博碩士論文 111521110 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:52.14.186.84
姓名 陳柏豪(Po-Hao Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用0.25 μm GaN/SiC HEMT於連續B類 X頻段功率放大器與K頻段 WIPD 覆晶功率放大器暨90奈米 CMOS FR3 寬頻發射器之研製
(Design and Implementation of a 0.25 μm GaN/SiC HEMT Continuous Class-B X-Band Power Amplifier, K-Band WIPD Flip-Chip Power Amplifier, and 90-nm CMOS FR3 Wideband Transmitter)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文使用穩懋半導體公司(WINTM)所提供之 0.25 μm GaN-on-SiC HEMT 與 0.25μm GaN/SiC HEMT 和 GaAs IPD 覆晶技術與台灣積體電路製造股份有限公司 (tsmcTM ) 所提供之90-nm CMOS 1P6M製程,分別進行X頻段之氮化鎵連續B類模式功率放大器、K頻段功率放大器採用0.25μm GaN/SiC HEMT 和 GaAs IPD 覆晶技術以及FR3頻帶之寬頻發射機之設計。
第一顆晶片提出使用WINTM 0.25 μm GaN-on-SiC HEMT製程設計於X頻段B類連續模式氮化鎵功率放大器,輸出匹配電路採用連續B類模式,針對基頻和二階諧波阻抗進行匹配,並且透過挑選偏壓,改善線性度,來達到寬頻且高效率的功率放大器。量測結果顯示最佳功率增益為 16.15 dB,3-dB 頻寬為 9.0 - 11.0 GHz,飽和輸出功率為 35.27 dBm,功率附加效率最高可達 24.12 %,1-dB 增益壓縮點輸出功率為21.06 dBm,晶片面積為 4.59 (2.70 × 1.70) mm2。
第二顆晶片提出應用於K頻段功率放大器採用0.25 μm GaN/SiC HEMT 和 GaAs IPD 覆晶技術,在設計中透過覆晶技術,縮小化GaN 晶片尺寸,由於GaAs IPD 製程的成本約為 GaN 0.25 μm 製程的四分之一,所以可以藉此來降低總成本。在此次設計中所採用的過渡傳輸線中,應用頻率可以高達 51 GHz。量測結果顯示最佳輸出功率增益為11 dB ,3-dB 頻寬為24.5 - 27.8 GHz,飽和輸出功率為 25.16 dBm,功率附加效率最高可達 12.49 %,晶片面積為 3.32 (2.55 × 1.3) mm2。
第三顆晶片提出應用於FR3頻帶之寬頻發射機,為單路同相(In-phase)之發射機,使用台灣積體電路製造股份有限公司 (tsmcTM) 90-nm CMOS 製程設計。在基頻部分使用CMOS基頻反向式放大器以及電阻回授以提升輸出阻抗,並簡化偏壓設計。升頻混頻器採用被動混頻器來達到低功耗以及高線性度的特性,功率放大器之驅動級使用疊接架構達到較高之轉換增益以提高輸出功率,以及使用電阻電容串聯回授改善穩定度。量測時固定本地震盪驅動訊號為10 dBm時,操作頻帶為9 - 12 GHz,量測到最大轉換增益為 9.35 dB,輸出1-dB 增益壓縮點功率為-1.79 dBm,輸出功耗為49.2 mW,晶片面積為0.9 mm2 (1.23 mm × 0.73 mm)。
摘要(英) This thesis presents the design and fabrication of various RF power amplifiers using different technologies, including WIN′s 0.25-μm GaN/SiC, GaAs Integrated Passive Device (IPD) technology, and tsmc′s 90-nm CMOS 1P6M process. The three designs include: 1). A continuous class-B mode power amplifier for X-band applications using GaN/SiC technology,
2). A flip-chip assembled K-band power amplifier (PA) and 3). A broadband transmitter for the FR3 band.
The first chip is a continuous class-B mode power amplifier designed for the X band,utilizing GaN/SiC technology. Its output matching network is optimized for both fundamental
and second harmonic frequencies to meet the requirements of continuous class-B mode operation. By fine-tuning the biasing, the linearity of the amplifier is improved. The design achieves a 3-dB bandwidth ranging from 9.0 to 11.0 GHz, with a small-signal gain of 16.15 dB.
Continuous wave (CW) measurements show a maximum saturated output power of 35.27 dBm, a power-added efficiency (PAE) of up to 24.12%, and an OP1dB of 21.06 dBm. The chip size measures 4.59 mm2 (2.7 mm × 1.7 mm).
