博碩士論文 111521164 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.147.140.129
姓名 莊智皓(Chih-Hao-Chuang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於第五代無線通訊與X頻段之互補式金氧半導體功率放大器設計暨FR3頻段之改良型帶內全雙工電平衡雙工器之研製
(Design and Implementation of CMOS Power Amplifiers for 5G Wireless Communication and X-Band Applications and an Improved In-Band Full-Duplex Balanced Duplexer for the FR3 Band)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文介紹的第一顆晶片為使用連續B類技術之端堆疊式功率放大器,使用tsmcTM 0.18-m互補式金氧半導體設計,第二顆晶片為使用相位延遲預失真線性化器於X頻帶之差動堆疊式功率放大器,第三顆晶片為應用於FR3頻段之改良型電平衡雙工器,第二顆以及第三顆晶片皆使用tsmcTM 90-nm互補式金氧半導體設計。三顆晶片皆完成實作與量測,並針對各晶片之設計流程與量測結果進行探討。
第二章提出使用連續B類技術之端堆疊式功率放大器,此放大器採用堆疊式結構,以增加輸出電壓擺幅,從而獲得高輸出功率,有效解決了CMOS製程中因低崩潰電壓所帶來的限制。透過連續B類輸出匹配設計,以抑制二倍頻諧波量,實現了優異的功率附加效率(PAE)。其操作頻寬為4.4- 5.8 GHz,最大量測傳輸增益為23.6 dB,最大飽和輸出功率為26.2 dBm,最大功率附加效率為31.04%,而增益壓縮1-dB時之輸出功率為19.2 dBm,晶片面積為2.5 ?mm?^2(1.97 mm×1.26 mm)。
第三章提出使用相位延遲預失真線性化器於X頻帶之差動堆疊式功率放大器,透過使用磁耦合變壓器將兩個功率單元的結合,利用差動電路結構,減少寄生輸出電容、提升輸出阻抗以利匹配至系統阻抗,並結合輸入匹配磁偶和共振腔與cold-FET預失真線性化器,達成功率放大器益擴展之效果,提升電路的線性度。其操作頻寬為10-12 GHz,最大傳輸增益為12.41dB,最大輸出功率為23.43 dBm,1-dB增益壓縮點輸入功率在開啟線性化器後從4 dBm推移至9 dBm,1-dB增益壓縮點輸出功率則從17.09 dBm增加移至19.8 dBm,晶片面積為0.7645 ?mm?^2 (0.751 mm × 1.018 mm)。
第四章提出應用於FR3頻段之改良型電平衡帶內全雙工器,此設計在傳統電器平衡雙工器的設計的基礎上增加了三種可控的操作模式,使整體通訊系統能夠根據不同應用情境需求靈活調整工作狀態,增加了電路操作的彈性。其操作頻寬為9-14 GHz,當操作在平衡模式時,TX端至天線端插入損號為6.3 dB,天線端至RX端插入損號為6 dB;當操作在TX模式時,TX端至天線端插入損號為5.6 dB,天線端至RX端插入損號為7.4 dB;當操作在RX模式時,TX端至天線端插入損號為6.89 dB,天線端至RX端插入損號為5.28 dB,三種模式隔離度皆大於24 dB,晶片面積為0.486 ?mm?^2(0.697 mm× 0.697 mm)。
摘要(英) This thesis implements three chips, each designed for specific applications in radio frequency (RF) front-end modules. The first chip is a cascode power amplifier using continuous Class-B technology, designed with the tsmcTM 0.18-μm CMOS process. The second chip is a differential cascode power amplifier incorporating a phase-delay predistortion linearizer for operation in the X-band, while the third chip is an improved balanced duplexer designed for FR3 bands. Both the second and third chips are implemented using the tsmcTM 90-nm CMOS process. All three chips have been fabricated and measured, with the design process and measurement results discussed in detail for these chips.
The second chapter presents a cascode power amplifier utilizing continuous Class-B technology. The amplifier employs a stacked structure to enhance output swing, enabling higher output power and effectively addressing the limitations imposed by the low breakdown voltage of CMOS technology. By incorporating continuous Class-B output matching design, the second-harmonic distortion is suppressed, achieving excellent power-added efficiency (PAE). This amplifier operates over a frequency range of 4.4–5.8 GHz, with a maximum measured gain of 23.6 dB, a maximum saturated output power of 26.2 dBm, and a peak PAE of 31.04%. The output power at the 1-dB gain compression point (OP1dB) is 19.2 dBm. The chip area is 2.5 mm2 (1.97 mm × 1.26 mm).
