博碩士論文 111521093 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.14.144.145
姓名 周娟安(Chuan-An Chou)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 差速驅動輪式移動機器人輕量化設計與運動軌跡精確追蹤控制
(Differential Drive Wheeled Mobile Robot Lightweight Design and Precise Tracking Control of Motion Trajectory)
相關論文
★ 基於適應性徑向基神經網路與非奇異快速終端滑模控制結合線上延遲估測器應用於二軸機械臂運動軌跡精確控制★ 新型三維光學影像量測系統之設計與控制
★ 新型雙紐線軌跡設計與進階控制實現壓電平台快速與精確定位★ 基於深度座標卷積與自動編碼器給予行人實時路徑及終點位置精確預測
★ 修正式雙紐線軌跡結合自適應積分終端滑動模態控制與逆模型遲滯補償實現壓電平台精確追蹤★ 以粒子群最佳化-倒傳遞類神經網路-比例積分微分控制器和影像金字塔轉換融合方法實現三維光學顯微影像系統
★ 以局部熵亂度分布與模板匹配方法結合自適應ORB特徵提取達成多影像精確拼接★ 低扭矩機械手臂機構開發與脈寬調變進階控制器設計
★ 使用時域門控與梅森增益公式構建四埠夾具的散射參數表徵★ 通過強化學習與積分滑模動量觀測器實現機器手臂的強健近佳PD控制策略
★ 基於類代理注意力特徵融合模型的聯合 實體關係抽取方法★ 新型修正式柵欄軌跡結合擴增狀態估測 滑模回授與多自由度Bouc-Wen遲滯前饋補償 控制器給予壓電平台快速精確追蹤
★ 結合點雲密度熵計算方法和運動回復結構在虛幻引擎中進行影像三維點雲模型及渲染重建
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-1以後開放)
摘要(中) 差速驅動輪式移動機器人在機器人領域中越來越受歡迎而且已被廣泛使用,它具有操動靈活、結構簡單、生產成本較低等優點。此外,它也可以長時間工作,無需人工干預即可完成所指派的任務。在許多工業的應用中,大多採用傳統的輪式移動機器人,它的體積龐大且笨重,而且損壞時零件也不容易更換。同時,它在軌跡控制方面,若要確保差速驅動輪式移動機器人的實際位置和姿態能夠準確追蹤到期望的軌跡,也是一項當前極具挑戰的問題。
在本論文中,我們設計與建構出一台兼具輕巧、堅固且結構簡單的差速驅動輪式移動機器人。首先,藉由減輕其不必要的機構重量,並且在承載重物時其仍然可以維持良好系統的機構與操控穩定性。此外,我們還考慮了設計的零件是否容易拆卸、組裝,使其故障時可以方便維修或是快速更換損壞零件。然後,在軌跡控制器設計的部分,我們考慮外界干擾和不確定項進並建構在差速驅動輪式移動機器人的動態模型中,並輔以反步控制器和自適應滑模控制器來解決系統外部干擾和不確定性的問題,使所開發的進階控制器能夠精確地追蹤期望運動軌跡,同時確保差速驅動輪式移動機器人的動態操控穩定性。最後,將所提出的進階控制器與比例-積分-微分控制器及滑模控制器的軌跡追蹤結果進行比較,結果證實所提出的進階控制器在軌跡追蹤表現皆優於上述兩種傳統之控制器。
摘要(英) Differential drive wheeled mobile robots (DDWMR) are becoming more and more popular and have been widely used in the field of robotics, which has the advantages of flexible movement, simple structure, and lower production cost. In addition, it can work for long periods of time and can accomplish assigned tasks without human interference. In many industries, conventional mobile robots are relatively heavy, and the parts are not easily replaced. At the same time, motion trajectory control is also a challenging issue, which needs to ensure that the actual position and attitude of the DDWMR can accurately track the desired trajectory.
