參考文獻 |
[1] Samsung “6G spectrum: expanding the frontier,” pp.8-16,May 2022.
[2] Qorvo. “GaN: A critical technology for 5G,” white paper, Dec. 2016.
[3] G. Nikandish, R. B. Staszewski and A. Zhu, “Bandwidth enhancement of GaN MMIC doherty power amplifiers using broadband transformer-based load modulation network,” in IEEE Access, vol. 7, pp. 119844-119855, 2019.
[4] G. Lv, W. Chen, X. Liu, F. M. Ghannouchi and Z. Feng, “A fully integrated C-Band GaN MMIC doherty power amplifier with high efficiency and compact size for 5G application,” in IEEE Access, vol. 7, pp. 71665-71674, 2019.
[5] G. Nikandish and A. Medi, “A design procedure for high-efficiency and compact-size 5–10-W MMIC power amplifiers in GaAs pHEMT technology,” in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 8, pp. 2922-2933, Aug. 2013.
[6] R. Quaglia, V. Camarchia, M. Pirola, J. J. M. Rubio and G. Ghione, “Linear GaN MMIC combined power amplifiers for 7-GHz microwave backhaul,” in IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 11, pp. 2700-2710, Nov. 2014.
[7] Y. Xu et al., “A scalable large-signal multiharmonic model of AlGaN/GaN HEMTs and its application in C-Band high power amplifier MMIC,” in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 8, pp. 2836-2846, Aug. 2017.
[8] R. Giofre, P. Colantonio and F. Giannini, “A design approach to maximize the efficiency vs. linearity trade-off in fixed and modulated load GaN power amplifiers,” in IEEE Access, vol. 6, pp. 9247-9255, 2018.
[9] J. Moon, J. Kim and B. Kim, “Investigation of a Class-J power amplifier with a nonlinear $C_{ m out}$ for optimized operation,” in IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 11, pp. 2800-2811, Nov. 2010.
[10] S. Rezaei, L. Belostotski, F. M. Ghannouchi and P. Aflaki, “Integrated design of a Class-J power amplifier,” in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 4, pp. 1639-1648, April 2013.
[11] B. Liu, M. Mao, C. C. Boon, P. Choi, D. Khanna and E. A. Fitzgerald, “A fully integrated Class-J GaN MMIC power amplifier for 5-GHz WLAN 802.11ax application,” in IEEE Microwave and Wireless Components Letters, vol. 28, no. 5, pp. 434-436, May 2018.
[12] G. Nikandish, R. B. Staszewski and A. Zhu, “A broadband continuous Class-F GaN MMIC PA using multi-resonance matching network,” in 2019 14th European Microwave Integrated Circuits Conference (EuMIC), 2019, pp. 108-111.
[13] G. R. Nikandish, R. B. Staszewski and A. Zhu, “A fully integrated reconfigurable multimode Class-F2,3 GaN power amplifier,” in IEEE Solid-State Circuits Letters, vol. 3, pp. 270-273, 2020.
[14] G. Nikandish, R. B. Staszewski and A. Zhu, “Design of highly linear broadband continuous mode GaN MMIC power amplifiers for 5G,” in IEEE Access, vol. 7, pp. 57138-57150, 2019.
[15] S. C. Cripps, P. J. Tasker, A. L. Clarke, J. Lees and J. Benedikt, “On the continuity of high efficiency modes in linear RF power amplifiers,” in IEEE Microwave and Wireless Components Letters, vol. 19, no. 10, pp. 665-667, Oct. 2009.
[16] P. J. Tasker, V. Carrubba, P. Wright, J. Lees, J. Benedikt and S. Cripps, “Wideband PA design: the “continuous” mode of operation,” in 2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), La Jolla, CA, USA, 2012, pp. 1-4
[17] J. A. Reynoso-Hernandez et al., “A new method for extracting Ri and Rgd of the intrinsic transistor model of GaN HEMT based on extrema points of intrinsic Y-parameters,” in 2015 IEEE MTT-S International Microwave Symposium, 2015, pp. 1-3
[18] H. Wang, C. Sideris and A. Hajimiri, “A CMOS broadband power amplifier with a transformer-based high-order output matching network,” in IEEE Journal of Solid-State Circuits, vol. 45, no. 12, pp. 2709-2722, Dec. 2010.
[19] T. Senju, K. Takagi and H. Kimura, “A 2 W 45 % PAE X-Band GaN HEMT Class-F MMIC power amplifier,” in 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 2018, pp. 956-958
[20] A. Vancha, H. Tolani, S. C. Bera and S. Singh, “Design of a 5W X-Band GaN HEMT power amplifier,” in 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kharagpur, India, 2021, pp. 1-4
[21] S. H. Vardhan, D. Pathak, R. Ramalingam, M. Mehnde and A. Dutta, “Microstrip radial stub based 4W GaN MMIC power amplifier for X-band radar applications,” in 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhilai, India, 2021, pp. 1-4
[22] O. Sriman and G. Banerjee, “X-Band GaN power amplifier for weather radar applications,” in 2023 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), Ahmedabad, India, 2023, pp. 1-5
[23] G. Lv, W. Chen and Z. Feng, “A compact and broadband Ka-band asymmetrical GaAs doherty power amplifier MMIC for 5G communications,” in 2018 IEEE/MTT-S International Microwave Symposium - IMS, Philadelphia, PA, USA, 2018, pp. 808-811.