The second chip is a flip-chip assembled K-band PA, developed using WIN Semiconductors’ 0.25-μm GaN/SiC technology and GaAs IPD technology. Flip-chip technology reduces the overall cost by minimizing the GaN chip size, while GaAs IPD chips,costing about one-quarter of GaN 0.25 μm chips, further contribute to cost efficiency. This
optimized transition can be applied to frequencies up to 51 GHz. The fabricated PA achieves a saturated output power of 25.16 dBm, a peak PAE of 12.49%, a gain of 11 dB, and a 3-dB
bandwidth from 24.5 to 27.8 GHz. The chip size is 3.32 mm2 (2.55 mm × 1.3 mm). This work demonstrates the feasibility of using flip-chip assembly technology for K-band PA design.
The third chip is a broadband transmitter designed for the FR3 band. It is a single-channel in-phase transmitter fabricated using tsmc′s 90-nm CMOS technology. The design incorporates a CMOS baseband inverter-type amplifier with resistive feedback, which increases the output impedance in the baseband circuit. A passive mixer is used for up-conversion, chosen for its low power consumption and high linearity. The driver amplifier employs a cascode topology to enhance conversion gain, improving output power performance. To ensure stability, resistor-capacitor (RC) feedback is applied to the driver amplifier. The proposed I-channel transmitter achieves conversion gain of 9.35 dB, with an output 1-dB compression point (OP1dB) of -1.79 dBm under a local oscillator (LO) power of 10 dBm at a center frequency of 11 GHz. The measured gain bandwidth spans from 9 to 12 GHz. The chip consumes 49.2 mW of DC power and has a total area of 0.9 mm2 (1.23 mm × 0.732 mm).
關鍵字(中) ★ 連續B類 X頻段功率放大器
★ K頻段 WIPD 覆晶功率放大器
★ FR3 寬頻發射器
關鍵字(英)
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vii
圖目錄 ix
表目錄 xii
第一章 緒論 1
1-1 研究動機 1
1-2 研究成果 2
1-3 章節簡介 2
第二章 應用B類連續技術於X頻段氮化鎵功率放大器 3
2-1氮化鎵功率放大器研究現況 3
2-2連續模式技術介紹 4
2-3 應用B類連續技術於X頻段氮化鎵功率放大器設計 8
2-3-1電路圖 8
2-3-2電晶體特性評估 9
2-3-3輸出匹配設計 14
2-3-4電路模擬與量測結果 19
2-3-5結果比較與討論 31
第三章 應用於K頻段 WIPD 覆晶功率放大器 34
3-1 覆晶技術研究現況 34
3-2 模擬基板與簡化設定 34
3-3 覆晶過渡傳輸線設計 36
3-4 覆晶凸塊直徑與高度之探討 39
3-5 應用於K頻段 WIPD 覆晶功率放大器 43
3-5-1電路圖 43
3-5-2電晶體特性評估 44
3-5-3電路量測結果 48
3-5-4結果比較與討論 59
第四章 應用於FR3頻帶之寬頻發射機 67
4-1 研究現況 67
4-2 電路架構與原理 68
4-2-1反向放大器設計 69
4-2-2電流模態被動混頻器設計 72
4-2-3 驅動功率放大器設計 79
4-2-4 電感性耦合共振腔之差動轉單端變壓器形式巴倫設計 81
4-2-5電路量測結果 88
4-2-6 結果比較與討論 96
第五章 結論 98
5-1 總結 98
5-2 未來方向 99
參考文獻 100
參考文獻 [1] Samsung “6G spectrum: expanding the frontier,” pp.8-16,May 2022.
[2] Qorvo. “GaN: A critical technology for 5G,” white paper, Dec. 2016.
[3] G. Nikandish, R. B. Staszewski and A. Zhu, “Bandwidth enhancement of GaN MMIC doherty power amplifiers using broadband transformer-based load modulation network,” in IEEE Access, vol. 7, pp. 119844-119855, 2019.
[4] G. Lv, W. Chen, X. Liu, F. M. Ghannouchi and Z. Feng, “A fully integrated C-Band GaN MMIC doherty power amplifier with high efficiency and compact size for 5G application,” in IEEE Access, vol. 7, pp. 71665-71674, 2019.
[5] G. Nikandish and A. Medi, “A design procedure for high-efficiency and compact-size 5–10-W MMIC power amplifiers in GaAs pHEMT technology,” in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 8, pp. 2922-2933, Aug. 2013.
[6] R. Quaglia, V. Camarchia, M. Pirola, J. J. M. Rubio and G. Ghione, “Linear GaN MMIC combined power amplifiers for 7-GHz microwave backhaul,” in IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 11, pp. 2700-2710, Nov. 2014.
[7] Y. Xu et al., “A scalable large-signal multiharmonic model of AlGaN/GaN HEMTs and its application in C-Band high power amplifier MMIC,” in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 8, pp. 2836-2846, Aug. 2017.
