博碩士論文 110521130 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.147.44.46
姓名 陳羿夫(Yi-Fu Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 可程式化寬頻分數型頻率合成器模組與毫米波多容值共振並聯二極體切換器之研製
(Design of Programmable Wideband Fractional Synthesizer Module and Millimeter-Wave Multi-Capacitance Resonance Shunt-Diode Switches)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 微波及毫米波行進波切換器之研製★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
★ 微波與毫米波相位陣列收發積體電路之研製★ 24 GHz汽車防撞雷達收發積體電路之研製
★ 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究★ 高功率高效率放大器與振盪器研製
★ 微波與毫米波寬頻主動式降頻器★ 微波及毫米波注入式除頻器與振盪器暨射頻前端應用
★ 寬頻主動式半循環器與平衡器研製★ 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製
★ 銻化物異質接面場效電晶體之研製及其微波切換器應用★ 微波毫米波寬頻振盪器與鎖相迴路之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-5以後開放)
摘要(中) 本論文主要研究可程式化寬頻分數型頻率合成器模組與毫米波多容值共振並聯二極體切換器的設計與實現。頻率合成器在現代射頻收發系統中扮演關鍵角色,依靠其本地振盪源的精確訊號生成能力及鎖相迴路技術,提供穩定的訊號源,適用於發射端與接收端的升降頻所需時脈源。而發射機銜接放大器與天線的切換器在近期研究卻很少有同時具有瓦特級與低損耗高隔離度之效能,此情形會造成功率放大器的輸出功率無法有效傳達至天線。
第二章利用ATmega2560微控制器的指令功能與計算,編寫了一套用於第三章所提到的分數型頻率合成器模組的程式,使其能夠根據系統需求動態調整頻率輸出和參考頻率等等之功能,大大提高了系統的操作便利性和可控性。
第三章詳細描述了將亞德諾半導體(Analog Device)公司生產的分數型頻率合成器開發成模組的過程。我們進行了理論分析,包括迴路轉移函數和迴路增益等,以及實驗結果的驗證。透過對迴路穩定度的研究,我們證明了這些模組在設計和應用中的可靠性和穩定性。
第四章利用穩懋公司所提供的GaAs .15μm PINHEMT製程設計的毫米波電容共振四分之一波長單刀雙擲切換器的不同架構。我們將傳統的四分之一波長與串並式切換器結合做延伸,使用串並式二極體作為開關。由於III-V族製程背向通口的寄生電感,本章提出多種電容大小與之共振以消除其寄生效應,達到更好的隔離度頻寬。並成功實現輸入1 dB壓縮點大於35 dBm、插入損耗小於2 dB且隔離度大於20 dB的高功率低損耗高隔離度切換器。
最後第五章為本論文之總結與未來研究發展方向。在本章中,我們將對本論文的主要研究結果進行總結,並探討未來的研究方向和可能的應用領域。這將有助於指導未來相關領域的研究和應用。
摘要(英) This thesis primarily investigates the design and implementation of a programmable wideband fractional frequency synthesizer module and a millimeter-wave multi-capacitance-resonance shunt-diode switch. Frequency synthesizers play a crucial role in modern RF transceiver systems, providing stable signal sources for both transmission and reception through precise signal generation capabilities of their local oscillators and phase-locked loop techniques, suitable for clock sources required for up-conversion and down-conversion at the transmitter and receiver ends. However, recent research has shown limited performance in achieving both watt-level power handling and low-loss high-isolation characteristics in the switch between the transmitter power amplifier and the antenna. This situation results in ineffective transmission of the output power of the power amplifier to the antenna, affecting system efficiency.
In Chapter two, a program was developed utilizing the instruction set and computational capabilities of the ATmega2560 microcontroller. This program is designed for the fractional-N frequency synthesizer module mentioned in chapter three. It enables dynamic adjustment of frequency output and reference frequency according to system requirements, significantly enhancing the system′s operational convenience and controllability.
Chapter three provides a detailed process of developing a module from the fractional-N frequency synthesizer produced by Analog Devices. The chapter includes theoretical analysis such as transfer function and loop gain, as well as validation of experimental results. Through studying loop stability, we demonstrate the reliability and stability of these modules in both design and application.
Chapter four presents various architectures of millimeter-wave capacitor-resonant quarter-wavelength single-pole double-throw switches designed using the GaAs .15μm PINHEMT process provided by Win Semiconductors. We extend the conventional quarter-wavelength and series-parallel switch combination by employing series-parallel diodes as switches. Due to the parasitic inductance of the III-V process back-gate via, this chapter proposes multiple capacitor sizes and resonances to mitigate its parasitic effects, achieving improved isolation bandwidth. We successfully achieve a high-power, low-loss, high-isolation switch with input 1 dB compression point greater than 35 dBm, insertion loss less than 2 dB, and isolation greater than 20 dB.
