博碩士論文 111521003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:129 、訪客IP:18.117.157.139
姓名 陳之遠(Chih-Yuan Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 新型單電晶體多鐵電穿隧接面非揮發式記憶體矩陣之研製與特性分析
(Fabrication and Characterization of Novel 1 Transistor-n-Ferroelectric-tunnel-junction (FTJ) Non-volatile Memory)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-1-16以後開放)
摘要(中) 在科技快速發展的時代中,隨著記憶體尺寸微縮,傳統記憶體受限於物理的極限 而無法繼續發展,於是各式新興記憶體(emerging memory)被發明,其中包含以 HfO2/ZrO2 (HZO)作為鐵電材料層的鐵電記憶體(Ferroelectric memory),相較於傳統鈦酸 鋇(BaTiO3 , BTO)和鋯鈦酸鉛(Pb[ZrxTi1-x]O3 , PZT)材料的鐵電記憶體,HZO材料具有更 好的微縮潛力以及能與互補式金屬氧化物半導體(Complementary Metal-Oxide Semiconductor, CMOS)做整合,所以本篇論文將以鐵電穿隧接面記憶體(Ferroelectric Tunnel Junction, FTJ)為基礎設計一個 1T16FTJ作為 unit cell,並實現記憶體矩陣的操作, 實驗的內容包含光罩佈局、製程以及量測,製程實驗在台灣半導體研究中心(Taiwan Semiconductor Research Institute, TSRI)完成。

鐵電記憶體是由金屬-鐵電層-金屬(Metal-Ferroelectric-Metal, MFM)所組成,本次實 驗是將16個FTJ cells的下電極連接到一個控制電晶體的汲極(Drain)端,將上電極連接 到獨立的位元線(Bit line, BL),下電極則是與控制電晶體drain端一起連接到數據線(Data line, DL),進行資料的寫入(PROGRAM)、抹除(ERASE)以及讀取(Read),控制電晶體的 閘極端(gate)連接到字元線(Word line, WL),源極端(Source)則是連接到來源線(Source line, SL)。在讀取資料方面,由於讀取電流的方式會產生電流較小或是儲存狀態差異不 明顯,導致資料誤判的情況發生,故本篇論文將展示以電壓讀取取代傳統讀取電流的 方式,電壓讀取具有較大的記憶窗口(memory window, MW),在耐久度測試(Endurance) 以及資料保存時間(Retention)方面會表現較好,在量測過程中發現了隨機電報雜訊 (Random Telegraph Noise, RTN)現象導致 MW下降的情況,透過量測與計算出其缺陷的 深度與能量,並發現其缺陷位置位於鐵電介電層與電極的接面附近。
摘要(英) In the era of rapidly developing technology, as memory size keeps scaling down, several conventional memory technologies have faced their physical limits. Thus, the invention of emerging memories leads to the replacement of conventional memory. These emerging memories include ferroelectric memories, which are composed of HfO2 and ZrO2. Compared to barium titanate(BaTiO3 , BTO) and zirconium titanate(Pb[ZrxTi1-x]O3 , PZT), HZO materials offer better scalability and have also been integrated into complementary-metal-oxide semiconductor (CMOS) processes. This work proposes a 1-transistor-and-16-ferroelectric tunneling-junction (1T16FTJ) design as a unit cell, and applies 1T16FTJ in memory arrays. The experiment included mask layout, fabrication and measurement, the samples were fabricated at Taiwan Semiconductor Research Institute(TSRI).

Ferroelectric memory is composed of Metal-Ferroelectric-Metal(MFM) layers. In this work, we connected 16 FTJ cells to the drain of the transistor, each FTJ cell has an individual BL linked to its top electrode, and the bottom electrode is connected to a shared DL at the drain of the transistor in order to PROGRAM, ERASE and read. The gate of the transistor is connected to WL and the source is connected to SL. The 1T16FTJ memory has faced challenges such as low read current and insufficient current differentiation between storage states, leading to data misjudgment. This work will utilize voltage readout to replace the conventional current readout, because voltage readout has a larger MW, better retention and endurance performance. During the measurement, the phenomenon of RTN was discovered, which leads to the narrowing of the MW. By measuring and calculating, we identified the depth and energy of RTN traps, and found that the RTN traps are located near the interface between the top electrode and the HZO layer.
