參考文獻 |
[1]L. Zhao, B. Sang, Y. Tan, K. Wang, W. Zhou, Y. Wang, “Transmission of 1024-QAM OFDM at 28 GHz radio frequency using 5G millimeter wave phased array antenna,” IEEE Trans. Microw. Theory Techn., vol. 70, no. 9, pp. 4211–4217, Sept. 2022.
[2] E. Song, B. Park, and K. Kwon, “2.4-GHz low-power low-IF receiver with a quadrature local oscillator buffer for Bluetooth low energy applications,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 68, no. 7, pp. 2369–2373, Jul. 2021.
[3] S. Sadjina, C. Motz, T. Paireder, M. Huemer and H. Pretl, “A survey of self-interference in LTE-advanced and 5G new radio wireless transceivers,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 3, pp. 1118-1131, Mar. 2020.
[4] O. E. Amestica, P. E. Melin, C. R. Duran-Faundez and G. R. Lagos, “An experimental comparison of Arduino IDE compatible platforms for digital control and data acquisition applications,” in 2019 IEEE CHILEAN Conf. Elect., Electron. Eng., Inf. Commun. Technol., Valparaiso, Chile, Nov. 2019, pp. 1-6.
[5] A. Ramelan, F. A. Rohman, M. E. Sulistyo, F. Adriyanto, N. Sartika and D. Zakaria, “Arduino and LabVIEW based ping-pong ball position control using PID controller,” in 2023 17th Int. Conf. Telecommun. Syst., Services, and Appl., Lombok, Indonesia, Oct. 2023, pp. 1-6.
[6] J. R. S. Fernando, Y. S, P. T and V. Mohanraj, “Design of engine control unit with Arduino board for unmanned aerial vehicles to control fuel flow,” in 2022 8th Int. Conf. Smart Struct. and Syst., Chennai, India, Apr. 2022, pp. 1-6.
[7] C.-W. Hung and L.-C. Lu, “A free stack DC power module for a battery test system,” in 2016 IEEE Int. Conf. Ind. Technol., Taipei, Taiwan, Mar. 2016, pp. 1642-1647.
[8] C. T. Kalaivani, G. G. S. S. Reddy, D. J. Reddy and G. Rajasekhar, “Environmental monitoring and control system for greenhouse with node MCU and GSM using IoT devices,” in 2022 8th Int. Conf. Smart Struct. and Syst., Chennai, India, Apr. 2022, pp. 1-4.
[9] A. Kadu, S. Bhosale, A. Pagare, P. Sable, R. Kudtarkar and A. Bhilare, “Development of low-cost water level monitoring and control using PID controller,” in 2023 3rd Int. Conf. Innov. Mechanisms Industry Appl., Bengaluru, India, Dec. 2023, pp. 524-528.
[10] M. Molina, A. Vera, C. Molina and P. Garzon, “Design and construction of an obstacle avoiding robot based on Arduino platform and programming too,” in 2018 9th IEEE Annu. Ubiquitous Comput., Electron. Mobile Commun. Conf., New York, NY, USA, Nov. 2018, pp. 788-791.
[11] Masahiro Hatanaka and Hideto Hidaka, “Value creation in SOC/MCU applications by embedded non-volatile memory evolutions,” in 2007 IEEE Asian Solid-State Circuits Conf., Jeju, Korea (South), Nov. 2007, pp. 38-42.
[12] V. S. Rawat, V. Gupta and D. S. Tomar, “MCU system based on IEC61508 for autonomous functional safety platform,” in 2020 4th Int. Conf. Electron., Commun. Aerosp. Technol., Coimbatore, India, Nov. 2020, pp. 435-440.
[13] X. Zhang, H. Lu, J. Li, X. Peng, Y. Li, L. Liu, “Design and implementation of intelligent light control system based on Arduino,” in 2020 IEEE Int. Conf. Artif. Intell. Comput. Appl., Dalian, China, Jun. 2020, pp. 1369-1373.
[14] A. Tang, Y. Kim, T. Reck, Y. Tang, Y. Xu, G. Chattopadhyay, “A 177–205 GHz 249 mW CMOS-based integer-N frequency synthesizer Module for planetary exploration,” IEEE Trans. Terahertz Sci. and Technol., vol. 8, no. 2, pp. 251-254, Mar. 2018.
[15] Z.-Z. Chen, A. Tang, Y. Kim, G. Virbila, T. Reck, J.-F Yei, “A wide-band 65nm CMOS 28–34 GHz synthesizer module enabling low power heterodyne spectrometers for planetary exploration,” in 2015 IEEE MTT-S Int. Microw. Symp., Phoenix, AZ, USA, May 2015, pp. 1-3.
[16] H. Yoo and F. Bien, “77GHz frequency synthesizer for invention of radar systems,” in 2014 Int. SoC Des. Conf., Jeju, Korea (South), Nov. 2014, pp. 34-35.