In this thesis, we design and construct a DDWMR that is lightweight, structure-robust, and mechanism-simple. We reduce the mechanism’s unnecessary weight and maintain the system structure’s stability when carrying heavy loads. In addition, we also considered the designed parts for the ease of disassembling and assembling so that they can be easily repaired or replaced. Then, we consider the external disturbances and uncertainties in the dynamic model of the DDWMR and combine the backstepping controller and adaptive sliding-mode controller (ASMC) to solve the problems of the system’s external disturbances and uncertainties so that the developed advanced controller can track the desired trajectory accurately, and at the same time ensure the dynamic stability of the DDWMR. Finally, the trajectory tracking results of the proposed controller are compared with the proportional-integral-derivative (PID) controller and the sliding mode controller (SMC). The experiment results demonstrated that the trajectory tracking utilizing the proposed controller performs better than two traditional controllers.
關鍵字(中) ★ 差速驅動輪式移動機器人
★ 動態模型
★ 反步控制
★ 自適應滑模控制
★ 精確運動軌跡追蹤
關鍵字(英) ★ Differential drive wheeled mobile robot
★ Dynamics model
★ Back-stepping control
★ Adaptive sliding mode control
★ Precise motion trajectory tracking
論文目次 摘要...i
ABSTRACT...iii
誌謝...v
Table of Content...vi
List of Figures...viii
List of Tables...xi
Explanation of Symbols...xii
Chapter 1 Introduction...1
1.1 Motivation...1
1.2 Literature Survey...2
1.2.1 Mechanism Design of Wheeled Mobile Robot...2
1.2.2 Trajectory Control Method of Wheeled Mobile Robot...6
1.3 Contribution...11
1.4 Thesis Organization...13
Chapter 2 Preliminaries...14
2.1 Hardware Selection...14
2.1.1 Motor...14
2.1.2 L298N Driver Module...16
2.1.3 MPU6050 Attitude Sensor...17
2.1.4 Battery Life...19
2.2 Model of Differential Drive Wheeled Mobile Robot...19
2.2.1 Kinematic Model...21
2.2.2 Dynamic Model...25
2.2.3 Actuator Modeling...27
2.3 Control Method...28
2.3.1 Backstepping Control...28
2.3.2 Sliding Mode Control...29
Chapter 3 Mechanism Design of Differential Drive-Wheeled Mobile Robot...32
3.1 Mechanical Structure System...33
3.2 Power Transmission System...35
3.3 Wheel Guidance System...39
3.4 The DDWMR Mobile Design...41
Chapter 4 Controller Design...43
4.1 Dynamic Model with Actuators for DDWMR...43
4.2 Backstepping Combined Adaptive Sliding Mode Control...46
Chapter 5 Simulation and Experiment Results...57
5.1 Simulation Settings...57
5.2 Simulation Results...59
5.3 Experiment Settings...69
5.4 Experiment Results...72
Chapter 6 Conclusions...82
Reference...83
參考文獻 [1] Stefek, T. V. Pham, V. Krivanek, and K. L. Pham, “Energy comparison of controllers used for a differential drive wheeled mobile robot,” IEEE Access, vol. 8, pp. 170915-170927, 2020.
[2] V. T. Pham, A. ?tefek, V. K?ivanek, and K. L. Pham, “A Selection and Comparison of Several Algorithms Implemented in the Pymoo Library,” International Conference on Military Technologies (ICMT), Brno, Czech Republic, pp. 1-7, 2021.
[3] X. Yun and Y. Yamamoto, “Internal dynamics of a wheeled mobile robot,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Yokohama, Japan, pp. 1288-1294 vol.2, 1993.
[4] A. Habibian, Y. A. Darandashi, R. Fesharakifard, A. Ohadi, and H. Ghafarirad, “Structural and dynamic analysis of a wheeled mobile robot with different wheel configurations,” International Conference on Robotics and Mechatronics (ICRoM), Tehran, Iran, pp. 527-533, 2017.
[5] R. Di Fonso and C. Cecati, “Navigation and motors control of a differential drive mobile robot,” International Conference on Control, Automation and Diagnosis (ICCAD), Rome, Italy, pp. 1-6.
[6] H. Cui, Q. Chen, X. Qi, and H. Wang, “Electric vehicle differential system based on co-simulation of Carsim/Simulink,” IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), Hefei, China, pp. 1963-1966, 2016.
[7] Yun Du, “Kinematics and dynamic modeling and simulation analysis of three-wheeled mobile robot,” 2016 International Conference on Mechanics Design, Manufacturing and Automation (MDM 2016), 2016.
