參考文獻 |
[1] Etch Techniques for Next-Generation Storage-Class Memory, https://semiengineering.com/etch-techniques-for-next-generation-storage-class-memory/(accessed: November 2024)
[2] Fernandes Graca, M.P. and M.A. Valente, Ferroelectric glass-ceramics. MRS Bulletin, 42(03): p. 213-219. (2017)
[3] Valasek, J., Piezo-Electric and Allied Phenomena in Rochelle Salt. Physical Review, 17(4): p. 475-481. (1921)
[4] al, J.M.e., Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG. Symposium on VLSI Technology (VLSIT), 2012.
[5] Gong, N. and T.-P. Ma, Why Is FE–HfO2More Suitable Than PZT or SBT for Scaled Nonvolatile 1-T Memory Cell? A Retention Perspective. IEEE Electron Device Letters, 37(9): p. 1123-1126. (2016)
[6] Boscke, T.S., et al., Ferroelectricity in hafnium oxide thin films. Applied Physics Letters, 99(10). (2011)
[7] Mueller, S., et al., Incipient Ferroelectricity in Al?Doped HfO2 Thin Films. Advanced Functional Materials, 22(11): p. 2412-2417. (2012)
[8] Olsen, T., et al., Co-sputtering yttrium into hafnium oxide thin films to produce ferroelectric properties. Applied Physics Letters, 101(8). (2012)
[9] Mueller, S., et al., Ferroelectricity in Gd-Doped HfO2Thin Films. ECS Journal of Solid State Science and Technology, 1(6): p. N123-N126. (2012)
[10] Park, M.H., et al., Surface and grain boundary energy as the key enabler of ferroelectricity in nanoscale hafnia-zirconia: a comparison of model and experiment. Nanoscale, 9(28): p. 9973-9986. (2017)
[11] Park, M.H., et al., A comprehensive study on the structural evolution of HfO2thin films doped with various dopants. Journal of Materials Chemistry C, 5(19): p. 4677-4690. (2017)
[12] Shimizu, T., Ferroelectricity in HfO<sub>2</sub> and related ferroelectrics. Journal of the Ceramic Society of Japan, 126(9): p. 667-674. (2018)
[13] Koveshnikov, S., et al., Metal-oxide-semiconductor capacitors on GaAs with high-k gate oxide and amorphous silicon interface passivation layer. Applied Physics Letters, 88(2). (2006)
[14] Schaeffer, J.K., et al., Physical and electrical properties of metal gate electrodes on HfO2 gate dielectrics. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 21(1): p. 11-17. (2003)
[15] M. Gurfinkel, J.S.S., J. B. Bernstein and Y. Shapira, Enhanced Gate Induced Drain Leakage Current in HfO2 MOSFETs due to Remote Interface Trap-Assisted Tunneling. International Electron Devices Meeting, (2006).
[16] Lehninger, D., et al., Ferroelectric [HfO2/ZrO2] Superlattices with Enhanced Polarization, Tailored Coercive Field, and Improved High Temperature Reliability. Advanced Physics Research, 2(9). (2023)
[17] Muller, J., et al., Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications. Applied Physics Letters, 99(11). (2011)
[18] al, S.J.K.e., Ferroelectric TiN/Hf0.5Zr0.5O2/TiN Capacitors with Low-Voltage Operation and High Reliability for Next-Generation FRAM Applications. IEEE International Memory Workshop, (2018).