Final chapter summarizes the thesis and outlines future research directions. In this chapter, we summarize the main research findings of this thesis and discuss potential future research directions and application areas. This will aid in guiding future research and applications in related fields.
關鍵字(中) ★ 分數型頻率合成器
★ 可程式化
★ 切換器
★ 毫米波
關鍵字(英) ★ Fractional synthesizer
★ Programmable
★ Switch
★ Millimeter-wave
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 vi
圖目錄 ix
表目錄 xv
1 第一章、緒論 1
1.1 研究動機及背景 1
1.2 相關研究發展 2
1.3 論文貢獻 4
1.4 論文架構 4
2 第二章、基於Arduino程式編寫與微控制器應用 5
2.1 Arduino簡介 5
2.1.1 Arduino Mega2560開發板 5
2.1.2 Atmega2560微控制器 7
2.2 傳輸介面 8
2.2.1 SPI序列周邊介面 8
2.2.2 I2C積體匯流排電路 10
2.2.3 UART通用非同步接收發器 11
2.3 系統架構 12
2.4 程式開發 14
2.4.1 Arduino IDE整合開發環境 14
2.4.2 程式碼設計與實現 16
2.5 實驗結果 19
2.6 總結 21
3 第三章、寬頻分數型頻率合成器模組 22
3.1 簡介 22
3.1.1 整數型頻率合成器的原理與限制 22
3.1.2 分數型頻率合成器 24
3.1.3 三角積分調變器(ΔΣModulator) 27
3.2 PCB板材簡介 29
3.2.1 TSRI RO-FR4複合四層版製程 29
3.3 模組中封裝積體電路簡介 31
3.3.1 低壓差線性穩壓器(LDO) 31
3.3.2 石英壓控振盪器 32
3.3.3 寬頻微波頻率合成器 33
3.4 電路模擬與設計分析 33
3.4.1 電路佈局設計 33
3.4.2 迴路濾波器設計 34
3.4.3 鎖相迴路之系統模擬 34
3.5 模組電路之實驗結果 36
3.5.1 Analog Device控制程式測試 37
3.5.2 Analog Device EVAL-ADF4355 38
3.5.3 設計之分數型頻率合成器模組 42
3.6 總結 47
4 第四章、毫米波多容值共振二極體切換器 48
4.1 簡介 48
4.2 製程簡介 49
4.2.1 穩懋GaAs PINHEMT製程 49
4.3 電容共振PIN二極體切換器設計與分析 50
4.3.1 單容值共振二極體切換器 53
4.3.2 多容值共振二極體切換器 63
4.3.3 多容值共振反串接二極體切換器 71
4.4 PIN二極體元件量測與分析 75
4.4.1 網路分析儀SOLT校正 75
4.4.2 元件分析 77
4.4.3 重建模型 85
4.5 切換器模擬與量測結果 87
4.5.1 單容值共振四分之一波長切換器 89
4.5.2 多容值共振四分之一波長切換器 93
4.5.3 反串接多容值共振四分之一波長切換器 97
4.6 比較與結論 101
5 第五章、結論 102
參考文獻 103
參考文獻 [1]L. Zhao, B. Sang, Y. Tan, K. Wang, W. Zhou, Y. Wang, “Transmission of 1024-QAM OFDM at 28 GHz radio frequency using 5G millimeter wave phased array antenna,” IEEE Trans. Microw. Theory Techn., vol. 70, no. 9, pp. 4211–4217, Sept. 2022.
[2] E. Song, B. Park, and K. Kwon, “2.4-GHz low-power low-IF receiver with a quadrature local oscillator buffer for Bluetooth low energy applications,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 68, no. 7, pp. 2369–2373, Jul. 2021.
[3] S. Sadjina, C. Motz, T. Paireder, M. Huemer and H. Pretl, “A survey of self-interference in LTE-advanced and 5G new radio wireless transceivers,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 3, pp. 1118-1131, Mar. 2020.
[4] O. E. Amestica, P. E. Melin, C. R. Duran-Faundez and G. R. Lagos, “An experimental comparison of Arduino IDE compatible platforms for digital control and data acquisition applications,” in 2019 IEEE CHILEAN Conf. Elect., Electron. Eng., Inf. Commun. Technol., Valparaiso, Chile, Nov. 2019, pp. 1-6.