關鍵字(中) ★ 非揮發性記憶體
★ 鐵電穿隧接面記憶體
★ 記憶體矩陣
★ 電壓讀取
★ 隨機電報雜訊
關鍵字(英) ★ Non-Volatile Memory(NVM)
★ Ferroelectric Tunnel Junction(FTJ)
★ memory array
★ Voltage readout
★ Random Telegraph Noise(RTN)
論文目次 摘要 I
Abstract II
致謝 III
圖目錄 VI
表目錄 IX
一、 導論 1
1-1 背景 1
1-2 研究動機 2
1-3 論文架構 3
二、 隨機存取記憶體介紹 5
2-1 隨機存取記憶體(Random Access Memory, RAM) 5
2-2 鐵電記憶體(Ferroelectric memory)介紹 8
2-3 Ferroelectric RAM記憶體 8
2-4 Ferroelectric FET記憶體 9
2-5 Ferroelectric Tunnel Junction記憶體 10
三、 1T16FTJ元件製備及實驗設置 30
3-1 Unit cell介紹 30
3-2 元件製備 30
3-3 1T16FTJ陣列及操作條件 32
3-4 量測規劃與設置 33
四、 實驗與量測結果 43
4-1 1T16FTJ陣列之元件製備結果及元素分析 43
4-2 1T16FTJ儲存單元之電性量測 43
4-3 1T16FTJ操作耐久度測試(Endurance test) 44
4-4 1T16FTJ資料儲存時間測試(Retention test) 45
4-5 1T16FTJ隨機電報雜訊(Random Telegraph Noise, RTN) 45
五、 結論與未來展望 66
5-1 結論 66
5-2 未來展望 66
Reference 69
參考文獻 [1] R. Bez, E. Camerlenghi, A. Modelli and A. Visconti, "Introduction to FLASH memory," in Proceedings of the IEEE, vol. 91, no. 4, pp. 489-502, April 2003, doi: 10.1109/JPROC.2003.811702.
[2] E. I. Vatajelu, P. Prinetto, M. Taouil and S. Hamdioui, "Challenges and Solutions in Emerging Memory Testing," in IEEE Transactions on Emerging Topics in Computing, vol. 7, no. 3, pp. 493-506, 1 July-Sept. 2019, doi: 10.1109/TETC.2017.2691263.
[3] K. Kim and G. H. Koh, "Future memory technology including emerging new memories," 2004 24th International Conference on Microelectronics (IEEE Cat. No.04TH8716), Nis, Serbia, 2004, pp. 377-384 vol.1, doi: 10.1109/ICMEL.2004.1314646.
[4] T. Schenk and S. Mueller, "A New Generation of Memory Devices Enabled by Ferroelectric Hafnia and Zirconia," 2021 IEEE International Symposium on Applications of Ferroelectrics (ISAF), Sydney, 10.1109/ISAF51943.2021.9477377. Australia, 2021, pp. 81-91, doi:
[5] D. Fey, J. Reuben and S. Slesazeck, "Comparative study of usefulness of FeFET, FTJ and ReRAM technology for ternary arithmetic," 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), Dubai, United Arab Emirates, 2021, pp. 293 298, doi: 10.1109/ICECS53924.2021.9665635.
[6] H.-S. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, "Metal–Oxide RRAM," in Proceedings of the IEEE, vol. 100, no. 6, pp. 1951-1970, June 2012, doi: 10.1109/JPROC.2012.2190369.
[7] Y. Xie, "Modeling, Architecture, and Applications for Emerging Memory Technologies," in IEEE Design & Test of Computers, vol. 28, no. 1, pp. 44-51, Jan.-Feb. 2011, doi: 10.1109/MDT.2011.20. 69
[8] D. Ventrice, P. Fantini, A. Redaelli, A. Pirovano, A. Benvenuti and F. Pellizzer, "A Phase Change Memory Compact Model for Multilevel Applications," in IEEE Electron Device Letters, vol. 28, no. 11, pp. 973-975, Nov. 2007, doi: 10.1109/LED.2007.907288.
[9] K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L. Q. Che, D. C. Schlom, and C. B. Eom, “Enhancement of Ferroelectricity in Strained BaTiO3 Thin Films,” Science, vol. 306, pp. 1005-1009, 2004, doi: 10.1126/science.1103218.