[19] Muller, J., et al., Ferroelectricity in Simple Binary ZrO2 and HfO2. Nano Lett, 12(8): p. 4318-23. (2012)
[20] Oh, S., et al., Effect of dead layers on the ferroelectric property of ultrathin HfZrOx film. Applied Physics Letters, 117(25). (2020)
[21] Mikolajick, T., et al., Next generation ferroelectric materials for semiconductor process integration and their applications. Journal of Applied Physics, 129(10). (2021)
[22] Park, J.Y., et al., A perspective on the physical scaling down of hafnia-based ferroelectrics. Nanotechnology, 34(20). (2023)
[23] Luk’yanchuk, I., et al., The ferroelectric field-effect transistor with negative capacitance. npj Computational Materials, 8(1). (2022)
[24] Garcia, V. and M. Bibes, Ferroelectric tunnel junctions for information storage and processing. Nat Commun, 5: p. 4289. (2014)
[25] Liang, Y.-K., et al., ZrO2-HfO2 Superlattice Ferroelectric Capacitors With Optimized Annealing to Achieve Extremely High Polarization Stability. IEEE Electron Device Letters, 43(9): p. 1451-1454. (2022)
[26] Migita, S., et al., Accelerated ferroelectric phase transformation in HfO2/ZrO2 nanolaminates. Applied Physics Express, 14(5). (2021)
[27] Kang, M., et al., HfO(2)-ZrO(2) Ferroelectric Capacitors with Superlattice Structure: Improving Fatigue Stability, Fatigue Recovery, and Switching Speed. ACS Appl Mater Interfaces, 16(2): p. 2954-2963. (2024)
[28] Materano, M., et al., Interplay between oxygen defects and dopants: effect on structure and performance of HfO2-based ferroelectrics. Inorganic Chemistry Frontiers, 8(10): p. 2650-2672. (2021)
[29] Kashir, A., et al., Large Remnant Polarization in a Wake-Up Free Hf0.5Zr0.5O2 Ferroelectric Film through Bulk and Interface Engineering. ACS Applied Electronic Materials, 3(2): p. 629-638. (2021)
[30] Ni, K., et al., Critical Role of Interlayer in Hf0.5Zr0.5O2 Ferroelectric FET Nonvolatile Memory Performance. IEEE Transactions on Electron Devices, 65(6): p. 2461-2469. (2018)
[31] Wang, C.-I., et al., Atomic layer deposited TiN capping layer for sub-10 nm ferroelectric Hf0.5Zr0.5O2 with large remnant polarization and low thermal budget. Applied Surface Science, 570. (2021)
[32] Kim, B.H., et al., Oxygen Scavenging in HfZrOx?Based n/p?FeFETs for Switching Voltage Scaling and Endurance/Retention Improvement. Advanced Electronic Materials, 9(5). (2023)
[33] Dirkmann, S., et al., Filament Growth and Resistive Switching in Hafnium Oxide Memristive Devices. ACS Appl Mater Interfaces, 10(17): p. 14857-14868. (2018)
[34] Zhou, Y., et al., The effects of oxygen vacancies on ferroelectric phase transition of HfO2-based thin film from first-principle. Computational Materials Science, 167: p. 143-150. (2019)
[35] Yurchuk, E., et al., Charge-Trapping Phenomena in HfO2-Based FeFET-Type Nonvolatile Memories. IEEE Transactions on Electron Devices, 63(9): p. 3501-3507. (2016)
[36] Raja, J., et al., Improvement of Mobility in Oxide-Based Thin Film Transistors: A Brief Review. Transactions on Electrical and Electronic Materials, 16(5): p. 234-240. (2015)
[37] Mo, F., et al., Low-Voltage Operating Ferroelectric FET with Ultrathin IGZO Channel for High-Density Memory Application. IEEE Journal of the Electron Devices Society, 8: p. 717-723. (2020)
[38] Fortunato, E., P. Barquinha, and R. Martins, Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater, 24(22): p. 2945-86. (2012)
[39] Li, Y., et al., Complementary Integrated Circuits Based on p-Type SnO and n-Type IGZO Thin-Film Transistors. IEEE Electron Device Letters, 39(2): p. 208-211. (2018)
[40] Tiwari, N., et al., Enabling high performance n-type metal oxide semiconductors at low temperatures for thin film transistors. Inorganic Chemistry Frontiers, 7(9): p. 1822-1844. (2020)
