參考文獻 |
[1] R. Bez, E. Camerlenghi, A. Modelli and A. Visconti, "Introduction to FLASH memory," in Proceedings of the IEEE, vol. 91, no. 4, pp. 489-502, April 2003, doi: 10.1109/JPROC.2003.811702.
[2] E. I. Vatajelu, P. Prinetto, M. Taouil and S. Hamdioui, "Challenges and Solutions in Emerging Memory Testing," in IEEE Transactions on Emerging Topics in Computing, vol. 7, no. 3, pp. 493-506, 1 July-Sept. 2019, doi: 10.1109/TETC.2017.2691263.
[3] K. Kim and G. H. Koh, "Future memory technology including emerging new memories," 2004 24th International Conference on Microelectronics (IEEE Cat. No.04TH8716), Nis, Serbia, 2004, pp. 377-384 vol.1, doi: 10.1109/ICMEL.2004.1314646.
[4] T. Schenk and S. Mueller, "A New Generation of Memory Devices Enabled by Ferroelectric Hafnia and Zirconia," 2021 IEEE International Symposium on Applications of Ferroelectrics (ISAF), Sydney, 10.1109/ISAF51943.2021.9477377. Australia, 2021, pp. 81-91, doi:
[5] D. Fey, J. Reuben and S. Slesazeck, "Comparative study of usefulness of FeFET, FTJ and ReRAM technology for ternary arithmetic," 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), Dubai, United Arab Emirates, 2021, pp. 293 298, doi: 10.1109/ICECS53924.2021.9665635.
[6] H.-S. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, "Metal–Oxide RRAM," in Proceedings of the IEEE, vol. 100, no. 6, pp. 1951-1970, June 2012, doi: 10.1109/JPROC.2012.2190369.
[7] Y. Xie, "Modeling, Architecture, and Applications for Emerging Memory Technologies," in IEEE Design & Test of Computers, vol. 28, no. 1, pp. 44-51, Jan.-Feb. 2011, doi: 10.1109/MDT.2011.20. 69
[8] D. Ventrice, P. Fantini, A. Redaelli, A. Pirovano, A. Benvenuti and F. Pellizzer, "A Phase Change Memory Compact Model for Multilevel Applications," in IEEE Electron Device Letters, vol. 28, no. 11, pp. 973-975, Nov. 2007, doi: 10.1109/LED.2007.907288.
[9] K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L. Q. Che, D. C. Schlom, and C. B. Eom, “Enhancement of Ferroelectricity in Strained BaTiO3 Thin Films,” Science, vol. 306, pp. 1005-1009, 2004, doi: 10.1126/science.1103218.
[10] B. N. Q. Trinh and S. Horita, "Fabrication of Polycrystalline Ferroelectric Gate FET Memory with an Intermediate Electrode," 2006 15th IEEE international symposium on the applications of ferroelectrics, Sunset Beach, NC, USA, 2006, pp. 77-80, doi: 10.1109/ISAF.2006.4387837.
[11] N. J. Donnelly and C. A. Randall, "Impedance spectroscopy of PZT ceramics - measuring diffusion coefficients, mixed conduction and Pb loss," 2011 International Symposium on Applications of Ferroelectrics (ISAF/PFM) and 2011 International Symposium on Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials, Vancouver, BC, Canada, 2011, pp. 48-52, doi: 10.1109/ISAF.2011.6014108.
[12] A. Toriumi, L. Xu, Y. Mori, X. Tian, P. D. Lomenzo, H. Mulaosmanovic, "Material perspectives of HfO2-based ferroelectric films for device applications," 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2019, pp. 15.1.1-15.1.4, doi: 10.1109/IEDM19573.2019.8993464.
[13] Hansraj, A. Chaudhary and A. Rana, "Ultra Low power SRAM Cell for High Speed Applications using 90nm CMOS Technology," 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, India, 2020, pp. 1107-1109, doi: 10.1109/ICRITO48877.2020.9197869.
[14] D. Popescu, B. Popescu, G. Jegert, S. Schmelzer, U. Boettger and P. Lugli, "Feasibility Study of SrRuO3/SrTiO3/SrRuO3 Thin Film Capacitors in DRAM Applications," in IEEE 70 Transactions on Electron Devices, vol. 61, no. 6, pp. 2130-2135, June 2014, doi: 10.1109/TED.2014.2314148.
[15] C. Lee, S. H. Baek and K. H. Park, "A Hybrid FLASH File System Based on NOR and NAND FLASH Memories for Embedded Devices," in IEEE Transactions on Computers, vol. 57, no. 7, pp. 1002-1008, July 2008, doi: 10.1109/TC.2008.14.
[16] B. Cui, S. Ye, X. Wang, M. Wu, Y. Li, Y. Wu, "Unveiling the Role of Local Stress in Enhancing Ferroelectric Properties and Endurance of HfO2/ZrO2 Superlattice Structures," in IEEE Electron Device Letters, doi: 10.1109/LED.2024.3496720.
[17] X. Wang, M. Wu, B. Cui, Y. Li, Y. Wu, Y. Wen, "Oxygen Vacancy Modulation With TiO2 Stack Interface Engineering for Ferroelectric Hf0.5Zr0.5O2 Thin Films," in IEEE Electron Device Letters, vol. 45, no. 1, pp. 100-103, Jan. 2024, doi: 10.1109/LED.2023.3330784.
[18] B. Cui, X. Wang, Y. Li, M. Wu, Y. Wu, J. Liu, "Back-End-of-Line Compatible HfO2/ZrO2 Superlattice Ferroelectric Capacitor With High Endurance and Remnant Polarization," in IEEE Electron Device Letters, vol. 44, no. 6, pp. 1011-1014, June 2023, doi: 10.1109/LED.2023.3265516.