[10] B. N. Q. Trinh and S. Horita, "Fabrication of Polycrystalline Ferroelectric Gate FET Memory with an Intermediate Electrode," 2006 15th IEEE international symposium on the applications of ferroelectrics, Sunset Beach, NC, USA, 2006, pp. 77-80, doi: 10.1109/ISAF.2006.4387837.
[11] N. J. Donnelly and C. A. Randall, "Impedance spectroscopy of PZT ceramics - measuring diffusion coefficients, mixed conduction and Pb loss," 2011 International Symposium on Applications of Ferroelectrics (ISAF/PFM) and 2011 International Symposium on Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials, Vancouver, BC, Canada, 2011, pp. 48-52, doi: 10.1109/ISAF.2011.6014108.
[12] A. Toriumi, L. Xu, Y. Mori, X. Tian, P. D. Lomenzo, H. Mulaosmanovic, "Material perspectives of HfO2-based ferroelectric films for device applications," 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2019, pp. 15.1.1-15.1.4, doi: 10.1109/IEDM19573.2019.8993464.
[13] Hansraj, A. Chaudhary and A. Rana, "Ultra Low power SRAM Cell for High Speed Applications using 90nm CMOS Technology," 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, India, 2020, pp. 1107-1109, doi: 10.1109/ICRITO48877.2020.9197869.
[14] D. Popescu, B. Popescu, G. Jegert, S. Schmelzer, U. Boettger and P. Lugli, "Feasibility Study of SrRuO3/SrTiO3/SrRuO3 Thin Film Capacitors in DRAM Applications," in IEEE 70 Transactions on Electron Devices, vol. 61, no. 6, pp. 2130-2135, June 2014, doi: 10.1109/TED.2014.2314148.
[15] C. Lee, S. H. Baek and K. H. Park, "A Hybrid FLASH File System Based on NOR and NAND FLASH Memories for Embedded Devices," in IEEE Transactions on Computers, vol. 57, no. 7, pp. 1002-1008, July 2008, doi: 10.1109/TC.2008.14.
[16] B. Cui, S. Ye, X. Wang, M. Wu, Y. Li, Y. Wu, "Unveiling the Role of Local Stress in Enhancing Ferroelectric Properties and Endurance of HfO2/ZrO2 Superlattice Structures," in IEEE Electron Device Letters, doi: 10.1109/LED.2024.3496720.
[17] X. Wang, M. Wu, B. Cui, Y. Li, Y. Wu, Y. Wen, "Oxygen Vacancy Modulation With TiO2 Stack Interface Engineering for Ferroelectric Hf0.5Zr0.5O2 Thin Films," in IEEE Electron Device Letters, vol. 45, no. 1, pp. 100-103, Jan. 2024, doi: 10.1109/LED.2023.3330784.
[18] B. Cui, X. Wang, Y. Li, M. Wu, Y. Wu, J. Liu, "Back-End-of-Line Compatible HfO2/ZrO2 Superlattice Ferroelectric Capacitor With High Endurance and Remnant Polarization," in IEEE Electron Device Letters, vol. 44, no. 6, pp. 1011-1014, June 2023, doi: 10.1109/LED.2023.3265516.
[19] E. R. Hsieh, Y. T. Tang, C. R. Liu, S. M. Wang, Y. L. Hsueh, R. Q. Lin, "3-bits-per-cell 2T32CFE nvTCAM by Angstrom-laminated Ferroelectric Layers with 1011 Cycles of Endurance and 4.92V of Ultra-wide Memory-windows for In-memory-searching," 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Kyoto, Japan, 2023, pp. 10.23919/VLSITechnologyandCir57934.2023.10185226. 415-416, doi:
[20] H. Mulaosmanovic, P. D. Lomenzo, U. Schroeder, S. Slesazeck, T. Mikolajick and B. Max, "Reliability aspects of ferroelectric hafnium oxide for application in non-volatile memories," 2021 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 2021, pp. 520-525, doi: 10.1109/IRPS46558.2021.9405215. 71
[21] D. Takashima, "Overview of FeRAMs: Trends and perspectives," 2011 11th Annual Non Volatile Memory Technology Symposium Proceeding, Shanghai, China, 2011, pp. 36-41, doi: 10.1109/NVMTS.2011.6137107.