[41] Sharp Begins Production of World’s First*1 LCD Panels Incorporating IGZO*2 Oxide Semiconductors, https://global.sharp/corporate/news/120413.html. (accessed: November 2024)
[42] Zhu, Y., et al., Indium–gallium–zinc–oxide thin-film transistors: Materials, devices, and applications. Journal of Semiconductors, 42(3). (2021)
[43] Baldini, M., et al., Editors′ Choice—Si- and Sn-Doped Homoepitaxial β-Ga2O3Layers Grown by MOVPE on (010)-Oriented Substrates. ECS Journal of Solid State Science and Technology, 6(2): p. Q3040-Q3044. (2016)
[44] Muller, S., et al., Control of the conductivity of Si?doped β?Ga2O3 thin films via growth temperature and pressure. physica status solidi (a), 211(1): p. 34-39. (2013)
[45] Cui, S., et al., Room?Temperature Fabricated Amorphous Ga2O3 High?Response?Speed Solar?Blind Photodetector on Rigid and Flexible Substrates. Advanced Optical Materials, 5(19). (2017)
[46] Kim, J., et al., Conversion of an ultra-wide bandgap amorphous oxide insulator to a semiconductor. NPG Asia Materials, 9(3): p. e359-e359. (2017)
[47] Higashiwaki, M., et al., Recent progress in Ga2O3power devices. Semiconductor Science and Technology, 31(3). (2016)
[48] Charnas, A., et al., Atomically thin In2O3 field-effect transistors with 1017 current on/off ratio. Applied Physics Letters, 119(26). (2021)
[49] Si, M., et al., Why In2O3 Can Make 0.7 nm Atomic Layer Thin Transistors. Nano Letters, 21(1): p. 500-506. (2020)
[50] Shimotani, H., et al., p -type field-effect transistor of NiO with electric double-layer gating. Applied Physics Letters, 92(24). (2008)
[51] Jiang, J., et al., Thermal oxidation of Ni films for p-type thin-film transistors. Phys Chem Chem Phys, 15(18): p. 6875-8. (2013)
[52] Chen, Y., et al., Tunable electrical properties of NiO thin films and p-type thin-film transistors. Thin Solid Films, 592: p. 195-199. (2015)
[53] Al-Jawhari, H.A., A review of recent advances in transparent p-type Cu2O-based thin film transistors. Materials Science in Semiconductor Processing, 40: p. 241-252. (2015)
[54] Li, J., et al., Probing defects in nitrogen-doped Cu2O. Sci Rep, 4: p. 7240. (2014)
[55] Zeng, M., et al., Exploring Two-Dimensional Materials toward the Next-Generation Circuits: From Monomer Design to Assembly Control. Chem Rev, 118(13): p. 6236-6296. (2018)
[56] Li, M.Y., et al., How 2D semiconductors could extend Moore′s law. Nature, 567(7747): p. 169-170. (2019)
[57] Fiori, G., et al., Electronics based on two-dimensional materials. Nature Nanotechnology, 9(10): p. 768-779. (2014)
[58] Chhowalla, M., D. Jena, and H. Zhang, Two-dimensional semiconductors for transistors. Nature Reviews Materials, 1(11). (2016)
[59] Zavabeti, A., et al., High-mobility p-type semiconducting two-dimensional β-TeO2. Nature Electronics, 4(4): p. 277-283. (2021)
[60] Geerlings, P., F. De Proft, and W. Langenaeker, Conceptual Density Functional Theory. Chemical Reviews, 103(5): p. 1793-1874. (2003)
[61] Stampfl, C., et al., Electronic structure and physical properties of early transition metal mononitrides: Density-functional theory LDA, GGA, and screened-exchange LDA FLAPW calculations. Physical Review B, 63(15). (2001)
[62] Lazzeri, M., et al., Impact of the electron-electron correlation on phonon dispersion: Failure of LDA and GGA DFT functionals in graphene and graphite. Physical Review B, 78(8). (2008)
[63] Schwerdtfeger, P., et al., The accuracy of the pseudopotential approximation. III. A comparison between pseudopotential and all-electron methods for Au and AuH. The Journal of Chemical Physics, 113(17): p. 7110-7118. (2000)
[64] Introduction to Molecular Dynamics. 2024, https://slideplayer.com/slide/13497704. (accessed: November 2024)