[8] H. Li, B. Li, and W. Xu, “Development of a remote-controlled mobile robot with binocular vision for environment monitoring,” IEEE International Conference on Information and Automation, Lijiang, China, pp. 737-742, 2015.
[9] M. Prabhakar, V. Paulraj, J. A. Dhanraj, S. Nagarajan, D. A. K. Kannappan, and A. Hariharan, “Design and simulation of an automated guided vehicle through webots for isolated covid-19 patients in hospitals,” IEEE 4th Conference on Information & Communication Technology (CICT), Chennai, India, pp. 1-5, 2020.
[10] H. Sasamoto, R. Velazquez, S. Gutierrez, M. Cardona, A. A. Ghavifekr, and P. Visconti,“Modeling and prototype implementation of an automated guided vehicle for smart factories,” IEEE International Conference on Machine Learning and Applied Network Technologies (ICMLANT), Soyapango, El Salvador, pp. 1-6, 2021.
[11] J. Du, B. Song, and L. Xu, “Design of fractional-order pid controller for path tracking of wheeled mobile robot,” China Automation Congress (CAC), Beijing, China, pp. 8019-8023, 2021.
[12] H. C. Lamraoui, Z. Qidan, and A. Benrabah, “Dynamic velocity tracking control of differential-drive mobile robot based on ladrc,” IEEE International Conference on Real-time Computing and Robotics (RCAR), Okinawa, Japan, pp. 633-638, 2017.
[13] N. Hassan and A. Saleem, “Neural network-based adaptive controller for trajectory tracking of wheeled mobile robots,” IEEE Access, vol. 10, pp. 13582-13597, 2022.
[14] Marrugo, D.A. and Villa, J.L., “Mpc-based path tracking of a differential-drive mobile robot with optimization for improved control performance,” Applied Computer Sciences in Engineering. vol. 1928, Springer, Cham, 2023.
[15] K. P. Kochumon, L. P. P. S, and H. K. R, “Self-tuning backstepping and sliding mode control for robust trajectory tracking in differential drive wheeled mobile robots,” International Conference on Power, Instrumentation, Control and Computing (PICC), Thrissur, India, pp. 1-6, 2023.
[16] H. M. Wu and M. Q. Zaman, “Lidar based trajectory-tracking of an autonomous differential drive mobile robot using fuzzy sliding mode controller,” IEEE Access, vol. 10, pp. 33713-33722, 2022.
[17] Y. Koubaa, M. Boukattaya, and T. Damak, “Adaptive sliding-mode control of nonholonomic wheeled mobile robot,” International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Hammamet, Tunisia, pp. 336-342, 2014.
[18] Dongkyoung Chwa, “Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates,” IEEE Transactions on Control Systems Technology, vol. 12, no. 4, pp. 637-644, 2004.
[19] K. Priyanka and A. Mariyammal, “Dc motor speed control using pwm,” International Journal of Innovative Science and Research Technology, Department of Electrical and Communication Engineering, Vivekanandha College of Engineering for Women (Autonomous), Tiruchengode, 2018.
[20] Livinti Petru and Ghandour Mazen, “Pwm control of a dc motor used to drive a conveyor belt,” Procedia Engineering, 2015.
[21] M. M. Mustafa and I. Hamarash, “Microcontroller-based motion control for dc motor driven robot link,” International Aegean Conference on Electrical Machines and Power Electronics (ACEMP) & International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), Istanbul, Turkey, pp. 547-552, 2019.
[22] W. -J. Tang, Z. -T. Liu, and Q. Wang, “Dc motor speed control based on system identification and pid auto tuning,” Chinese Control Conference (CCC), Dalian, China, pp. 6420-6423, 2017.
[23] L. Monay-Arredondo, M. Meza-Sanchez, E. Clemente, M. C. Rodriguez-Linan, R. Villalvazo-Covian, and J. M. Nunez-Alfonso, “On the implementation of a snf velocity controller for dc motors with low resolution encoders,” XXIII Robotics Mexican Congress (ComRob), Tijuana, Mexico, pp. 38-43, 2021.