[22] K. Ni, P. Sharma, J. Zhang, M. Jerry, J. A. Smith, K. Tapily, "Critical Role of Interlayer in Hf0.5Zr0.5O2 Ferroelectric FET Nonvolatile Memory Performance," in IEEE Transactions on Electron Devices, vol. 65, no. 6, pp. 2461-2469, June 2018, doi: 10.1109/TED.2018.2829122.
[23] M. Kobayashi, Y. Tagawa, F. Mo, T. Saraya and T. Hiramoto, "Ferroelectric HfO2 Tunnel Junction Memory With High TER and Multi-Level Operation Featuring Metal Replacement Process," in IEEE Journal of the Electron Devices Society, vol. 7, pp. 134 139, 2019, doi: 10.1109/JEDS.2018.2885932.
[24] X. Ke, J. Chai, X. Shao, J. Duan, X. Sun, S. Yang, "Switching Dynamics of HfO2–ZrO2 Nanolaminates With Different Laminate Thicknesses," in IEEE Transactions on Electron Devices, vol. 71, no. 6, pp. 3651-3658, June 2024, doi: 10.1109/TED.2024.3393935.
[25] E. R. Hsieh, P. Y. Lu, S. S. Chung, J. C. Ke, C. W. Yang, C. T. Tsai, "The RTN measurement technique on leakage path finding in advanced high-k metal gate CMOS devices," 2015 IEEE 22nd International Symposium on the Physical and Failure Analysis of Integrated Circuits, 10.1109/IPFA.2015.7224355. Hsinchu, Taiwan, 2015, pp. 154-457, doi:
[26] F. M. Puglisi, L. Larcher, A. Padovani and P. Pavan, "A Complete Statistical Investigation of RTN in HfO2-Based RRAM in High Resistive State," in IEEE Transactions on Electron Devices, vol. 62, no. 8, pp. 2606-2613, Aug. 2015, doi: 10.1109/TED.2015.2439812.
[27] N. Yazaki, R. Motoyoshi, S. Numata, K. Ohshima, Y. Egi, F. Isaka, "Effectiveness of c Axis Aligned Crystalline IGZO FET as Selector Element and Ferroelectric Capacitor Scaling of 1T1C FeRAM," in IEEE Journal of the Electron Devices Society, vol. 11, pp. 467-472, 2023, doi: 10.1109/JEDS.2023.3307124. 72
[28] J. Yu, T. Wang, Z. Li, Y. Liu, J. Meng, K. Xu, "Improved Ferroelectricity and Tunneling Electro Resistance in Zr-Rich HfxZr1-xO2 Ferroelectric Tunnel Junction," in IEEE Electron Device Letters, vol. 44, no. 2, pp. 245-248, Feb. 2023, doi: 10.1109/LED.2022.3228589.
[29] D. Lehninger, H. Mahne, T. Ali, R. Hoffmann, R. Olivo, M. Lederer, "Integration of BEoL Compatible 1T1C FeFET Memory Into an Established CMOS Technology," 2022 IEEE International Memory Workshop (IMW), Dresden, Germany, 2022, pp. 81-84, doi: 10.1109/IMW52921.2022.9779252.
[30] J. Okuno, T. Kunihiro, K. Konishi, H. Maemura, Y. Shuto, F. Sugaya, "High-Endurance and Low-Voltage operation of 1T1C FeRAM Arrays for Nonvolatile Memory Application," 2021 IEEE International Memory Workshop (IMW), Dresden, Germany, 2021, pp. 29-31, doi: 10.1109/IMW51353.2021.9439595.
[31] B. Max, M. Hoffmann, S. Slesazeck and T. Mikolajick, "Ferroelectric Tunnel Junctions based on Ferroelectric-Dielectric Hf0.5Zr0.5O2/A12O3 Capacitor Stacks," 2018 48th European Solid-State Device Research Conference (ESSDERC), Dresden, Germany, 2018, pp. 142-145, doi: 10.1109/ESSDERC.2018.8486882.
[32] J. Hur, C. Park, G. Choe, P. V. Ravindran, A. I. Khan and S. Yu, "Characterizing HfO2 Based Ferroelectric Tunnel Junction in Cryogenic Temperature," in IEEE Transactions on Electron Devices, vol. 10.1109/TED.2022.3200919. 69, no. 10, pp. 5948-5951, Oct. 2022, doi:
指導教授 郭明庭 謝易叡(Ming-Ting Kuo E-Ray Hsieh) 審核日期 2025-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明