參考文獻 |
[1] S. C. Cripps, P. J. Tasker, A. L. Clarke, J. Lees, and J. Benedikt, "On the continuity of high efficiency modes in linear RF power amplifiers," IEEE Microw. Wireless Compon. Lett., vol. 19, no. 10, pp. 665–667, Oct. 2009.
[2] P. J. Tasker, V. Carrubba, P. Wright, J. Lees, J. Benedikt and S. Cripps, "Wideband PA Design: The "Continuous" Mode of Operation," 2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 2012, pp. 1-4.
[3] P. Wright, J. Lees, J. Benedikt, P. J. Tasker, and S. C. Cripps, "A methodology for realizing high efficiency class-J in a linear and broadband PA," IEEE Trans. Microwave Theory Techniques, vol. 57, no. 12, pp. 3196–3204, Dec. 2009.
[4] V. Carrubba et al., "The continuous class-F mode power amplifier," in Proc. Eur. Microw. Conf., Sep. 2010, pp. 1674–1677.
[5] J. H. Kim, S. J. Lee, B. H. Park, S. H. Jang, J. H. Jung, and C. S. Park, "Analysis of high-efficiency power amplifier using second harmonic manipulation: Inverse class-F/J amplifiers," IEEE Trans. Microw. Theory Techn., vol. 59, no. 8, pp. 2024–2036, Aug. 2011.
[6] Behzab Razavi, "RF Micrielectronics," Second Edition.
[7] S. Pornpromlikit, J. Jeong, C. D. Presti, A. Scuderi and P. M. Asbeck, "A watt-level stacked-FET linear power amplifier in silicon-on-insulator CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 1, pp. 57-64, Jan. 2010.
[8] H. Dabag, B. Hanafi, F. Golcuk, A. Agah, J. F. Buckwalter and P. M. Asbeck, "Analysis and design of stacked-FET millimeter-wave power amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 4, pp. 1543-1556, April 2013.
[9] C. Li, C. Kuo and M. Kuo, "A 1.2-V 5.2-mW 20–30-GHz wideband receiver front-end in 0.18-μm CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 11, pp. 3502-3512, Nov. 2012.
[10] C. -H. Li, Y. -L. Liu and C. -N. Kuo, "A 0.6-V 0.33-mW 5.5-GHz Receiver Front-End Using Resonator Coupling Technique," in IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 6, pp. 1629-1638, June 2011.
[11] Park, J. L. Woo, U. Kim, and Y. Kwon, "Broadband CMOS stacked RF power amplifier using reconfigurable interstage network for wideband envelope tracking, " IEEE Trans. Microw. Theory Techn., vol. 63, no. 4, pp. 1174–1185, Apr. 2015.
[12] F. Wang and H. Wang, "A broadband linear ultra-compact mm-wave power amplifier with distributed-balun output network: analysis and design," IEEE Journal of Solid-State Circuits, vol. 56, no. 8, pp. 2308-2323, Aug. 2021.
[13] G. R. Nikandish, R. B. Staszewski and A. Zhu, "Broadband fully integrated GaN power amplifier with minimum-inductance BPF matching and two-transistor AM-PM compensation," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 12, pp. 4211-4223, Dec. 2020.
[14] C. Lin and H. Chang, "A broadband injection-locking class-E power amplifier," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 10, pp. 3232-3242, Oct. 2012.
[15] Jeng-Han Tsai, "A 5.3-GHz 30.1-dBm Fully Integrated CMOS Power Amplifier With High-Power Built-In Linearizer,"IEEE Microwave and Wireless Components Letters, vol. 33, no. 4, April 2023.
[16] H. -F. Wu, Q. -F. Cheng, X. -G. Li and H. -P. Fu, "Analysis and design of an ultrabroadband stacked power amplifier in CMOS technology," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 1, pp. 49-53, Jan. 2016.
[17] Y. Dong, L. Mao and S. Xie, "Fully integrated Class-J power amplifier in standard CMOS technology, " IEEE Microwave and Wireless Components Letters, vol. 27, no. 1, pp. 64-66, Jan. 2017.
[18] Ting Guo, Lu, Kai Tang, Chuanshi Yang, Bo Yu, Yuanjin Zheng, "A Floating-Body Transistor-Based Power Amplifier for Sub-6-GHz 5G Applications in SOI CMOS 130-nm Process," IEEE Transactions on Circuits and Systems II: Express Briefs, vol,69, no 10, Oct, 2022.