[8] R. Giofre, P. Colantonio and F. Giannini, “A design approach to maximize the efficiency vs. linearity trade-off in fixed and modulated load GaN power amplifiers,” in IEEE Access, vol. 6, pp. 9247-9255, 2018.
[9] J. Moon, J. Kim and B. Kim, “Investigation of a Class-J power amplifier with a nonlinear $C_{
m out}$ for optimized operation,” in IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 11, pp. 2800-2811, Nov. 2010.
[10] S. Rezaei, L. Belostotski, F. M. Ghannouchi and P. Aflaki, “Integrated design of a Class-J power amplifier,” in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 4, pp. 1639-1648, April 2013.
[11] B. Liu, M. Mao, C. C. Boon, P. Choi, D. Khanna and E. A. Fitzgerald, “A fully integrated Class-J GaN MMIC power amplifier for 5-GHz WLAN 802.11ax application,” in IEEE Microwave and Wireless Components Letters, vol. 28, no. 5, pp. 434-436, May 2018.
[12] G. Nikandish, R. B. Staszewski and A. Zhu, “A broadband continuous Class-F GaN MMIC PA using multi-resonance matching network,” in 2019 14th European Microwave Integrated Circuits Conference (EuMIC), 2019, pp. 108-111.
[13] G. R. Nikandish, R. B. Staszewski and A. Zhu, “A fully integrated reconfigurable multimode Class-F2,3 GaN power amplifier,” in IEEE Solid-State Circuits Letters, vol. 3, pp. 270-273, 2020.
[14] G. Nikandish, R. B. Staszewski and A. Zhu, “Design of highly linear broadband continuous mode GaN MMIC power amplifiers for 5G,” in IEEE Access, vol. 7, pp. 57138-57150, 2019.
[15] S. C. Cripps, P. J. Tasker, A. L. Clarke, J. Lees and J. Benedikt, “On the continuity of high efficiency modes in linear RF power amplifiers,” in IEEE Microwave and Wireless Components Letters, vol. 19, no. 10, pp. 665-667, Oct. 2009.
[16] P. J. Tasker, V. Carrubba, P. Wright, J. Lees, J. Benedikt and S. Cripps, “Wideband PA design: the “continuous” mode of operation,” in 2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), La Jolla, CA, USA, 2012, pp. 1-4
[17] J. A. Reynoso-Hernandez et al., “A new method for extracting Ri and Rgd of the intrinsic transistor model of GaN HEMT based on extrema points of intrinsic Y-parameters,” in 2015 IEEE MTT-S International Microwave Symposium, 2015, pp. 1-3
[18] H. Wang, C. Sideris and A. Hajimiri, “A CMOS broadband power amplifier with a transformer-based high-order output matching network,” in IEEE Journal of Solid-State Circuits, vol. 45, no. 12, pp. 2709-2722, Dec. 2010.
[19] T. Senju, K. Takagi and H. Kimura, “A 2 W 45 % PAE X-Band GaN HEMT Class-F MMIC power amplifier,” in 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 2018, pp. 956-958
[20] A. Vancha, H. Tolani, S. C. Bera and S. Singh, “Design of a 5W X-Band GaN HEMT power amplifier,” in 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kharagpur, India, 2021, pp. 1-4
[21] S. H. Vardhan, D. Pathak, R. Ramalingam, M. Mehnde and A. Dutta, “Microstrip radial stub based 4W GaN MMIC power amplifier for X-band radar applications,” in 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhilai, India, 2021, pp. 1-4
[22] O. Sriman and G. Banerjee, “X-Band GaN power amplifier for weather radar applications,” in 2023 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), Ahmedabad, India, 2023, pp. 1-5
[23] G. Lv, W. Chen and Z. Feng, “A compact and broadband Ka-band asymmetrical GaAs doherty power amplifier MMIC for 5G communications,” in 2018 IEEE/MTT-S International Microwave Symposium - IMS, Philadelphia, PA, USA, 2018, pp. 808-811.
[24] V. Qunaj and P. Reynaert, “Compact transformer-based matching structures for Ka-band power amplifiers,” in 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapore, 2019, pp. 914-916.
[25] J. Jeong, P. Pech, Y. Jeong and S. Lee, “Wafer-level-packaged X -Band internally matched power amplifier using silicon interposer technology,” in IEEE Microwave and Wireless Components Letters, vol. 29, no. 10, pp. 665-668, Oct. 2019.
[26] J. -M. Yook, D. Kim, B. -J. Park, S. Sim, Y. -S. Eo and J. C. Kim, “A compact 28 GHz RF front-end module using IPDs and wafer-level metal fan-out packaging,” in 2019 49th European Microwave Conference (EuMC), Paris, France, 2019.