[5] A. Ramelan, F. A. Rohman, M. E. Sulistyo, F. Adriyanto, N. Sartika and D. Zakaria, “Arduino and LabVIEW based ping-pong ball position control using PID controller,” in 2023 17th Int. Conf. Telecommun. Syst., Services, and Appl., Lombok, Indonesia, Oct. 2023, pp. 1-6.
[6] J. R. S. Fernando, Y. S, P. T and V. Mohanraj, “Design of engine control unit with Arduino board for unmanned aerial vehicles to control fuel flow,” in 2022 8th Int. Conf. Smart Struct. and Syst., Chennai, India, Apr. 2022, pp. 1-6.
[7] C.-W. Hung and L.-C. Lu, “A free stack DC power module for a battery test system,” in 2016 IEEE Int. Conf. Ind. Technol., Taipei, Taiwan, Mar. 2016, pp. 1642-1647.
[8] C. T. Kalaivani, G. G. S. S. Reddy, D. J. Reddy and G. Rajasekhar, “Environmental monitoring and control system for greenhouse with node MCU and GSM using IoT devices,” in 2022 8th Int. Conf. Smart Struct. and Syst., Chennai, India, Apr. 2022, pp. 1-4.
[9] A. Kadu, S. Bhosale, A. Pagare, P. Sable, R. Kudtarkar and A. Bhilare, “Development of low-cost water level monitoring and control using PID controller,” in 2023 3rd Int. Conf. Innov. Mechanisms Industry Appl., Bengaluru, India, Dec. 2023, pp. 524-528.
[10] M. Molina, A. Vera, C. Molina and P. Garzon, “Design and construction of an obstacle avoiding robot based on Arduino platform and programming too,” in 2018 9th IEEE Annu. Ubiquitous Comput., Electron. Mobile Commun. Conf., New York, NY, USA, Nov. 2018, pp. 788-791.
[11] Masahiro Hatanaka and Hideto Hidaka, “Value creation in SOC/MCU applications by embedded non-volatile memory evolutions,” in 2007 IEEE Asian Solid-State Circuits Conf., Jeju, Korea (South), Nov. 2007, pp. 38-42.
[12] V. S. Rawat, V. Gupta and D. S. Tomar, “MCU system based on IEC61508 for autonomous functional safety platform,” in 2020 4th Int. Conf. Electron., Commun. Aerosp. Technol., Coimbatore, India, Nov. 2020, pp. 435-440.
[13] X. Zhang, H. Lu, J. Li, X. Peng, Y. Li, L. Liu, “Design and implementation of intelligent light control system based on Arduino,” in 2020 IEEE Int. Conf. Artif. Intell. Comput. Appl., Dalian, China, Jun. 2020, pp. 1369-1373.
[14] A. Tang, Y. Kim, T. Reck, Y. Tang, Y. Xu, G. Chattopadhyay, “A 177–205 GHz 249 mW CMOS-based integer-N frequency synthesizer Module for planetary exploration,” IEEE Trans. Terahertz Sci. and Technol., vol. 8, no. 2, pp. 251-254, Mar. 2018.
[15] Z.-Z. Chen, A. Tang, Y. Kim, G. Virbila, T. Reck, J.-F Yei, “A wide-band 65nm CMOS 28–34 GHz synthesizer module enabling low power heterodyne spectrometers for planetary exploration,” in 2015 IEEE MTT-S Int. Microw. Symp., Phoenix, AZ, USA, May 2015, pp. 1-3.
[16] H. Yoo and F. Bien, “77GHz frequency synthesizer for invention of radar systems,” in 2014 Int. SoC Des. Conf., Jeju, Korea (South), Nov. 2014, pp. 34-35.
[17] J. Lu, L. Zhou, L. Duan, H. Liu, T. Yu and J. Chang, “Research of frequency synthesizer based on SIP technology with novel structure,” in 2020 Int. Conf. Microw. Millimeter Wave Technol., Shanghai, China, Sept. 2020, pp. 1-3.
[18] A. Bhattacharya, S. Bhattacharyya, L. A. Shaik, M. P. S. Bhadoria, H. Tolani and P. Chakraborty, “Design and realization of multi-output, ka-band frequency synthesizer with high output power,” in 2023 IEEE Microw., Antennas Propag. Conf., Ahmedabad, India, Dec. 2023, pp. 1-4.
[19] Chaojiang Li, Berktug Ustundag, Arvind Kumar, Myra Boenke, Umut Kodak, and Gabriel Rebeiz, “<0.8dB IL 46dBm OIP3 Ka band SPDT for 5G communication,” in 2018 IEEE Topical Meeting Silicon Monolithic Integr. Circuits in RF Systems, Anaheim, CA, USA, Jan. 2018, pp. 1-3.