[17] J. Lu, L. Zhou, L. Duan, H. Liu, T. Yu and J. Chang, “Research of frequency synthesizer based on SIP technology with novel structure,” in 2020 Int. Conf. Microw. Millimeter Wave Technol., Shanghai, China, Sept. 2020, pp. 1-3.
[18] A. Bhattacharya, S. Bhattacharyya, L. A. Shaik, M. P. S. Bhadoria, H. Tolani and P. Chakraborty, “Design and realization of multi-output, ka-band frequency synthesizer with high output power,” in 2023 IEEE Microw., Antennas Propag. Conf., Ahmedabad, India, Dec. 2023, pp. 1-4.
[19] Chaojiang Li, Berktug Ustundag, Arvind Kumar, Myra Boenke, Umut Kodak, and Gabriel Rebeiz, “<0.8dB IL 46dBm OIP3 Ka band SPDT for 5G communication,” in 2018 IEEE Topical Meeting Silicon Monolithic Integr. Circuits in RF Systems, Anaheim, CA, USA, Jan. 2018, pp. 1-3.
[20] 鄒榕,微波及毫米波瓦特級低損耗高隔離度切換器及X頻段四相位鎖相迴路之研製,國立中央大學電機工程研究所碩士論文,民國111年。
[21] Z. Zhang, L. Zhong, H. Lan and G. Zhang, “Enhanced stacked-FETs SOI-CMOS switch biasing strategy for high power applications,” in 2019 IEEE Asia-Pacific Microw. Conf., Singapore, Dec. 2019, pp. 1295-1297
[22] J. Chou, W.-C. Chen, Y.-L. Wang, Y.-F. Chen and H.-Y. Chang, “A ka-band 35-dBm P0.1dB low-loss monolithic SPDT switch using anti-series diode connection,” in 2023 IEEE/MTT-S Int. Microw. Symp., San Diego, CA, USA, Jun. 2023, pp. 1112-1115.
[23] Arduino. Arduino Mega2560 Rev3. Accessed: May 20, 2024. [Online] Available: https://store.arduino.cc/products/arduino-mega-2560-rev3?queryID=1e52546d92c0b0c14683440ff23f64bc
[24] Microchip Technology Inc. Atmega640/V-1280/V-1281/V-2560/V-2561/V: 8-bit Microcontroller with 16/32/64KB In-System Programmable Flash. Accessed: May 20, 2024. [Online]Available:https://ww1.microchip.com/downloads/aemDocuments/documents/OTH/ProductDocuments/DataSheets/ATmega640-1280-1281-2560-2561-Datasheet-S40002211A.pdf
[25]高深淵和楊清淵,鎖相迴路,蒼海書局,民國100年。
[26] Analog Devices Inc. EV-ADF4355SD1Z User Guide. Accessed: May 20, 2024. [Online] Available:https://www.analog.com/media/en/technical-documentation/user-guides/EV-ADF4355SD1Z_UG-805.pdf
[27] T. Kubo, Y. Yamaguchi, Y. Okuyama, S. Takeda and N. Guan, “A compact spdt switch amplifier with high on/off ratio and variable gain for 5G millimeter-wave applications,” in 2022 IEEE Asia-Pacific Microw. Conf., Yokohama, Japan, Nov. 2022, pp. 285-287.
[28] Y. Gong, J. W. Teng, and J. D. Cressler, “A compact, high-power, 60 GHz SPDT switch using shunt-series SiGe PIN diodes,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., Boston, MA, USA, Jun. 2019, pp. 15-18.
[29] H. E. Liu, X. Lin, H. Y. Chang, and Y. C. Wang, “10-MHz-to-70-GHz ultra-wideband low-insertion-loss SPST and SPDT switches using GaAs PIN diode MMIC process,” in Asia-Pacific Microw. Conf., Kyoto, Japan, Nov. 2018, pp. 1217-1219.
[30] F. Thome, P. Bruckner, R. Quay, and O. Ambacher, “Millimeter-wave single-pole double-throw switches based on a 100-nm gate-length AlGaN/GaN-HEMT technology,” in IEEE MTT-S Int. Microw. Symp. Dig., Boston, MA, USA, Jun. 2019, pp. 1403-1406.
[31] K.-H. Lee, S. Choi and C.-Y. Kim, “A 25–30-GHz asymmetric SPDT switch for 5G applications in 65-nm triple-well CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 29, no. 6, pp. 391-393, Jun. 2019.
[32] X. Fu, Y. Wang, Z. Li, A. Shirane, and K. Okada, “A 68-dB isolation 1.0-dB loss compact CMOS SPDT RF switch utilizing switched resonance network,” in IEEE MTT-S Int. Microw. Symp. Dig., Los Angeles, CA, USA, Aug. 2020, pp. 1315-1318.
[33] T. Shivan, M. Hossain, R. Doerner, T. Johansen, K. Nosaeva, H. Yacoub, W. Heinrich, and V. Krozer, “A high-isolation and highly linear super-wideband SPDT switch in InP DHBT technology,” in IEEE MTT-S Int. Microw. Symp. Dig., Los Angeles, CA, USA, Oct. 2020, pp.1125-1128.