[27] C. -H. Li, W. -T. Hsieh and T. -Y. Chiu, “A flip-chip-assembled W-Band receiver in 90-nm CMOS and IPD technologies,” in IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 4, pp. 1628-1639, April 2019.
[28] V. Camarchia, R. Quaglia, C. Ramella and M. Pirola, “Power amplifier MMICs for 15 GHz microwave links in 0.25 um GaN technology,” in 2017 Integrated Nonlinear Microwave and Millimetre-wave Circuits Workshop (INMMiC), Graz, Austria, 2017.
[29] L. -H. Huang and H. -K. Chiou, “An ultra-compact 14.9-W X-band GaN MMIC power amplifier,” in 2020 IEEE Asia-Pacific Microwave Conference (APMC), Hong Kong, Hong Kong, 2020, pp. 257-259.
[30] S. K. Gedela, S. N′Gongo, K. Bantupalli and K. Suman, “Ku-Band 25 W high power amplifier using 0.25 μm GaN technology,” in 2020 15th European Microwave Integrated Circuits Conference (EuMIC), Utrecht, Netherlands, 2021, pp. 269-272.
[31] D. Tao, Y. Lu, X. Mo, Q. Guo and J. Zhu, “Design of high efficiency X-Band power amplifier based on GaN HEMT,” in 2022 IEEE 10th Asia-Pacific Conference on Antennas and Propagation (APCAP), Xiamen, China, 2022, pp. 1-2.
[32] L. Kang, W. Chen and A. Wu, “A reconfigurable S-/X-band GaN MMIC power amplifier,” in IEEE Microwave and Wireless Components Letters, vol. 32, no. 6, pp. 547-550, June 2022.
[33] Y. Hua, H. Wu, X. Liao, C. Liao, L. Hu, and J. Lv, “A high-efficiency 3-watt GaAs pHEMT X-band MMIC power amplifier,” in International Conference on Microwave and Millimeter Wave Technology (ICMMT), December 2018.
[34] M. Collados, H. Zhang, B. Tenbroek and H. H. Chang, “A low-current digitally predistorted direct-conversion transmitter with 25% duty-cycle passive mixer,” in IEEE Trans. Microw. Theory Techn., vol. 62, no. 4, pp. 726-731, April 2014
[35] H. Duan, J. Chen, M. Wang, H. Wei, Q. Zhang and H. Quan, “High linearity wide band passive mixer for Ku-Band applications in a 180nm CMOS technology,” in 2022 7th International Conference on Integrated Circuits and Microsystems (ICICM), Xi′an, China, 2022, pp. 565-569
[36] A. Mirzaei, D. Murphy and H. Darabi, “Analysis of direct-conversion IQ transmitters with 25% duty-cycle passive mixers,” in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 10, pp. 2318-2331, Oct. 2011
[37] C. Li, C. Kuo and M. Kuo, “A 1.2-V 5.2-mW 20–30-GHz wideband receiver front-end in 0.18-μm CMOS, “ in IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 11, pp. 3502-3512, Nov. 2012.
[38] C. -H. Li, Y. -L. Liu and C. -N. Kuo, “A 0.6-V 0.33-mW 5.5-GHz receiver front-end using resonator coupling technique, “ in IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 6, pp. 1629-1638, June 2011.
[39] H. Zheng, S. Lou, D. Lu, C. Shen, T. Chan, and H. Luong, “A 3.1 GHz–8.0 GHz single-chip transceiver for MB-OFDM UWB in 0.18-μm CMOS process,” in IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 414–426, Feb. 2009.
[40] M. Camponeschi et al., “A X-band I/Q upconverter in 65 nm CMOS for high resolution FMCW radars,” in IEEE Microw. Wireless Compon. Lett., vol. 22, no. 3, pp. 141–143, Mar. 2012.
[41] X. Wang and H. Wei, “An L Band four-channel direct up-conversion transmitter,” in 2019 IEEE 19th International Conference on Communication Technology (ICCT), Xi′an, China, 2019, pp. 814-818
[42] B. Kim, S. Kim, Y. Lee, S. Kim and H. Shin, “A 28GHz quadrature up-conversion transmitter in 65nm CMOS for 5G mmwave radio,” in 2019 International SoC Design Conference (ISOCC), Jeju, Korea (South), 2019, pp. 31-32
[43] H. Nam, W. Lee, J. Son and J. -D. Park, “A compact I/Q upconversion chain for a 5G wireless transmitter in 65-nm CMOS technology,” in IEEE Microwave and Wireless Components Letters, vol. 30, no. 3, pp. 284-287, March 2020
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2024-11-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明