[19] S. Pornpromlikit, J. Jeong, C. D. Presti, A. Scuderi and P. M. Asbeck, "A watt-level stacked-FET linear power amplifier in silicon-on-insulator CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 1, pp. 57-64, Jan. 2010.
[20] Pin-Cheng Huang, Zuo-Min Tsai, Kun-You Lin, Huei Wang, "A High-Efficiency, Broadband CMOS Power Amplifier for Cognitive Radio Applications," IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, Dec 2010.
[21] T. Quemerais, L. Moquillon, J.-M. Fournier, P. Benech, and V. Huard, "Design-in-reliable millimeter-wave power amplifiers in a 65-nm CMOS process," IEEE Trans. Microw. Theory Tech., vol. 60, no. 4, pp. 1079–1085, Apr. 2012.
[22] H. -W. Choi, S. Choi, J. -T. Lim and C. -Y. Kim, "1-W, high-gain, high-efficiency, and compact sub-GHz linear power amplifier employing a 1:1 transformer balun in 180-nm CMOS," IEEE Microwave and Wireless Components Letters, vol. 30, no. 8, pp. 779-781, Aug. 2020.
[23] S. Aloui, N. Demirel, R. Plana, D. Belot, and E. Kerherve, "High-gain and linear 60-GHz power amplifier with a thin digital 65-nm CMOS technology," IEEE Trans. Microw. Theory Tech., vol. 61, no. 7, pp. 2425–2437, Jun. 2013.
[24] Y.-C. Hsu, Y.-S. Chen, T.-C. Tsai, and K.-Y. Lin, "A K-band CMOS cascode power amplifier using optimal bias selection methodology," In Proc. Asia-Pacific Microw. Conf., Dec. 2011, pp. 793–796.
[25] S. C. Cripps, "RF Power Amplifiers for Wireless Communications," 2nd ed. Norwood, MA, USA: Artech House, 2006.
[26] P. N. Landin, W. V. Moer, N. Bjorsell, and P. Handel, "Performance evaluation of peak-to-average power ratio reduction and digital pre-distortion for OFDM based systems," IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3504–3511, Dec. 2011.
[27] J.-H. Tsai, H.-Y. Chang, P.-S. Wu, Y.-L. Lee, T.-W. Huang, and H. Wang, "Design and analysis of a 44-GHz MMIC low-loss built-in linearizer for high-linearity medium power amplifiers," IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2487–2496, Jun. 2006.
[28] N. Rostomyan, J. A. Jayamon and P. M. Asbeck, "15 GHz Doherty power amplifier with RF predistortion linearizer in CMOS SOI," IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 3, pp. 1339-1348, March 2018.
[29] J. Park, S. Kang and S. Hong, "Design of a Ka-band cascode power amplifier linearized with cold-FET interstage matching network," IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 2, pp. 1429-1438, Feb. 2021.
[30] K. Kao, Y. Hsu, K. Chen and K. Lin, "Phase-delay cold-FET pre-distortion linearizer for millimeter-wave CMOS power amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 12, pp. 4505-4519, Dec. 2013.
[31] K. Onizuka, H. Ishihara, M. Hosoya, S. Saigusa, O. Watanabe and S. Otaka, "A 1.9 GHz CMOS power amplifier with embedded linearizer to compensate AM-PM distortion," IEEE Journal of Solid-State Circuits, vol. 47, no. 8, pp. 1820-1827, Aug. 2012.
[32] S. N. Ali, P. Agarwal, S. Gopal and D. Heo, "Transformer-based predistortion linearizer for high linearity and high modulation efficiency in mm-wave 5G CMOS power amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 7, pp. 3074-3087, July 2019.
[33] D. Jung, H. Zhao and H. Wang, "A CMOS highly linear Doherty power amplifier with multigated transistors," IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 5, pp. 1883-1891, May 2019.
[34] Van-Son Trinh, Student Member, IEEE, Hyohyun Nam, Student Member, IEEE,
and Jung-Dong Park, Senior Member, IEEE, "A 20.5-dBm X-Band Power Amplifier With a 1.2-V Supply in 65-nm CMOS Technology", IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 29, NO. 3, MARCH 2019.