[20] 鄒榕,微波及毫米波瓦特級低損耗高隔離度切換器及X頻段四相位鎖相迴路之研製,國立中央大學電機工程研究所碩士論文,民國111年。
[21] Z. Zhang, L. Zhong, H. Lan and G. Zhang, “Enhanced stacked-FETs SOI-CMOS switch biasing strategy for high power applications,” in 2019 IEEE Asia-Pacific Microw. Conf., Singapore, Dec. 2019, pp. 1295-1297
[22] J. Chou, W.-C. Chen, Y.-L. Wang, Y.-F. Chen and H.-Y. Chang, “A ka-band 35-dBm P0.1dB low-loss monolithic SPDT switch using anti-series diode connection,” in 2023 IEEE/MTT-S Int. Microw. Symp., San Diego, CA, USA, Jun. 2023, pp. 1112-1115.
[23] Arduino. Arduino Mega2560 Rev3. Accessed: May 20, 2024. [Online] Available: https://store.arduino.cc/products/arduino-mega-2560-rev3?queryID=1e52546d92c0b0c14683440ff23f64bc
[24] Microchip Technology Inc. Atmega640/V-1280/V-1281/V-2560/V-2561/V: 8-bit Microcontroller with 16/32/64KB In-System Programmable Flash. Accessed: May 20, 2024. [Online]Available:https://ww1.microchip.com/downloads/aemDocuments/documents/OTH/ProductDocuments/DataSheets/ATmega640-1280-1281-2560-2561-Datasheet-S40002211A.pdf
[25]高深淵和楊清淵,鎖相迴路,蒼海書局,民國100年。
[26] Analog Devices Inc. EV-ADF4355SD1Z User Guide. Accessed: May 20, 2024. [Online] Available:https://www.analog.com/media/en/technical-documentation/user-guides/EV-ADF4355SD1Z_UG-805.pdf
[27] T. Kubo, Y. Yamaguchi, Y. Okuyama, S. Takeda and N. Guan, “A compact spdt switch amplifier with high on/off ratio and variable gain for 5G millimeter-wave applications,” in 2022 IEEE Asia-Pacific Microw. Conf., Yokohama, Japan, Nov. 2022, pp. 285-287.
[28] Y. Gong, J. W. Teng, and J. D. Cressler, “A compact, high-power, 60 GHz SPDT switch using shunt-series SiGe PIN diodes,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., Boston, MA, USA, Jun. 2019, pp. 15-18.
[29] H. E. Liu, X. Lin, H. Y. Chang, and Y. C. Wang, “10-MHz-to-70-GHz ultra-wideband low-insertion-loss SPST and SPDT switches using GaAs PIN diode MMIC process,” in Asia-Pacific Microw. Conf., Kyoto, Japan, Nov. 2018, pp. 1217-1219.
[30] F. Thome, P. Bruckner, R. Quay, and O. Ambacher, “Millimeter-wave single-pole double-throw switches based on a 100-nm gate-length AlGaN/GaN-HEMT technology,” in IEEE MTT-S Int. Microw. Symp. Dig., Boston, MA, USA, Jun. 2019, pp. 1403-1406.
[31] K.-H. Lee, S. Choi and C.-Y. Kim, “A 25–30-GHz asymmetric SPDT switch for 5G applications in 65-nm triple-well CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 29, no. 6, pp. 391-393, Jun. 2019.
[32] X. Fu, Y. Wang, Z. Li, A. Shirane, and K. Okada, “A 68-dB isolation 1.0-dB loss compact CMOS SPDT RF switch utilizing switched resonance network,” in IEEE MTT-S Int. Microw. Symp. Dig., Los Angeles, CA, USA, Aug. 2020, pp. 1315-1318.
[33] T. Shivan, M. Hossain, R. Doerner, T. Johansen, K. Nosaeva, H. Yacoub, W. Heinrich, and V. Krozer, “A high-isolation and highly linear super-wideband SPDT switch in InP DHBT technology,” in IEEE MTT-S Int. Microw. Symp. Dig., Los Angeles, CA, USA, Oct. 2020, pp.1125-1128.
[34] M. Assad, A. I. Najam, and H. M. Cheema, “GaN based high power SPDT switch for single chip X-band T/R module front-end,” in Proc. 1st Int. Conf. Microw. Antennas Circuits, Islamabad, Pakistan, Dec. 2021, pp. 1-3.