[19] E. R. Hsieh, Y. T. Tang, C. R. Liu, S. M. Wang, Y. L. Hsueh, R. Q. Lin, "3-bits-per-cell 2T32CFE nvTCAM by Angstrom-laminated Ferroelectric Layers with 1011 Cycles of Endurance and 4.92V of Ultra-wide Memory-windows for In-memory-searching," 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Kyoto, Japan, 2023, pp. 10.23919/VLSITechnologyandCir57934.2023.10185226. 415-416, doi:
[20] H. Mulaosmanovic, P. D. Lomenzo, U. Schroeder, S. Slesazeck, T. Mikolajick and B. Max, "Reliability aspects of ferroelectric hafnium oxide for application in non-volatile memories," 2021 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 2021, pp. 520-525, doi: 10.1109/IRPS46558.2021.9405215. 71
[21] D. Takashima, "Overview of FeRAMs: Trends and perspectives," 2011 11th Annual Non Volatile Memory Technology Symposium Proceeding, Shanghai, China, 2011, pp. 36-41, doi: 10.1109/NVMTS.2011.6137107.
[22] K. Ni, P. Sharma, J. Zhang, M. Jerry, J. A. Smith, K. Tapily, "Critical Role of Interlayer in Hf0.5Zr0.5O2 Ferroelectric FET Nonvolatile Memory Performance," in IEEE Transactions on Electron Devices, vol. 65, no. 6, pp. 2461-2469, June 2018, doi: 10.1109/TED.2018.2829122.
[23] M. Kobayashi, Y. Tagawa, F. Mo, T. Saraya and T. Hiramoto, "Ferroelectric HfO2 Tunnel Junction Memory With High TER and Multi-Level Operation Featuring Metal Replacement Process," in IEEE Journal of the Electron Devices Society, vol. 7, pp. 134 139, 2019, doi: 10.1109/JEDS.2018.2885932.
[24] X. Ke, J. Chai, X. Shao, J. Duan, X. Sun, S. Yang, "Switching Dynamics of HfO2–ZrO2 Nanolaminates With Different Laminate Thicknesses," in IEEE Transactions on Electron Devices, vol. 71, no. 6, pp. 3651-3658, June 2024, doi: 10.1109/TED.2024.3393935.
[25] E. R. Hsieh, P. Y. Lu, S. S. Chung, J. C. Ke, C. W. Yang, C. T. Tsai, "The RTN measurement technique on leakage path finding in advanced high-k metal gate CMOS devices," 2015 IEEE 22nd International Symposium on the Physical and Failure Analysis of Integrated Circuits, 10.1109/IPFA.2015.7224355. Hsinchu, Taiwan, 2015, pp. 154-457, doi:
[26] F. M. Puglisi, L. Larcher, A. Padovani and P. Pavan, "A Complete Statistical Investigation of RTN in HfO2-Based RRAM in High Resistive State," in IEEE Transactions on Electron Devices, vol. 62, no. 8, pp. 2606-2613, Aug. 2015, doi: 10.1109/TED.2015.2439812.
[27] N. Yazaki, R. Motoyoshi, S. Numata, K. Ohshima, Y. Egi, F. Isaka, "Effectiveness of c Axis Aligned Crystalline IGZO FET as Selector Element and Ferroelectric Capacitor Scaling of 1T1C FeRAM," in IEEE Journal of the Electron Devices Society, vol. 11, pp. 467-472, 2023, doi: 10.1109/JEDS.2023.3307124. 72
[28] J. Yu, T. Wang, Z. Li, Y. Liu, J. Meng, K. Xu, "Improved Ferroelectricity and Tunneling Electro Resistance in Zr-Rich HfxZr1-xO2 Ferroelectric Tunnel Junction," in IEEE Electron Device Letters, vol. 44, no. 2, pp. 245-248, Feb. 2023, doi: 10.1109/LED.2022.3228589.
[29] D. Lehninger, H. Mahne, T. Ali, R. Hoffmann, R. Olivo, M. Lederer, "Integration of BEoL Compatible 1T1C FeFET Memory Into an Established CMOS Technology," 2022 IEEE International Memory Workshop (IMW), Dresden, Germany, 2022, pp. 81-84, doi: 10.1109/IMW52921.2022.9779252.
[30] J. Okuno, T. Kunihiro, K. Konishi, H. Maemura, Y. Shuto, F. Sugaya, "High-Endurance and Low-Voltage operation of 1T1C FeRAM Arrays for Nonvolatile Memory Application," 2021 IEEE International Memory Workshop (IMW), Dresden, Germany, 2021, pp. 29-31, doi: 10.1109/IMW51353.2021.9439595.
[31] B. Max, M. Hoffmann, S. Slesazeck and T. Mikolajick, "Ferroelectric Tunnel Junctions based on Ferroelectric-Dielectric Hf0.5Zr0.5O2/A12O3 Capacitor Stacks," 2018 48th European Solid-State Device Research Conference (ESSDERC), Dresden, Germany, 2018, pp. 142-145, doi: 10.1109/ESSDERC.2018.8486882.
[32] J. Hur, C. Park, G. Choe, P. V. Ravindran, A. I. Khan and S. Yu, "Characterizing HfO2 Based Ferroelectric Tunnel Junction in Cryogenic Temperature," in IEEE Transactions on Electron Devices, vol. 10.1109/TED.2022.3200919. 69, no. 10, pp. 5948-5951, Oct. 2022, doi: |