The third chapter proposes a differential stacked power amplifier incorporating a phase-delay predistortion linearizer for operation in the X-band. Magnetic transformers are used to combine two power units, while a differential circuit structure reduces parasitic output capacitance and improves output impedance, facilitating matching to the system impedance. The design integrates input matching networks, magnetic coupling resonators, and the predistortion linearizer to achieve gain expansion and enhance linearity. The amplifier operates over a frequency range of 10 -12 GHz, with a maximum gain of 12.41 dB and a maximum output power of 23.43 dBm. When the linearizer is enabled, the input power at the 1-dB gain compression point (IP1dB) increases from 4 dBm to 9 dBm, and the output power at the 1-dB gain compression point (OP1dB) rises from 17.09 dBm to 19.8 dBm. The chip area is 0.7645 mm2 (0.751 mm × 1.018 mm).
The fourth chapter proposes an improved balanced duplexer for FR3 bands, building upon the traditional balanced duplexer design by introducing three controllable operating modes. These modes allow the communication system to flexibly adapt to various application scenarios, enhancing the operational versatility of the circuit. The duplexer operates over a frequency range of 9 - 14 GHz. In balanced mode, the insertion loss from the TX port to the antenna port is 6.3 dB, and the insertion loss from the antenna port to the RX port is 6 dB. In TX mode, the insertion loss from the TX port to the antenna port is 5.6 dB, and the insertion loss from the antenna port to the RX port is 7.4 dB. In RX mode, the insertion loss from the TX port to the antenna port is 6.89 dB, and the insertion loss from the antenna port to the RX port is 5.28 dB.
For all three modes, the isolation is greater than 24 dB. The chip area is 0.486 mm2 (0.697 mm × 0.697 mm).
關鍵字(中) ★ 互補式金氧半導體功
★ 功率放大器
關鍵字(英) ★ CMOS
★ Power Amplifier
論文目次 摘要 i
Abstract iii
目錄 v
圖目錄 vii
表目錄 xi
第一章 緒論 1
1-1 研究動機 1
1-2 研究成果 2
1-3 研究貢獻 3
1-4 章節簡介 3
第二章 使用連續B類技術之端堆疊式功率放大器 4
2-1 研究現況 4
2-2 連續模式技術介紹 6
2-3 堆疊式架構介紹 10
2-4 磁耦合變壓器介紹 11
2-5 使用連續B類技術之單端堆疊式功率放大器 18
2-5-1 架構圖 18
2-5-2 電路圖 19
2-5-3 電晶體尺寸選擇 20
2-5-4 功率級與驅動級單元設計 22
2-5-5 輸出匹配網路設計 25
2-5-6 電路模擬與量測結果 25
2-5-7 結果比較與討論 29
第三章 使用相位延遲預失真線性化器於X頻帶之差動堆疊式功率放大器 45
3-1 研究現況 45
3-2 差動放大器介紹 47
3-3 線性化結構簡介 49
3-3-1 傳統cold-FET預失真線性化技術介紹 50
3-3-2 相位延遲cold-FET預失真線性化技術介紹 53
3-4 相位延遲預失真線性化器於X頻帶之差動堆疊式功率放大器 56
3-4-1 電路圖 56
3-4-2 電晶體尺寸挑選 58
3-4-3 功率級單元設計 59
3-4-4 輸出匹配網路設計 60
3-4-5 輸入匹配網路設計 65
3-4-6 相位延遲cold-FET預失真線性化器設計 68
3-4-7 電路模擬與量測結果 70
3-4-8 結果比較與討論 84
第四章 應用於FR3頻段之改良型電平衡雙工器 87
4-1 研究現況 87
4-2 分時雙工(TDD)、分頻雙工(FDD)、帶內全雙工(IBFD)比較 88
4-3 電氣平衡式雙工器介紹 91
4-4 改良式電平衡雙工器 93
4-4-1 架構介紹 92
4-4-2 不同模式理論分析 94
4-5 應用於FR3頻段之改良型電平衡雙工器 99
4-5-1 電路圖 100
4-5-2 相移器設計 101
4-5-3 電平衡雙工器設計 103
4-5-4 電路模擬與量測結果 105
4-5-5 結果比較與討論 108
第五章 結論 110
5-1 總結 110
5-2 未來方向 111
參考文獻 112
參考文獻 [1] S. C. Cripps, P. J. Tasker, A. L. Clarke, J. Lees, and J. Benedikt, "On the continuity of high efficiency modes in linear RF power amplifiers," IEEE Microw. Wireless Compon. Lett., vol. 19, no. 10, pp. 665–667, Oct. 2009.