[35] T. Kim, H. D. Lee, B. Park, S. Jang, S. Kong and C. Park, “Design of a K-band high-linearity asymmetric SPDT CMOS switch using a stacked transistor,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 12, pp. 1443-1446, Dec. 2022.
[36] F. Thome, A. Leuther and O. Ambacher, “Low-loss millimeter-wave SPDT switch MMICs in a metamorphic HEMT technology,” IEEE Microw. Wireless Compon. Lett., vol. 30, no. 2, pp. 197-200, Feb. 2020.
[37] J. Chou, W.-C. Chen, Y.-L. Wang, Y.-F. Chen and H.-Y. Chang, “A Ka-band 35-dBm P0.1dB low-loss monolithic SPDT switch using anti-series diode connection,” in IEEE MTT-S Int. Microw. Symp., San Diego, CA, USA, Jul. 2023, pp. 1112-1115.
[38] G. Shen, H. Zhu, Q. Cai, D. Zeng, Q. Xue and W. Che, “Compact multipole GaN-on-Si SPDT switch using inductive parasitic effects of hybrid HEMT devices," IEEE Trans. Microw. Theory Techn., vol. 71, no. 11, pp. 4778-4786, May 2023.
[39] Y.-S. Lin, K.-S. Lan and B.-S. Chen, “Wideband millimeter-wave power divider and SPDT switch using inverting spiral-coupled-line,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 70, no. 4, pp. 1575-1579, Apr. 2023.
[40] 鄒榕,微波及毫米波瓦特級低損耗高隔離度切換器及X頻段四相位鎖相迴路之研製,國立中央大學電機工程研究所碩士論文,民國111年。
[41] 王詠樂,線性度改善之微波及毫米波二極體切換器與混波器之研製,國立中央大學電機工程研究所碩士論文,民國109年。
[42] H.-E. Liu, X. Lin, H.-Y. Chang and Y.-C. Wang, “10-MHz-to-70-GHz ultra-wideband low-insertion-loss SPST and SPDT switches using GaAs PIN diode MMIC process,” in 2018 Asia-Pacific Microw. Conf., Kyoto, Japan, Nov. 2018, pp. 1217-1219.
[43] H.-Y. Chang, and C.-Y. Chan, “A low loss high isolation DC-60 GHz SPDT traveling-wave switch with a body bias technique in 90 nm CMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 02, pp. 82-84, Feb. 2010.
[44] H. Wan, J. Xu, B.-Y. Han, G.-Q. Zhou, Y.-Q. Du and L. Zhu, “Design of BPF-integrated SPDT switch based on slotline resonators loaded with diodes,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 70, no. 7, pp. 2405-2409, Jul. 2023.
[45] N. A. Shairi, N. M. Sanusi, Z. Zakaria, I. M. Ibrahim, A. Othman and A. Joret, “Ultra-wideband SPDT and SP8T switches using silicon-glass PIN diodes for microwave medical imaging,” in 2019 IEEE Int. Conf. Autom. Control Intell. Syst., Selangor, Malaysia, Jun. 2019, pp. 6-9.
[46] S. Noorizadeh, S. Ngamate and T. D. Nguyen, “Design of a 22-55 GHz SPDT switch MMIC with GaAs PIN diodes,” in 2023 18th Euro. Microw. Int. Circuits Conf., Berlin, Germany, Sept. 2023, pp. 261-264.
[47] J. G. Yang and K. Yang, “High-linearity K-Band absorptive-type MMIC switch using GaN PIN-diodes,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 1, pp. 37-39, Jan. 2013.
[48] T. Shivan, M. Hossain, R. Doerner, T. Johansen, K. Nosaeva, H. Yacoub, “A high-Isolation and highly linear super-wideband SPDT switch in InP DHBT technology”, in IEEE/MTT-S Int. Microw. Symp., Los Angeles, CA, USA, Oct. 2020, pp. 1125-1128.
[49] Kim Tuyen Trinh, Hsuan-Ling Kao, Hsien-Chin Chiu and Nemai Chandra Karmakar, “A ka-band GaAs MMIC traveling-wave switch with absorptive characteristic”, IEEE Microw. Wireless Compon. Lett., vol. 29, no. 6, pp. 394-396, Jun. 2019.
[50] T. Despoisse, N. Deltimple, A. Ghiotto, M. D. Matos and P. Busson, “Low-loss ka-band SPDT switch design methodology for 5G applications in 65 nm CMOS SOI Technology,” in 2020 IEEE Silicon Monolithic Integr. Circuits in RF Systems, San Antonio, TX, USA, Jan. 2020, pp. 5-8.
指導教授 張鴻埜(Hong-Yeh Chang) 審核日期 2024-12-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明