[65] Gubaev, K., et al., Accelerating high-throughput searches for new alloys with active learning of interatomic potentials. Computational Materials Science, 156: p. 148-156. (2019)
[66] Podryabinkin, E.V. and A.V. Shapeev, Active learning of linearly parametrized interatomic potentials. Computational Materials Science, 140: p. 171-180. (2017)
[67] Zuo, Y., et al., Performance and Cost Assessment of Machine Learning Interatomic Potentials. J Phys Chem A, 124(4): p. 731-745. (2020)
[68] Kresse, G. and J. Furthmuller, Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16): p. 11169-11186. (1996)
[69] Paier, J., et al., Screened hybrid density functionals applied to solids. J Chem Phys, 124(15): p. 154709. (2006)
[70] Dronskowski, R. and P.E. Bloechl, Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. The Journal of Physical Chemistry, 97(33): p. 8617-8624. (2002)
[71] Deringer, V.L., A.L. Tchougreeff, and R. Dronskowski, Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J Phys Chem A, 115(21): p. 5461-6. (2011)
[72] Hu, M. and D. Poulikakos, Si/Ge superlattice nanowires with ultralow thermal conductivity. Nano Lett, 12(11): p. 5487-94. (2012)
[73] Bardeen, J. and W. Shockley, Deformation Potentials and Mobilities in Non-Polar Crystals. Physical Review, 80(1): p. 72-80. (1950)
[74] Wang, V., et al., VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Computer Physics Communications, 267. (2021)
[75] Jin, Y., et al., High-throughput deformation potential and electrical transport calculations. npj Computational Materials, 9(1). (2023)
[76] Toprasertpong, K., et al., Low Operating Voltage, Improved Breakdown Tolerance, and High Endurance in Hf(0.5)Zr(0.5)O(2) Ferroelectric Capacitors Achieved by Thickness Scaling Down to 4 nm for Embedded Ferroelectric Memory. ACS Appl Mater Interfaces, 14(45): p. 51137-51148. (2022)
[77] Sire, C., et al., Statistics of electrical breakdown field in HfO2 and SiO2 films from millimeter to nanometer length scales. Applied Physics Letters, 91(24). (2007)
[78] Nelson, R., et al., LOBSTER: Local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory. J Comput Chem, 41(21): p. 1931-1940. (2020)
[79] Zhang, J., et al., Novel compounds in the Zr-O system, their crystal structures and mechanical properties. Phys Chem Chem Phys, 17(26): p. 17301-10. (2015)
[80] Luckyanova, M.N., et al., Coherent phonon heat conduction in superlattices. Science, 338(6109): p. 936-9. (2012)
[81] de Boer, T., et al., Band gap and electronic structure of cubic, rhombohedral, and orthorhombicIn2O3polymorphs: Experiment and theory. Physical Review B, 93(15). (2016)
[82] Li, Y., et al., Structural, electronic, and optical properties of α, β, and γ-TeO2. Journal of Applied Physics, 107(9). (2010)
[83] Biswas, R.K. and S.K. Pati, Achievement of strain-driven ultrahigh carrier mobility in β-TeO2. Materials Research Bulletin, 141. (2021)
[84] Dai, J. and X.C. Zeng, Titanium trisulfide monolayer: theoretical prediction of a new direct-gap semiconductor with high and anisotropic carrier mobility. Angew Chem Int Ed Engl, 54(26): p. 7572-6. (2015)
[85] Schusteritsch, G., M. Uhrin, and C.J. Pickard, Single-Layered Hittorf′s Phosphorus: A Wide-Bandgap High Mobility 2D Material. Nano Lett, 16(5): p. 2975-80. (2016)
[86] Zhang, S., et al., Recent progress in 2D group-VA semiconductors: from theory to experiment. Chem Soc Rev, 47(3): p. 982-1021. (2018)
[87] Cai, Y., G. Zhang, and Y.W. Zhang, Polarity-reversed robust carrier mobility in monolayer MoS(2) nanoribbons. J Am Chem Soc, 136(17): p. 6269-75. (2014)
[88] Guo, S., et al., Ultrathin tellurium dioxide: emerging direct bandgap semiconductor with high-mobility transport anisotropy. Nanoscale, 10(18): p. 8397-8403. (2018) |