[34] M. Assad, A. I. Najam, and H. M. Cheema, “GaN based high power SPDT switch for single chip X-band T/R module front-end,” in Proc. 1st Int. Conf. Microw. Antennas Circuits, Islamabad, Pakistan, Dec. 2021, pp. 1-3.
[35] T. Kim, H. D. Lee, B. Park, S. Jang, S. Kong and C. Park, “Design of a K-band high-linearity asymmetric SPDT CMOS switch using a stacked transistor,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 12, pp. 1443-1446, Dec. 2022.
[36] F. Thome, A. Leuther and O. Ambacher, “Low-loss millimeter-wave SPDT switch MMICs in a metamorphic HEMT technology,” IEEE Microw. Wireless Compon. Lett., vol. 30, no. 2, pp. 197-200, Feb. 2020.
[37] J. Chou, W.-C. Chen, Y.-L. Wang, Y.-F. Chen and H.-Y. Chang, “A Ka-band 35-dBm P0.1dB low-loss monolithic SPDT switch using anti-series diode connection,” in IEEE MTT-S Int. Microw. Symp., San Diego, CA, USA, Jul. 2023, pp. 1112-1115.
[38] G. Shen, H. Zhu, Q. Cai, D. Zeng, Q. Xue and W. Che, “Compact multipole GaN-on-Si SPDT switch using inductive parasitic effects of hybrid HEMT devices," IEEE Trans. Microw. Theory Techn., vol. 71, no. 11, pp. 4778-4786, May 2023.
[39] Y.-S. Lin, K.-S. Lan and B.-S. Chen, “Wideband millimeter-wave power divider and SPDT switch using inverting spiral-coupled-line,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 70, no. 4, pp. 1575-1579, Apr. 2023.
[40] 鄒榕,微波及毫米波瓦特級低損耗高隔離度切換器及X頻段四相位鎖相迴路之研製,國立中央大學電機工程研究所碩士論文,民國111年。
[41] 王詠樂,線性度改善之微波及毫米波二極體切換器與混波器之研製,國立中央大學電機工程研究所碩士論文,民國109年。
[42] H.-E. Liu, X. Lin, H.-Y. Chang and Y.-C. Wang, “10-MHz-to-70-GHz ultra-wideband low-insertion-loss SPST and SPDT switches using GaAs PIN diode MMIC process,” in 2018 Asia-Pacific Microw. Conf., Kyoto, Japan, Nov. 2018, pp. 1217-1219.
[43] H.-Y. Chang, and C.-Y. Chan, “A low loss high isolation DC-60 GHz SPDT traveling-wave switch with a body bias technique in 90 nm CMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 02, pp. 82-84, Feb. 2010.
[44] H. Wan, J. Xu, B.-Y. Han, G.-Q. Zhou, Y.-Q. Du and L. Zhu, “Design of BPF-integrated SPDT switch based on slotline resonators loaded with diodes,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 70, no. 7, pp. 2405-2409, Jul. 2023.
[45] N. A. Shairi, N. M. Sanusi, Z. Zakaria, I. M. Ibrahim, A. Othman and A. Joret, “Ultra-wideband SPDT and SP8T switches using silicon-glass PIN diodes for microwave medical imaging,” in 2019 IEEE Int. Conf. Autom. Control Intell. Syst., Selangor, Malaysia, Jun. 2019, pp. 6-9.
[46] S. Noorizadeh, S. Ngamate and T. D. Nguyen, “Design of a 22-55 GHz SPDT switch MMIC with GaAs PIN diodes,” in 2023 18th Euro. Microw. Int. Circuits Conf., Berlin, Germany, Sept. 2023, pp. 261-264.
[47] J. G. Yang and K. Yang, “High-linearity K-Band absorptive-type MMIC switch using GaN PIN-diodes,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 1, pp. 37-39, Jan. 2013.
[48] T. Shivan, M. Hossain, R. Doerner, T. Johansen, K. Nosaeva, H. Yacoub, “A high-Isolation and highly linear super-wideband SPDT switch in InP DHBT technology”, in IEEE/MTT-S Int. Microw. Symp., Los Angeles, CA, USA, Oct. 2020, pp. 1125-1128.
[49] Kim Tuyen Trinh, Hsuan-Ling Kao, Hsien-Chin Chiu and Nemai Chandra Karmakar, “A ka-band GaAs MMIC traveling-wave switch with absorptive characteristic”, IEEE Microw. Wireless Compon. Lett., vol. 29, no. 6, pp. 394-396, Jun. 2019.
[50] T. Despoisse, N. Deltimple, A. Ghiotto, M. D. Matos and P. Busson, “Low-loss ka-band SPDT switch design methodology for 5G applications in 65 nm CMOS SOI Technology,” in 2020 IEEE Silicon Monolithic Integr. Circuits in RF Systems, San Antonio, TX, USA, Jan. 2020, pp. 5-8. |