[35] Jeng-Han Tsai, Member, IEEE, Tiku Yu, Member, IEEE, and Wang-Lung Huang, "An X-Band 29.6-dBm CMOS Power Amplifier Using Folded Radial Splitter and Binary Combiner Network", IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 29, NO. 9, SEPTEMBER 2019.
[38] Samsung ′′6G Spectrum: Expanding the Frontier," pp.8-16, May 2022.
[39] Pillseong Kang, Graduate Student Member, and Junghwan Han, "Dual-Band
CMOS RF Front-End Employing an Electrical-Balance Duplexer and N-Path
LNA for IBFD and FDD Radios," IEEE Transactions on Microwave Theory
and Techniques, vol.69, pp.3528-3539, July 2021.
[40] Dror Regev, Nimrod Ginzberg, Emanuel Cohen, "Analysis of Transmit and
Receive Implementation Losses in Full Duplex Wireless Transceivers," IEEE
Wireless and Microwave Circuits and Systems (WMCS), August 2020.
[41] Barend van Liempd, Benjamin Hershberg, Bjorn Debaillie, Piet Wambacq, Jan
Craninckx, "An Electrical-Balance Duplexer for In-Band Full-Duplex with <
85dBm In-Band Distortion at +10dBm TX-power," IEEE ESSCIRC Conference
2015 - 41st European Solid-State Circuits Conference (ESSCIRC).
[42] Nimrod Ginzberg, Dror Regev2, and Emanuel Cohen, "A 1.5–3 GHz Quadrature Balanced Switched-Capacitor CMOS Transmitter for Full Duplex and Half Duplex Wireless Systems," IEEE 2020 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), August 2020.
[43] Aravind Nagulu, Tingjun Chen, Gil Zussman, Harish Krishnaswamy, "Non-Magnetic 0.18μm SOI Circulator with Multi-Watt Power Handling Based on Switched-Capacitor Clock Boosting," IEEE International Solid- State Circuits Conference - (ISSCC), February 2020.
[44] Gengzhen Qi, Student Member, IEEE, Barend van Liempd, Member, IEEE, Pui-In Mak, "A SAW-Less Tunable RF Front End for FDD and IBFD Combining an Electrical-Balance Duplexer and a Switched-LC N-Path LNA," IEEE Journal of Solid-State Circuits, vol.53, pp.1431-1442, May 2018.
[45] N. Van Thienen, Y. Zhang, and P. Reynaert, "Bidirectional communication circuits for a 120GHz PMF data link in 40nm CMOS," IEEE J. of Solid-State Circuits, vol. 53, no. 7, pp. 2023–2031, 2018.
[46] Y. Cao, X. Cao, H. Seo, and J. Zhou, "An integrated full-duplex/FDD duplexer and receiver achieving 100MHz bandwidth 58dB/48dB self-interference suppression using hybrid-analog-digital autonomous adaptation loops," in Proc. IEEE/MTT-S IMS’20, 2020.
[47] Tahsin Alper Ozkan, Abdurrahman Burak, Ilker Kalyonc, Mehmet Kaynak, Yasar Gurbuz, "A High-Gain SiGe BiCMOS LNA for 5G In-Band Full-Duplex Applications," IEEE 2020 15th European Microwave Integrated Circuits Conference (EuMIC), January 2021.
[48] 唐晟哲,「應用於第五代通訊之寬頻氮化鎵多悌功率放大器暨有無使用類
比預失真線性化電路之互補式金氧半導體堆疊式功率放大器」,國立中央大
學,碩士論文,民國111年
[49] 陳冠州,「應用於 n77 頻段之氮化鎵/砷化鎵積體被動元件多悌功率放大器暨使用 B 類連續技術於 C/Ka頻帶氮化鎵/砷化鎵功率放大器之研製」,國立中央大學,碩士論文,民國111年。
[50]陳怡璇,「應用於 n79 頻段之使用連續B類技術單端互補式金氧半導體堆疊
式功率放大器暨差動緊耦合變壓器與差動緊湊型磁耦合變壓器之互補式金氧
半導體堆疊式功率放大器研製」,國立中央大學,碩士論文,民國112年。
[51] 3GPP TR 38.820 V16.1.0 (2021-03) |