[2] P. J. Tasker, V. Carrubba, P. Wright, J. Lees, J. Benedikt and S. Cripps, "Wideband PA Design: The "Continuous" Mode of Operation," 2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 2012, pp. 1-4.
[3] P. Wright, J. Lees, J. Benedikt, P. J. Tasker, and S. C. Cripps, "A methodology for realizing high efficiency class-J in a linear and broadband PA," IEEE Trans. Microwave Theory Techniques, vol. 57, no. 12, pp. 3196–3204, Dec. 2009.
[4] V. Carrubba et al., "The continuous class-F mode power amplifier," in Proc. Eur. Microw. Conf., Sep. 2010, pp. 1674–1677.
[5] J. H. Kim, S. J. Lee, B. H. Park, S. H. Jang, J. H. Jung, and C. S. Park, "Analysis of high-efficiency power amplifier using second harmonic manipulation: Inverse class-F/J amplifiers," IEEE Trans. Microw. Theory Techn., vol. 59, no. 8, pp. 2024–2036, Aug. 2011.
[6] Behzab Razavi, "RF Micrielectronics," Second Edition.
[7] S. Pornpromlikit, J. Jeong, C. D. Presti, A. Scuderi and P. M. Asbeck, "A watt-level stacked-FET linear power amplifier in silicon-on-insulator CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 1, pp. 57-64, Jan. 2010.
[8] H. Dabag, B. Hanafi, F. Golcuk, A. Agah, J. F. Buckwalter and P. M. Asbeck, "Analysis and design of stacked-FET millimeter-wave power amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 4, pp. 1543-1556, April 2013.
[9] C. Li, C. Kuo and M. Kuo, "A 1.2-V 5.2-mW 20–30-GHz wideband receiver front-end in 0.18-μm CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 11, pp. 3502-3512, Nov. 2012.
[10] C. -H. Li, Y. -L. Liu and C. -N. Kuo, "A 0.6-V 0.33-mW 5.5-GHz Receiver Front-End Using Resonator Coupling Technique," in IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 6, pp. 1629-1638, June 2011.
[11] Park, J. L. Woo, U. Kim, and Y. Kwon, "Broadband CMOS stacked RF power amplifier using reconfigurable interstage network for wideband envelope tracking, " IEEE Trans. Microw. Theory Techn., vol. 63, no. 4, pp. 1174–1185, Apr. 2015.
[12] F. Wang and H. Wang, "A broadband linear ultra-compact mm-wave power amplifier with distributed-balun output network: analysis and design," IEEE Journal of Solid-State Circuits, vol. 56, no. 8, pp. 2308-2323, Aug. 2021.
[13] G. R. Nikandish, R. B. Staszewski and A. Zhu, "Broadband fully integrated GaN power amplifier with minimum-inductance BPF matching and two-transistor AM-PM compensation," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 12, pp. 4211-4223, Dec. 2020.
[14] C. Lin and H. Chang, "A broadband injection-locking class-E power amplifier," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 10, pp. 3232-3242, Oct. 2012.
[15] Jeng-Han Tsai, "A 5.3-GHz 30.1-dBm Fully Integrated CMOS Power Amplifier With High-Power Built-In Linearizer,"IEEE Microwave and Wireless Components Letters, vol. 33, no. 4, April 2023.
[16] H. -F. Wu, Q. -F. Cheng, X. -G. Li and H. -P. Fu, "Analysis and design of an ultrabroadband stacked power amplifier in CMOS technology," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 1, pp. 49-53, Jan. 2016.
[17] Y. Dong, L. Mao and S. Xie, "Fully integrated Class-J power amplifier in standard CMOS technology, " IEEE Microwave and Wireless Components Letters, vol. 27, no. 1, pp. 64-66, Jan. 2017.
