillator,” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 3120-3133, Dec. 2013.
[6] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1368-1382, Sept. 2000.
[7] Hee Sung Lee, Dong Min Kang, Seong Jun Cho, Chul Woo Byeon, Chul Soon Park,Low-Power, “Low-phase-noise gm-boosted 10-GHz VCO with center-tap transformer and stacked transistor,” IEEE Transactions on Circuits and Systems—II: express briefs, vol. 67, no. 10, pp. 1710-1714, October 2020.
[8] Islam Mansour, Mohamed Aboualalaa, Adel Barakat, Ahmed Allam, Adel B. Abdel-Rahman, Mohammed Abo-Zahhad, and Ramesh K. Pokharel, “Analysis and implementation of high-Q CT inductor for compact and wide tuning range Ku-band VCO,” IEEE Microwave and Wireless Components Letters, vol. 30, no. 8, pp. 802-805, August 2020.
[9] C. Wan, T. Xu, X. Yi and Q. Xue, “A current-reused VCO with inductive-transformer feedback technique,” IEEE Transactions on Microwave Theory and Techniques, vol. 70, no. 5, pp. 2680-2689, May 2022.
[10] E. C. Wagner and G. M. Rebeiz, “A 9.4–11.7 GHz VCO in 0.12 μm SiGe BiCMOS with ?123 dBc/Hz phase noise at 1 MHz offset for 5G systems,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC), Jun. 2018, pp. 16–19.
[11] A. Mazzanti and P. Andreani, “Class-C harmonic CMOS VCOs, with a general result on phase noise,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2716-2729, Dec. 2008.
[12] S. L. Jang and J. J. Wang, “Low-phase noise Class-C VCO with dynamic body bias,” Electronics Letters, vol. 53, no. 13, pp. 847-849, Jun. 2017.
[13] Xiao Xu, Tsuyoshi Sugiura, Toshihiko Yoshimasu, “A 0.3 V -190.2 dBc/Hz FoM 14-GHz band LC-VCO IC with harmonic tuned LC tank in 56-nm SOI CMOS,” in 13th European Microwave Integrated Circuits Conference (EuMIC), Sep. 2018, pp. 202-205.
[14] Kai Sun, Junliang Wang, Xuan Wang, Jiong Gu, Lianming Li, Xiangning Fan, “A low phase noise 11.8-15.3 GHz CMOS LCVCO with high-Q inductor,” in 2021 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Aug. 2021, pp. 1-3.
[15] P. Wang, M. Chou, Y. Chen, Y. Chang, D. Chang and S. S. H. Hsu, “A Ku-band low-phase-noise transformer coupled VCO for satellite communications,” in 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Aug. 2016, pp. 1-3.
[16] B. Razavi, Design of CMOS Phase-Locked Loops: From Circuit Level to Architecture Level. Cambridge University Press, 2020.
[17] 劉深淵,楊清淵,鎖相迴路,滄海書局,民國一百年。
[18] 高曜煌,射頻鎖相迴路,滄海書局,民國九十四年。
[19] 林書佑, “Complementary self-injection-coupled quadrature voltage controlled oscillator, X-band VCO with integrated frequency divider and X-band phase locked loop,” 碩士,電機工程學系,國立中央大學,2017.
[20] 莊志成, “Implementations on X-Band CMOS quadrature voltage controlled oscillator, integer-N phase locked loop and GaN high power and high efficiency voltage controlled oscillator,” 碩士,電機工程學系,國立中央大學,2019.
[21] 蔡承翰, “Implementations on CMOS C-band Class-F, S-band inverse-Class-F voltage control oscillators, and C-band sub-sampling phase-locked-loop,” 碩士,電機工程學系,國立中央大學,2020.
[22] Jeng-Han Tsai, and Hung-Da Shih, “A 7.5 - 12 GHz divide-by-256/260/264/268 frequency divider for frequency synthesizers,” in 2012 International Conference on Microwave and Millimeter Wave Technology (ICMMT), May 2012, pp. 1-4.
[23] Chi hun Lee, Lan-Chou Cho and Shen-luan Liu, “A 44GHz dual-modulus divide-by-4/5 prescaler in 90nm CMOS technology,” in IEEE 2006 Custom Integrated Circuits Conference (CICC), Sep. 2006, pp. 397-400.
[24] Henrik O. Johansson, “A simple precharged CMOS phase frequency detector,” IEEE Journal of Solid-State Circuits, vol. 33, no. 2, pp. 295-299, Feb. 1998.
[25] Wei-Hao Chiu, Yu-Hsiang Huang, and Tsung-Hsien Lin, “A dynamic phase error compensation technique for fast-locking phase-locked loops,” IEEE Journal of Solid-State Circuits, vol. 45, no. 6, pp. 1137-1149, June 2010.
[26] Sheng Huang, Shubin Liu, Jin Hu, Riyan Wang, and Zhangming Zhu, “A 12-GHz wideband fractional-N PLL with robust VCO in 65-nm CMOS,” IEEE Microwave and Wireless Components Letters, vol. 29, no. 6, pp. 397-399, June 2019.
[27] Keum-Won Ha, Jeong-Yun Lee, Sangyong Park, and Donghyun Baek, “A dual-mode signal generator using PLL for X-band radar sensor applications,” in 2017 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Sep. 2017, pp. 4-6.
[28] J. Tsai, C. Chao, and H. Shih, “A X-band fully integrated CMOS frequency synthesizer,” in 2012 Asia Pacific Microwave Conference Proceedings, Dec. 2012, pp. 1226-1228.
[29] H. Y. Chang, Y. L. Yeh, Y. C. Liu, M. H. Li and K. Chen, “A low-jitter low-phase-noise 10-GHz sub-harmonically injection-locked PLL with self-aligned DLL in 65-nm CMOS Technology,” IEEE Trans. Microw. Theory Tech., vol. 62, no. 3, pp. 543-555, March 2014.
[30] X. Gao, E. Klumperink, P. Geraedts, and B. Nauta, “Jitter analysis and a benchmarking figure-of-merit for phase-locked loops,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 2, pp. 117–121, Feb. 2009.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2024-11-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明