[24] V. Qunaj and P. Reynaert, “Compact transformer-based matching structures for Ka-band power amplifiers,” in 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapore, 2019, pp. 914-916.
[25] J. Jeong, P. Pech, Y. Jeong and S. Lee, “Wafer-level-packaged X -Band internally matched power amplifier using silicon interposer technology,” in IEEE Microwave and Wireless Components Letters, vol. 29, no. 10, pp. 665-668, Oct. 2019.
[26] J. -M. Yook, D. Kim, B. -J. Park, S. Sim, Y. -S. Eo and J. C. Kim, “A compact 28 GHz RF front-end module using IPDs and wafer-level metal fan-out packaging,” in 2019 49th European Microwave Conference (EuMC), Paris, France, 2019.
[27] C. -H. Li, W. -T. Hsieh and T. -Y. Chiu, “A flip-chip-assembled W-Band receiver in 90-nm CMOS and IPD technologies,” in IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 4, pp. 1628-1639, April 2019.
[28] V. Camarchia, R. Quaglia, C. Ramella and M. Pirola, “Power amplifier MMICs for 15 GHz microwave links in 0.25 um GaN technology,” in 2017 Integrated Nonlinear Microwave and Millimetre-wave Circuits Workshop (INMMiC), Graz, Austria, 2017.
[29] L. -H. Huang and H. -K. Chiou, “An ultra-compact 14.9-W X-band GaN MMIC power amplifier,” in 2020 IEEE Asia-Pacific Microwave Conference (APMC), Hong Kong, Hong Kong, 2020, pp. 257-259.
[30] S. K. Gedela, S. N′Gongo, K. Bantupalli and K. Suman, “Ku-Band 25 W high power amplifier using 0.25 μm GaN technology,” in 2020 15th European Microwave Integrated Circuits Conference (EuMIC), Utrecht, Netherlands, 2021, pp. 269-272.
[31] D. Tao, Y. Lu, X. Mo, Q. Guo and J. Zhu, “Design of high efficiency X-Band power amplifier based on GaN HEMT,” in 2022 IEEE 10th Asia-Pacific Conference on Antennas and Propagation (APCAP), Xiamen, China, 2022, pp. 1-2.
[32] L. Kang, W. Chen and A. Wu, “A reconfigurable S-/X-band GaN MMIC power amplifier,” in IEEE Microwave and Wireless Components Letters, vol. 32, no. 6, pp. 547-550, June 2022.
[33] Y. Hua, H. Wu, X. Liao, C. Liao, L. Hu, and J. Lv, “A high-efficiency 3-watt GaAs pHEMT X-band MMIC power amplifier,” in International Conference on Microwave and Millimeter Wave Technology (ICMMT), December 2018.
[34] M. Collados, H. Zhang, B. Tenbroek and H. H. Chang, “A low-current digitally predistorted direct-conversion transmitter with 25% duty-cycle passive mixer,” in IEEE Trans. Microw. Theory Techn., vol. 62, no. 4, pp. 726-731, April 2014
[35] H. Duan, J. Chen, M. Wang, H. Wei, Q. Zhang and H. Quan, “High linearity wide band passive mixer for Ku-Band applications in a 180nm CMOS technology,” in 2022 7th International Conference on Integrated Circuits and Microsystems (ICICM), Xi′an, China, 2022, pp. 565-569
[36] A. Mirzaei, D. Murphy and H. Darabi, “Analysis of direct-conversion IQ transmitters with 25% duty-cycle passive mixers,” in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 10, pp. 2318-2331, Oct. 2011
[37] C. Li, C. Kuo and M. Kuo, “A 1.2-V 5.2-mW 20–30-GHz wideband receiver front-end in 0.18-μm CMOS, “ in IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 11, pp. 3502-3512, Nov. 2012.
[38] C. -H. Li, Y. -L. Liu and C. -N. Kuo, “A 0.6-V 0.33-mW 5.5-GHz receiver front-end using resonator coupling technique, “ in IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 6, pp. 1629-1638, June 2011.
[39] H. Zheng, S. Lou, D. Lu, C. Shen, T. Chan, and H. Luong, “A 3.1 GHz–8.0 GHz single-chip transceiver for MB-OFDM UWB in 0.18-μm CMOS process,” in IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 414–426, Feb. 2009.
[40] M. Camponeschi et al., “A X-band I/Q upconverter in 65 nm CMOS for high resolution FMCW radars,” in IEEE Microw. Wireless Compon. Lett., vol. 22, no. 3, pp. 141–143, Mar. 2012.
[41] X. Wang and H. Wei, “An L Band four-channel direct up-conversion transmitter,” in 2019 IEEE 19th International Conference on Communication Technology (ICCT), Xi′an, China, 2019, pp. 814-818
[42] B. Kim, S. Kim, Y. Lee, S. Kim and H. Shin, “A 28GHz quadrature up-conversion transmitter in 65nm CMOS for 5G mmwave radio,” in 2019 International SoC Design Conference (ISOCC), Jeju, Korea (South), 2019, pp. 31-32
[43] H. Nam, W. Lee, J. Son and J. -D. Park, “A compact I/Q upconversion chain for a 5G wireless transmitter in 65-nm CMOS technology,” in IEEE Microwave and Wireless Components Letters, vol. 30, no. 3, pp. 284-287, March 2020 |