[18] Ting Guo, Lu, Kai Tang, Chuanshi Yang, Bo Yu, Yuanjin Zheng, "A Floating-Body Transistor-Based Power Amplifier for Sub-6-GHz 5G Applications in SOI CMOS 130-nm Process," IEEE Transactions on Circuits and Systems II: Express Briefs, vol,69, no 10, Oct, 2022.
[19] S. Pornpromlikit, J. Jeong, C. D. Presti, A. Scuderi and P. M. Asbeck, "A watt-level stacked-FET linear power amplifier in silicon-on-insulator CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 1, pp. 57-64, Jan. 2010.
[20] Pin-Cheng Huang, Zuo-Min Tsai, Kun-You Lin, Huei Wang, "A High-Efficiency, Broadband CMOS Power Amplifier for Cognitive Radio Applications," IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, Dec 2010.
[21] T. Quemerais, L. Moquillon, J.-M. Fournier, P. Benech, and V. Huard, "Design-in-reliable millimeter-wave power amplifiers in a 65-nm CMOS process," IEEE Trans. Microw. Theory Tech., vol. 60, no. 4, pp. 1079–1085, Apr. 2012.
[22] H. -W. Choi, S. Choi, J. -T. Lim and C. -Y. Kim, "1-W, high-gain, high-efficiency, and compact sub-GHz linear power amplifier employing a 1:1 transformer balun in 180-nm CMOS," IEEE Microwave and Wireless Components Letters, vol. 30, no. 8, pp. 779-781, Aug. 2020.
[23] S. Aloui, N. Demirel, R. Plana, D. Belot, and E. Kerherve, "High-gain and linear 60-GHz power amplifier with a thin digital 65-nm CMOS technology," IEEE Trans. Microw. Theory Tech., vol. 61, no. 7, pp. 2425–2437, Jun. 2013.
[24] Y.-C. Hsu, Y.-S. Chen, T.-C. Tsai, and K.-Y. Lin, "A K-band CMOS cascode power amplifier using optimal bias selection methodology," In Proc. Asia-Pacific Microw. Conf., Dec. 2011, pp. 793–796.
[25] S. C. Cripps, "RF Power Amplifiers for Wireless Communications," 2nd ed. Norwood, MA, USA: Artech House, 2006.
[26] P. N. Landin, W. V. Moer, N. Bjorsell, and P. Handel, "Performance evaluation of peak-to-average power ratio reduction and digital pre-distortion for OFDM based systems," IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3504–3511, Dec. 2011.
[27] J.-H. Tsai, H.-Y. Chang, P.-S. Wu, Y.-L. Lee, T.-W. Huang, and H. Wang, "Design and analysis of a 44-GHz MMIC low-loss built-in linearizer for high-linearity medium power amplifiers," IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2487–2496, Jun. 2006.
[28] N. Rostomyan, J. A. Jayamon and P. M. Asbeck, "15 GHz Doherty power amplifier with RF predistortion linearizer in CMOS SOI," IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 3, pp. 1339-1348, March 2018.
[29] J. Park, S. Kang and S. Hong, "Design of a Ka-band cascode power amplifier linearized with cold-FET interstage matching network," IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 2, pp. 1429-1438, Feb. 2021.
[30] K. Kao, Y. Hsu, K. Chen and K. Lin, "Phase-delay cold-FET pre-distortion linearizer for millimeter-wave CMOS power amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 12, pp. 4505-4519, Dec. 2013.
[31] K. Onizuka, H. Ishihara, M. Hosoya, S. Saigusa, O. Watanabe and S. Otaka, "A 1.9 GHz CMOS power amplifier with embedded linearizer to compensate AM-PM distortion," IEEE Journal of Solid-State Circuits, vol. 47, no. 8, pp. 1820-1827, Aug. 2012.
[32] S. N. Ali, P. Agarwal, S. Gopal and D. Heo, "Transformer-based predistortion linearizer for high linearity and high modulation efficiency in mm-wave 5G CMOS power amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 7, pp. 3074-3087, July 2019.
[33] D. Jung, H. Zhao and H. Wang, "A CMOS highly linear Doherty power amplifier with multigated transistors," IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 5, pp. 1883-1891, May 2019.
[34] Van-Son Trinh, Student Member, IEEE, Hyohyun Nam, Student Member, IEEE,
and Jung-Dong Park, Senior Member, IEEE, "A 20.5-dBm X-Band Power Amplifier With a 1.2-V Supply in 65-nm CMOS Technology", IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 29, NO. 3, MARCH 2019.