[24] G. Singh, A. K. Singh, A. Yadav, I. Bhardwaj, and U. Chauhan, “Iot developed wi-fi controlled rover with robotic arm using nodemcu,” International Conference on Advances in Computing, Communication Control and Networking (ICACCCN), Greater Noida, India, pp. 497-501, 2020.
[25] S. Kivrak, M. Z. Erel, Y. Yalman, and K.C.Bayindir, “Design and implementation of the three phase h-bridge motor drive controlled by two dc motors using pid controller,” MECHANIKA, Turkey, 2017.
[26] V. Gupta, “Working and analysis of the h - bridge motor driver circuit designed for wheeled mobile robots,” 2010 2nd International Conference on Advanced Computer Control, Shenyang, China, pp. 441-444, 2010.
[27] Y. Ziying, G. Hong, and J. Wenhao, “Design and implementation of a mems-based attitude angle measuring system for moving objects,” 2021 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS), Shenyang, China, pp. 145-149, 2021.
[28] Shane Colton, “The balance filter: a simple solution for integrating accelerometer and gyroscope measurements for a balancing platform”, Massachusetts Institute of Technology, Cambridge, MA, June 2007.
[29] Sung Park, A. Savvides, and M. B. Srivastava, “Battery capacity measurement and analysis using lithium coin cell battery,” ISLPED′01: Proceedings of the 2001 International Symposium on Low Power Electronics and Design (IEEE Cat. No.01TH8581), Huntington Beach, CA, USA, pp. 382-387, 2001.
[30] Kevin M. Lynch and Frank C. Park, Modern Robotics: Mechanics, Planning, and Control, Cambridge University Press, Cambridg, pp. 515-527, 2017.
[31] Wang, T., Wu, Y., Liang, J., Han, C., Chen, J., and Zhao, Q, “Analysis and experimental kinematics of a skid-steering wheeled robot based on a laser scanner sensor,” Sensors, vol. 15, pp. 9681-9702, 2015.
[32] Rached Dhaouadi* and Ahmad Abu Hatab, “Dynamic modelling of differential-drive mobile robots using lagrange and newton-euler methodologies: a unified framework,” IEEE International Conference on Robotics and Automation, 2013.
[33] Jasmin Velagic, Bakir Lacevic, and Nedim Osmic, “Nonlinear motion control of mobile robot dynamic model,” University of Sarajevo Bosnia and Herzegovina 2008.
[34] Z. -G. Hou, A. -M. Zou, L. Cheng, and M. Tan, “Adaptive control of an electrically driven nonholonomic mobile robot via backstepping and fuzzy approach,” IEEE Transactions on Control Systems Technology, vol. 17, no. 4, pp. 803-815, 2009.
[35] Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, “A stable tracking control method for an autonomous mobile robot,” Proceedings., IEEE International Conference on Robotics and Automation, Cincinnati, OH, USA, pp. 384-389, 1990.
[36] Y. Shtessel, C. Edwards, L. Fridman, and A. Levant, Sliding Mode Control and Observation, Series: Control Engineering, Birkhauser:Basel, 2014.
[37] H. Komurcugil, S. Biricik, S. Bayhan, and Z. Zhang, “Sliding mode control: overview of its applications in power converters,” IEEE Industrial Electronics Magazine, vol. 15, no. 1, pp. 40-49, 2021.
[38] J. Baek, M. Jin, and S. Han, “A new adaptive sliding-mode control scheme for application to robot manipulators,” IEEE Transactions on Industrial Electronics, vol. 63, no. 6, pp. 3628-3637, 2016.
[39] DEM?RBA?, Faik, and Mete KALYONCU. “Differential drive mobile robot trajectory tracking with using pid and kinematic based backstepping controller.” Selcuk Universitesi Muhendislik, Bilim ve Teknoloji Dergisi, vol. 5, no. 1, pp. 1-15, 2017.
[40] J. -W. Wu, T. -L. Lee, Y. -C. Yan, C. -A. Chou, and C. -C. Ho, “Mechanism development and pulse-width modulation advanced controller design of low torque manipulator,” IEEE Access, vol. 11, pp. 117110-117120, 2023.
指導教授 吳俊緯(Jim-Wei Wu) 審核日期 2024-12-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明