[35] Jeng-Han Tsai, Member, IEEE, Tiku Yu, Member, IEEE, and Wang-Lung Huang, "An X-Band 29.6-dBm CMOS Power Amplifier Using Folded Radial Splitter and Binary Combiner Network", IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 29, NO. 9, SEPTEMBER 2019.
[38] Samsung ′′6G Spectrum: Expanding the Frontier," pp.8-16, May 2022.
[39] Pillseong Kang, Graduate Student Member, and Junghwan Han, "Dual-Band
CMOS RF Front-End Employing an Electrical-Balance Duplexer and N-Path
LNA for IBFD and FDD Radios," IEEE Transactions on Microwave Theory
and Techniques, vol.69, pp.3528-3539, July 2021.
[40] Dror Regev, Nimrod Ginzberg, Emanuel Cohen, "Analysis of Transmit and
Receive Implementation Losses in Full Duplex Wireless Transceivers," IEEE
Wireless and Microwave Circuits and Systems (WMCS), August 2020.
[41] Barend van Liempd, Benjamin Hershberg, Bjorn Debaillie, Piet Wambacq, Jan
Craninckx, "An Electrical-Balance Duplexer for In-Band Full-Duplex with <
85dBm In-Band Distortion at +10dBm TX-power," IEEE ESSCIRC Conference
2015 - 41st European Solid-State Circuits Conference (ESSCIRC).
[42] Nimrod Ginzberg, Dror Regev2, and Emanuel Cohen, "A 1.5–3 GHz Quadrature Balanced Switched-Capacitor CMOS Transmitter for Full Duplex and Half Duplex Wireless Systems," IEEE 2020 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), August 2020.
[43] Aravind Nagulu, Tingjun Chen, Gil Zussman, Harish Krishnaswamy, "Non-Magnetic 0.18μm SOI Circulator with Multi-Watt Power Handling Based on Switched-Capacitor Clock Boosting," IEEE International Solid- State Circuits Conference - (ISSCC), February 2020.
[44] Gengzhen Qi, Student Member, IEEE, Barend van Liempd, Member, IEEE, Pui-In Mak, "A SAW-Less Tunable RF Front End for FDD and IBFD Combining an Electrical-Balance Duplexer and a Switched-LC N-Path LNA," IEEE Journal of Solid-State Circuits, vol.53, pp.1431-1442, May 2018.
[45] N. Van Thienen, Y. Zhang, and P. Reynaert, "Bidirectional communication circuits for a 120GHz PMF data link in 40nm CMOS," IEEE J. of Solid-State Circuits, vol. 53, no. 7, pp. 2023–2031, 2018.
[46] Y. Cao, X. Cao, H. Seo, and J. Zhou, "An integrated full-duplex/FDD duplexer and receiver achieving 100MHz bandwidth 58dB/48dB self-interference suppression using hybrid-analog-digital autonomous adaptation loops," in Proc. IEEE/MTT-S IMS’20, 2020.
[47] Tahsin Alper Ozkan, Abdurrahman Burak, Ilker Kalyonc, Mehmet Kaynak, Yasar Gurbuz, "A High-Gain SiGe BiCMOS LNA for 5G In-Band Full-Duplex Applications," IEEE 2020 15th European Microwave Integrated Circuits Conference (EuMIC), January 2021.
[48] 唐晟哲,「應用於第五代通訊之寬頻氮化鎵多悌功率放大器暨有無使用類
比預失真線性化電路之互補式金氧半導體堆疊式功率放大器」,國立中央大
學,碩士論文,民國111年
[49] 陳冠州,「應用於 n77 頻段之氮化鎵/砷化鎵積體被動元件多悌功率放大器暨使用 B 類連續技術於 C/Ka頻帶氮化鎵/砷化鎵功率放大器之研製」,國立中央大學,碩士論文,民國111年。
[50]陳怡璇,「應用於 n79 頻段之使用連續B類技術單端互補式金氧半導體堆疊
式功率放大器暨差動緊耦合變壓器與差動緊湊型磁耦合變壓器之互補式金氧
半導體堆疊式功率放大器研製」,國立中央大學,碩士論文,民國112年。
[51] 3GPP TR 38.820 V16.1.0 (2021-03)
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2025-1-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明